Special Issue "Extraction and Analysis of Natural Product in Plant"

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Agricultural Engineering".

Deadline for manuscript submissions: 31 December 2020.

Special Issue Editor

Prof. Dr. Gerardo Fernández Barbero
Website SciProfiles
Guest Editor
Department of Analytical Chemistry, Faculty of Sciences, IVAGRO, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
Interests: chemometrics; fire investigation; headspace-mass spectrometry electronic nose; ignitable liquids; petroleum-based products; volatile organic compounds; food adulteration; ion mobility spectroscopy; forensic chemistry; food analysis; analytical chemistry; hplc; gc; uhplc; ms; extraction techniques

Special Issue Information

Dear colleagues,

Plants are a source of a large number and amount of natural compounds, many of them with great biological importance as antioxidants, anti-inflammatory, antimicrobial, anti-cancer, etc. For this reason, many of these plants and their extracts, are commonly used in agri-food, pharmaceutical or agrochemical industries. In this sense, the techniques of extraction of natural compounds in plants are used with a double purpose:  (i) to extract compounds for the analysis of the content of natural compounds in plant matrix (quality control of raw material, intermediate products, and final products ); (ii) to extract and obtain extracts rich in these natural compounds to be used for different purposes (food, pharmaceutical or chemical products, etc.).

This special volume will focus on the extraction, identification, analysis and use of natural compounds present in plants, for both, analytical and industrial purposes. We welcome novel research and reviews covering all related topics in extraction methods of natural compounds in plants (ultrasound assisted extraction, microwave assisted extraction, pressurized liquid extraction, supercritical fluid extraction, etc.), identification and analysis of natural compounds in plants, the obtaining and the usage of plant extracts, the use of by-products from the agri-food industry and, the quality control of raw materials, intermediate products and final products of plant origin.

Dr. Gerardo Fernández Barbero
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products extraction
  • identification
  • analysis
  • ultrasound assisted extraction
  • microwave assisted extraction
  • pressurized liquid extraction
  • supercritical fluid extraction
  • quality control
  • by-products valorization

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessCommunication
Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient
Agronomy 2020, 10(7), 996; https://doi.org/10.3390/agronomy10070996 - 11 Jul 2020
Abstract
Wine lees are defined as the sediment formed at the bottom of the tank or barrel after wine alcoholic fermentation. They have a heterogeneous composition and currently constitute 6% of the byproducts generated by each ton of wine grapes. However, it is the [...] Read more.
Wine lees are defined as the sediment formed at the bottom of the tank or barrel after wine alcoholic fermentation. They have a heterogeneous composition and currently constitute 6% of the byproducts generated by each ton of wine grapes. However, it is the most under-researched of all the byproducts of the winemaking process. Therefore, with the aim of highlighting this byproduct, a physicochemical and nutritional characterization of winemaking lees from three different wine making processes (white, rosé, and red winemaking) was carried out. In addition, the technological properties of these winemaking lees were also analyzed. The lees analyzed in this research demonstrated an interesting nutritional and heterogeneous composition. Moreover, wine lees showed high values of emulsifying capacity. Thus, winemaking lees could be considered, in a preliminary way, as a new ingredient to be included in new food formulations. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Plant)
Show Figures

Figure 1

Open AccessArticle
Optimization of Analytical Ultrasound-Assisted Methods for the Extraction of Total Phenolic Compounds and Anthocyanins from Sloes (Prunus spinosa L.)
Agronomy 2020, 10(7), 966; https://doi.org/10.3390/agronomy10070966 - 04 Jul 2020
Abstract
Prunus spinosa L. is a shrub that produces berries—sloes—with a high content of phenolic compounds and anthocyanins. Numerous consumer products are made from sloes, such as “Pacharán” liquors or jams. For these reasons, it is crucial to design accurate analytical methods for the [...] Read more.
Prunus spinosa L. is a shrub that produces berries—sloes—with a high content of phenolic compounds and anthocyanins. Numerous consumer products are made from sloes, such as “Pacharán” liquors or jams. For these reasons, it is crucial to design accurate analytical methods for the extraction of these bioactive compounds in order to promote their consumption and to improve our health. In this study, an ultrasound-assisted extraction method was developed to extract phenolic compounds and anthocyanins from sloes. Several process variables (methanol composition, pH, temperature, cycle, amplitude, and sample–solvent ratio) were optimized based on a Box–Behnken design. The most influential parameters for the extraction of total phenolic compounds were the cycle, the percentage of methanol, and pH of the extraction solvent, with 0.2 s, 67%, and pH 7 as their optimal values, respectively. For total anthocyanins, all parameters were influential, with 44% methanol at pH 2, 48 °C, 0.2 s cycles, 30% amplitude, and 1.5 g/20 mL ratio as the optimal values for their corresponding variables. Both methods showed high recoveries, short time use, and high precision (RSD < 5%). In addition, the sloe liqueur “Pacharán” and sloe jams were analyzed to demonstrate the applicability of these methods for the extraction of the real matrix. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Plant)
Show Figures

Graphical abstract

Open AccessArticle
Sustainability: Obtaining Natural Dyes from Waste Matrices Using the Prickly Pear Peels of Opuntia ficus-indica (L.) Miller
Agronomy 2020, 10(4), 528; https://doi.org/10.3390/agronomy10040528 - 07 Apr 2020
Cited by 1
Abstract
In this work, the effect of dyes extracted through the Naviglio method (an eco-innovative solid-liquid extraction technique) was tested, which proved interesting for such an extraction. The dyes extracted from Opuntia ficus-indica (L.) Miller waste were treated to maximize the extraction of the [...] Read more.
In this work, the effect of dyes extracted through the Naviglio method (an eco-innovative solid-liquid extraction technique) was tested, which proved interesting for such an extraction. The dyes extracted from Opuntia ficus-indica (L.) Miller waste were treated to maximize the extraction of the coloring molecules. The extraction method was compared with conventional methods under the same conditions. The results showed that the extracts obtained with the different techniques, in the same extraction conditions (solvent, pH, temperature, time), were richer in the pigments for the extract obtained with the Naviglio method. The stability of the dyes was tested before the staining. A plant-based fiber, cotton, as well as an animal-based fiber, wool, were chosen for the staining tests. For the two types of fiber, two etching methods were used: one with rock alum, a method widely used to fix a color and one with lemon juice, a method used for a long time by rural populations who practiced the coloring of hides and tissues. In addition, the qualitative content of the pigments was also verified with an HPLC profile of the Opuntia ficus-indica (L.) Miller extracts. Ultimately, the results suggest that the Opuntia ficus-indica (L.) Miller fruit can be of great interest as a natural source of dyes and be used for tinctures. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Plant)
Show Figures

Graphical abstract

Open AccessArticle
Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 2: Ultrasound-Assisted Extraction
Agronomy 2020, 10(3), 326; https://doi.org/10.3390/agronomy10030326 - 28 Feb 2020
Cited by 1
Abstract
Two optimized methods for ultrasound-assisted extraction were evaluated for the extraction of two types of acai bioactive compounds: Total anthocyanins (TAs) and total phenolic compounds (TPCs). For the extraction optimization, a Box Behnken factorial design of different variables in the following intervals was [...] Read more.
Two optimized methods for ultrasound-assisted extraction were evaluated for the extraction of two types of acai bioactive compounds: Total anthocyanins (TAs) and total phenolic compounds (TPCs). For the extraction optimization, a Box Behnken factorial design of different variables in the following intervals was used: Methanol-water (25%–75%) for solvent composition, temperatures between 10 and 70 °C, amplitude in the range between 30% and 70% of the maximum amplitude −200 W), extraction solvent pH (2–7), the ratio for sample-solvent (0.5 g:10 mL–0.5 g:20 mL), and cycle between 0.2 and 0.7 s. The extraction kinetics were studied using different periods between 5 and 30 min. TA and TPC were analyzed by UHPLC and the Folin–Ciocalteu method, respectively. Optimized conditions for TA were: 51% MeOH in water, 31 °C temperature, pH 6.38, cycle 0.7 s, 65% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Optimized conditions for the TPC were: 49% MeOH in water, 41 °C temperature, pH 6.98, cycle 0.2 s, 30% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Both methods presented a relative standard deviation below 5% in the precision study. The suitability of the methods was tested in real samples. It was confirmed that these methods are feasible for the extraction of the studied bioactive compounds from different açai matrices. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Plant)
Show Figures

Figure 1

Open AccessArticle
Influence of Fruit Ripening on the Total and Individual Capsaicinoids and Capsiate Content in Naga Jolokia Peppers (Capsicum chinense Jacq.)
Agronomy 2020, 10(2), 252; https://doi.org/10.3390/agronomy10020252 - 08 Feb 2020
Abstract
“Naga Jolokia” (Capsicum chinense Jacq.) is a hot pepper variety native to India which has received the attention of the global scientific community due to its high capsaicinoid concentration. The present study evaluated the influence of fruit ripening on the total and [...] Read more.
“Naga Jolokia” (Capsicum chinense Jacq.) is a hot pepper variety native to India which has received the attention of the global scientific community due to its high capsaicinoid concentration. The present study evaluated the influence of fruit ripening on the total and individual capsaicinoids, as well as capsiate content. The aim was to determine the optimal moment to harvest the peppers depending on their pungent properties. Ultrasound-assisted extraction (UAE) using methanol as the extraction solvent and reverse-phase ultra-high-performance liquid chromatography (UHPLC-photodiode array (PDA)) were employed. Capsaicinoids gradually accumulated in the peppers from the moment they started growing until they reached a maximum concentration (7.99 ± 0.11 mg g−1 of fresh weight (FW)) at 33 days postanthesis (dpa). For this reason, based on its content of pungent compounds, as it is one of the main attributes of this variety, the optimal time for collection would be on day 33. From then on, there was a sharp decrease (96.35% of the total concentration) due to the peroxidase enzymes. The evolution of the principal capsaicinoids in “Naga Jolokia” peppers had a different behavior with respect to literature reports. After this investigation, these changes in content can be attributed to each pepper genotype. Capsiate content reached it maximum value at 19 dpa (0.27 ± 0.01 mg g−1 of FW). Then, there was a gradual drop due to the activities of different peroxidases. Given the important biological activity of capsaicinoids and capsinoids, the information described here allows for determining the ideal time to harvest “Naga Jolokia” peppers. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Plant)
Show Figures

Graphical abstract

Open AccessArticle
Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction
Agronomy 2020, 10(2), 183; https://doi.org/10.3390/agronomy10020183 - 28 Jan 2020
Cited by 1
Abstract
Currently, açai is one of the most important fruits present in the world. Several studies have demonstrated its high content in phenolic compounds and anthocyanins. Both of them are responsible of interesting properties of the fruit such as anti-inflammatory, antioxidant or anticancer. In [...] Read more.
Currently, açai is one of the most important fruits present in the world. Several studies have demonstrated its high content in phenolic compounds and anthocyanins. Both of them are responsible of interesting properties of the fruit such as anti-inflammatory, antioxidant or anticancer. In the present study, two optimized pressurized liquid extraction (PLE) methods have been developed for the extraction of anthocyanins and total phenolic compounds from açai. A full factorial design (Box–Behnken design) with six variables (solvent composition (25–75% methanol-in-water), temperature (50–100 °C), pressure (100–200 atm), purge time (30–90 s), pH (2–7) and flushing (50–150%)) were employed. The percentage of methanol in the extraction solvent was proven to be the most significant variable for the extraction of anthocyanins. In the case of total phenolic compounds, the extraction temperature was the most influential variable. The developed methods showed high precision, with relative standard deviations (RSD) of less than 5%. The applicability of the methods was successfully evaluated in real samples. In conclusion, two rapid and reliable PLE extraction methods to be used for laboratories and industries to determine anthocyanins and total phenolic compounds in açai and its derived products were developed in this work. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Plant)
Show Figures

Figure 1

Open AccessArticle
Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 3: Microwave-Assisted Extraction
Agronomy 2020, 10(2), 179; https://doi.org/10.3390/agronomy10020179 - 27 Jan 2020
Abstract
In this work, two methods based on microwave-assisted extraction techniques for the extraction of both anthocyanins and total phenolic compounds from açai have been developed. For that, a full factorial design (Box-Behnken design) has been used to optimize the following four variables: solvent [...] Read more.
In this work, two methods based on microwave-assisted extraction techniques for the extraction of both anthocyanins and total phenolic compounds from açai have been developed. For that, a full factorial design (Box-Behnken design) has been used to optimize the following four variables: solvent composition (25–75% methanol in water), temperature (50–100 °C), pH (2–7), and sample/solvent ratio (0.5 g: 10 mL–0.5 g: 20 mL). The anthocyanins and total phenolic compounds content have been determined by ultra high-pressure liquid chromatography and Folin-Ciocalteu method, respectively. The optimum conditions for the extraction of anthocyanins were 38% MeOH in water, 99.63 °C, pH 3.00, at 0.5 g: 10 mL of ratio, while for the extraction of total phenolic compounds they were 74.16% MeOH in water, 99.14 °C, pH 5.46, at 0.5 g: 20 mL of ratio. Both methods have shown a high repeatability and intermediate precision with a relative standard deviation lower than 5%. Furthermore, an extraction kinetics study was carried out using extraction periods ranging from 2 min until 25 min. The optimized methods have been applied to açai-containing real samples. The results with such real samples have confirmed that both methods are suitable for a rapid and reliable extraction of anthocyanins and total phenolic compounds. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Plant)
Show Figures

Graphical abstract

Open AccessArticle
Response Surface Modeling and Optimization of Polyphenols Extraction from Apple Pomace Based on Nonionic Emulsifiers
Agronomy 2020, 10(1), 92; https://doi.org/10.3390/agronomy10010092 - 09 Jan 2020
Abstract
The factors affecting the efficiency of micelle-mediated extraction of phenolic compounds from apple pomace was investigated. Higher extraction efficiency by using as a solvent an aqueous solution of Tween 80 in comparison to Triton X-100, Span 20, Tween 20, 70% ethanol, and water [...] Read more.
The factors affecting the efficiency of micelle-mediated extraction of phenolic compounds from apple pomace was investigated. Higher extraction efficiency by using as a solvent an aqueous solution of Tween 80 in comparison to Triton X-100, Span 20, Tween 20, 70% ethanol, and water was shown. Four independent variables (Tween 80 concentration, time, solvent-to material ratio, and pH) to enhance the recovery of polyphenols from apple pomace was investigated. Applying response surface methodology, the second order polynomial regression equation showing dependence of the yield of polyphenols on the extraction parameters was derived. The adjusted regression coefficient (R2 = 98.73%) and the lack-of-fit test (p > 0.05) showed a good accuracy of the developed model. The difference between observed and predicted values was no more than 3%. The optimal extraction conditions were found to be Tween 80 concentration of 1.14%, time of 65 min, solvent-to-material ratio of 104 mL g−1, pH of 3.8. Under optimal conditions the predicted total phenolic compounds content was 7.75 mg g−1. The obtained apple pomace extracts were characterized in terms of their antioxidant activity. The proposed extraction technology by using Tween 80 aqueous solution as a solvent allows obtaining the extracts with high content of polyphenols which are suitable for the applications in food, cosmetic, and pharmaceutical products requiring a surfactant to stabilize them. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Plant)
Show Figures

Graphical abstract

Back to TopTop