Comparison of Flavonoid Profiles in Sprouts of Radiation Breeding Wheat Lines (Triticum aestivum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Procedures
2.2. Plant Materials
2.3. Preparation of Standard Solutions and Sample Preparation
2.4. Qualitative and Quantitative Analysis
2.5. Chemometrics
3. Results and Discussion
3.1. Identification of the Compounds
3.2. Quantitative Analysis of Flavonoids in the Wheat Mutants
3.3. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brazier-Hicks, M.; Evans, K.M.; Gershater, M.C.; Puschmann, H.; Steel, P.G.; Edwards, R. The C-glycosylation of flavonoids in cereals. J. Biol. Chem. 2009, 284, 17926–17934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Verma, P.; Pandey, B.R. Therapeutic potential of organic Triticum aestivum Linn. (wheat grass) in prevention and treatment of chronic diseases: An overview. Int. J. Pharm. Sci. Drug Res. 2012, 4, 10–14. [Google Scholar]
- Lorenz, K.; D’Appolonia, B. Cereal sprouts: Composition, nutritive value, food applications. Crit. Rev. Food Sci. Nutr. 1980, 13, 353–385. [Google Scholar] [CrossRef] [PubMed]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Mujoriya, R.; Bodla, R.B. A study on wheat grass and its nutritional value. Food Sci. Qual. Manag. 2011, 2, 2224–6088. [Google Scholar]
- Mukhopadhyay, S.; Basak, J.; Kar, M.; Mandal, S.; Mukhopadhyay, A. The role of iron chelation activity of wheat grass juice in patients with myelodysplastic syndrome. J. Clin. Oncol. 2009, 27, 7012. [Google Scholar] [CrossRef]
- Singh, K.; Pannu, M.S.; Singh, P.; Singh, J. Effect of wheat grass tablets on the frequency of blood transfusions in thalassemia major. Indian J. Pediatr. 2010, 77, 90–91. [Google Scholar] [CrossRef]
- Marawaha, R.K.; Bansal, D.; Kaur, S.; Trehan, A. Wheat grass juice reduces transfusion requirement in patients with thalassemia major: A pilot study. Indian Pediatr. 2004, 41, 716–720. [Google Scholar]
- Bar-Sela, G.; Tsalic, M.; Fried, G.; Goldberg, H. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: A pilot study. Nutr. Cancer 2007, 58, 43–48. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, Y.-M.; Lee, H.-S.; Kim, D.-K. Anti-oxidative and anti-hyperglycemia effects of Triticum aestivum wheat sprout water extracts on the streptozotocin-induced diabetic mice. Korean J. Pharmacogn. 2009, 40, 408–414. [Google Scholar]
- Poudel, B.; Nepali, S.; Xin, M.; Ki, H.-H.; Kim, Y.-H.; Kim, D.-K.; Lee, Y.-M. Flavonoids from Triticum aestivum inhibit adipogenesis in 3T3-L1 cells by upregulating the insig pathway. Mol. Med. Rep. 2015, 12, 3139–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ki, H.-H.; Hwang, S.-W.; Lee, J.-H.; Kim, Y.-H.; Kim, D.-K.; Lee, Y.-M. A dichloromethane fraction of Triticum aestivum sprouts reduces allergic immune response through inhibiting Th2 differentiation in ovalbumin immunized mice. Mol. Med. Rep. 2017, 16, 3535–3541. [Google Scholar] [CrossRef]
- Rajoria, A.; Mehta, A.; Mehta, P.; Ahirwal, L.; Shukla, S.; Bajpai, V.K. Evaluation of antiproliferative and hepatoprotective effects of wheat grass (Triticum Aestivum). Acta Biol. Hung. 2017, 68, 150–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapas, A.R.; Sakarkar, D.M.; Kakde, R.B. Flavonoids as nutraceuticals: A review. Trop. J. Pharm. Res. 2008, 7, 1089–1099. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- De-Eknamkul, W.; Umehara, K.; Stevens, J.F. Flavonoids: Separation and quantitation. Sci. World J. 2015, 2015, 874148. [Google Scholar] [CrossRef] [Green Version]
- Treutter, D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. 2005, 7, 581–591. [Google Scholar] [CrossRef]
- Kim, B.; Woo, S.; Kim, M.-J.; Kwon, S.-W.; Lee, J.; Sung, S.H.; Koh, H.-J. Identification and quantification of flavonoids in yellow grain mutant of rice (Oryza sativa L.). Food Chem. 2018, 241, 154–162. [Google Scholar] [CrossRef]
- Hase, Y.; Satoh, K.; Seito, H.; Oono, Y. Genetic consequences of acute/chronic gamma and carbon ion irradiation of Arabidopsis thaliana. Front. Plant Sci. 2020, 11, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, H.; Ghori, Z.; Sheikh, S.; Gul, A. Effects of gamma radiation on crop production. In Crop Production and Global Environmental Issues; Hakeem, K., Ed.; Springer: Cham, Switzerland, 2016; pp. 27–78. [Google Scholar]
- Mutant Varieties Database. Available online: https://www.iaea.org/resources/databases/mutant-varieties-database (accessed on 23 September 2020).
- Geng, P.; Sun, J.; Zhang, M.; Li, X.; Harnly, J.M.; Chen, P. Comprehensive characterization of C-glycosyl flavones in wheat (Triticum aestivum L.) germ using UPLC-PDA-ESI/HRMSn and mass defect filtering. J. Mass Spectrom. 2016, 51, 914–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalska, I.; Pecio, L.; Ciesla, L.; Oleszek, W.; Stochmal, A. Isolation and chemical characterization, and free radical scavenging activity of phenolics from Triticum aestivum L. aerial parts. J. Agric. Food Chem. 2014, 62, 11200–11208. [Google Scholar] [CrossRef] [PubMed]
- Wojakowska, A.; Perkowski, J.; Góral, T.; Stobieckia, M. Structural characterization of flavonoid glycosides from leaves of wheat (Triticum aestivum L.) using LC/MS/MS profiling of the target compounds. J. Mass Spectrom. 2013, 48, 329–339. [Google Scholar] [CrossRef]
- Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 3143–3158. [Google Scholar] [CrossRef]
- Ioset, J.-R.; Urbaniak, B.; Ndjoko-Ioset, K.; Wirth, J.; Martin, F.; Gruissem, W.; Hostettmann, K.; Sautter, C. Flavonoid profiling among wild type and related GM wheat varieties. Plant Mol. Biol. 2007, 65, 645–654. [Google Scholar] [CrossRef]
- Hong, M.J.; Kim, D.Y.; Nam, B.; Ahn, J.-W.; Kwon, S.-J.; Seo, Y.W.; Kim, J.-B. Characterization of novel mutants of hexaploid wheat (Triticum aestivum L.) with various depths of purple grain color and antioxidant capacity. J. Sci. Food Agric. 2019, 99, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Galili, T.; O’Callaghan, A.; Sidi, J.; Sievert, C. Heatmaply: An R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 2018, 34, 1600–1602. [Google Scholar] [CrossRef]
- Galili, T. Dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics 2015, 31, 3718–3720. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 8th ed.; Springer: New York, NY, USA, 2009; pp. 1–213. [Google Scholar]
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–470. [Google Scholar]
- Lin, L.-Z.; Lu, S.; Harnly, J.M. Detection and quantification of glycosylated flavonoid malonates in celery, Chinese celery, and celery seed by LC-DAD-ESI/MS. J. Agric. Food Chem. 2007, 55, 1321–1326. [Google Scholar] [CrossRef] [Green Version]
- Bucar, F.; Xiao, J.B.; Ochensberger, S. Flavonoid C-glycosides in diets. In Handbook of Dietary Phytochemicals; Xiao, J., Sarker, S., Asakawa, Y., Eds.; Springer: Singapore, 2020; pp. 1–37. [Google Scholar]
- Guo, X.F.; Yue, Y.D.; Tang, F.; Wang, J.; Yao, X.; Sun, J. A comparison of C-glycosidic flavonoid isomers by electrospray ionization quadrupole time-of-flight tandem mass spectrometry in negative and positive ion mode. Int. J. Mass Spectrom. 2013, 333, 59–66. [Google Scholar] [CrossRef]
- Ferreres, F.; Andrade, P.B.; Valentao, P.; Gil-Izquierdo, A. Further knowledge on barley (Hordeum vulgate L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography-UV diode-array detection-electrospray ionization mass spectrometry. J. Chromatogr. A 2008, 1182, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Gil-Izquierdo, A.; Vinholes, J.; Grosso, C.; Valentao, P.; Andrade, P.B. Approach to the study of C-glycosyl flavones acylated with aliphatic and aromatic acids from Spergularia rubra by high-performance liquid chromatography-photodiode array detection/electrospray ionization multi-stage mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Gil-Izquierdo, A.; Andrade, P.B.; Valentao, P.; Tomas-Barberan, F.A. Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2007, 1161, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Veitch, N.C.; Grayer, R.J. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 2011, 28, 1626–1695. [Google Scholar] [CrossRef]
- Xiao, J.B.; Muzashvili, T.S.; Georgiev, M.I. Advance on biotechnology for glycosylation of high-value flavonoids. Biotechnol. Adv. 2014, 32, 1145–1156. [Google Scholar] [CrossRef]
- Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the flavonoid C-glycosides and health benefits. Crit. Rev. Food Sci. Nutr. 2016, 56, S29–S45. [Google Scholar] [CrossRef]
Peak No. | Rt (min) 1 | UV λmax (nm) | ESI-NI (m/z) 2 | Identification | Reference |
---|---|---|---|---|---|
1 | 10.9 | 270, 350 | 579 | Luteolin 6-C-pentoside 8-C-hexoside | [16,17,18] |
2 | 11.9 | 270, 335 | 563 | Apigenin 6-C-hexoside 8-C-pentoside | [16,17,18] |
3 | 12.9 | 270, 335 | 563 | Apigenin 6-C-arabinoside 8-C-glucoside (Isoschaftoside) | Standard |
4 | 13.2 | 270, 335 | 593 | Apigenin-6,8-di-C-hexoside | [18] |
5 | 13.8 | 270, 350 | 447 | Luteolin 6-C-glucoside (Isoorientin) | Standard |
6 | 14.8 | 270, 350 | 593 | Luteolin 6-C-hexoside 8-O-deoxyhexoside | [17,18] |
7 | 16.0 | 270, 335 | 577 | Apigenin 6-C-hexoside 8-O-deoxyhexoside | [17,18] |
8 | 16.6 | 270, 345 | 607 | Crysoeriol 6-C-hexoside 8-O-deoxyhexoside | [17,18] |
9 | 17.1 | 270, 335 | 431 | Apigenin 8-C- hexoside | [17,18] |
10 | 17.7 | 270, 335 | 431 | Apigenin 6-C- hexoside | [17,18] |
11 | 18.6 | 270, 345 | 461 | Crysoeriol 6-C-glucoside (Isoscoparin) | Standard |
12 | 19.7 | 270, 335 | 577 | Tricin 7-O-malonylhexoside | [17] |
13 | 21.2 | 270, 345 | 547 | Crysoeriol 7-O-malonylhexoside | [25] |
14 | 22.7 | 270, 330 | 343 | Tricetin trimethyl ether | [17] |
Peak No. | Compounds | Regression Equation 1 | R2 2 | Linear Range (μg/mL) | LOD 3 (μg/mL) | LOQ 4 (μg/mL) |
---|---|---|---|---|---|---|
3 | Isoschaftoside | y = 23.268x + 7.4461 | 0.9995 | 10.00–200.00 | 1.036 | 3.138 |
5 | Isoorientin | y = 18.126x + 24.042 | 0.9999 | 10.00–200.00 | 0.474 | 1.437 |
11 | Isoscoparin | y = 19.823x + 8.613 | 0.9999 | 10.00–200.00 | 0.354 | 1.071 |
Peak No. | Compounds | Concentration (μg/mL) | Inter-Day | Intra-Day | ||
---|---|---|---|---|---|---|
Mean ± SD 1 (μg/mL) | RSD 2 (%) | Mean ± SD 1 (μg/mL) | RSD 2 (%) | |||
3 | Isoschaftoside | 20 | 21.59 ± 0.15 | 0.69 | 20.09 ± 0.70 | 0.35 |
40 | 41.15 ± 0.36 | 0.15 | 41.13 ± 0.02 | 0.38 | ||
100 | 102.12 ± 0.20 | 0.35 | 102.74 ± 1.06 | 1.03 | ||
5 | Isoorientin | 20 | 20.53 ± 0.57 | 2.79 | 19.90 ± 0.04 | 0.23 |
40 | 40.53 ± 0.06 | 0.87 | 40.06 ± 0.69 | 1.73 | ||
100 | 98.97 ± 0.35 | 0.20 | 97.86 ± 1.06 | 1.08 | ||
11 | Isoscoparin | 20 | 20.33 ± 0.34 | 1.68 | 20.01 ± 0.11 | 0.57 |
40 | 40.30 ± 0.07 | 0.17 | 40.09 ± 0.20 | 0.49 | ||
100 | 99.82 ± 1.18 | 1.18 | 98.58 ± 0.57 | 0.57 |
Cultivar No. | Contents (w/w, mg/g of Extract) 1 | |||
---|---|---|---|---|
Isoschaftoside | Isoorientin | Isoscoparin | Sum | |
PL01 (original) | 23.12 ± 2.14 | 3.89 ± 1.26 | 1.81 ± 0.04 | 28.81 ± 3.43 |
PL05 | 16.71 ± 1.34 | 1.34 ± 0.11 | 1.78 ± 0.02 | 19.82 ± 1.48 |
PL06 | 24.19 ± 1.76 | 7.77 ± 1.18 | 2.79 ± 0.22 | 34.76 ± 3.16 |
PL08 | 26.88 ± 0.68 | 4.90 ± 0.10 | 2.34 ± 0.36 | 34.12 ± 1.14 |
PL09 | 18.16 ± 0.30 | 3.28 ± 0.15 | 2.77 ± 0.02 | 24.20 ± 0.47 |
PL10 | 15.94 ± 0.29 | 4.56 ± 0.05 | 1.60 ± 0.04 | 22.10 ± 0.38 |
PL11 | 29.49 ± 0.29 | 8.06 ± 0.36 | 1.91 ± 0.32 | 39.46 ± 0.96 |
PL13 | 15.96 ± 0.17 | 3.96 ± 0.07 | 2.02 ± 0.06 | 21.68 ± 0.30 |
PL14 | 30.32 ± 1.17 | 3.14 ± 2.71 | 2.82 ± 0.06 | 36.28 ± 3.95 |
PL15 | 23.58 ± 0.89 | 6.12 ± 0.28 | 1.88 ± 0.03 | 31.58 ± 1.19 |
PL16 | 25.57 ± 0.97 | 5.84 ± 1.44 | 1.96 ± 0.03 | 33.36 ± 2.44 |
PL17 | 21.62 ± 0.31 | 3.00 ± 0.80 | 1.77 ± 0.13 | 26.39 ± 1.24 |
PL18 | 34.53 ± 0.73 | 4.56 ± 0.22 | 1.56 ± 0.19 | 40.65 ± 1.14 |
PL19 | 37.56 ± 1.19 | 9.20 ± 0.12 | 2.34 ± 0.06 | 49.10 ± 1.37 |
PL20 | 29.59 ± 1.70 | 11.15 ± 0.33 | 2.02 ± 0.02 | 42.76 ± 2.04 |
PL23 | 19.41 ± 0.05 | 9.88 ± 0.24 | 1.89 ± 0.06 | 31.17 ± 0.35 |
PL24 | 17.99 ± 1.00 | 2.66 ± 0.02 | 1.46 ± 0.01 | 22.11 ± 1.03 |
PL25 | 31.53 ± 0.58 | 4.61 ± 0.06 | 2.34 ± 0.08 | 38.49 ± 0.72 |
PL26 (Geumgang) | 18.31 ± 0.74 | 9.41 ± 0.52 | 1.16 ± 0.05 | 28.88 ± 1.32 |
PL41 | 22.00 ± 0.57 | 4.89 ± 0.74 | 1.53 ± 0.07 | 28.41 ± 1.38 |
PL42 | 21.40 ± 0.20 | 8.81 ± 0.22 | 1.44 ± 0.11 | 31.65 ± 0.53 |
PL44 | 24.20 ± 0.71 | 10.63 ± 0.26 | 1.84 ± 0.25 | 36.68 ± 1.23 |
PL46 | 22.41 ± 0.42 | 6.75 ± 0.09 | 1.21 ± 0.34 | 30.37 ± 0.86 |
PL47 | 12.35 ± 0.98 | 5.66 ± 1.18 | 1.12 ± 0.28 | 19.13 ± 2.44 |
PL48 | 18.79 ± 0.24 | 2.58 ± 0.70 | 1.56 ± 0.09 | 22.93 ± 1.04 |
PL50 | 30.64 ± 0.87 | 10.61 ± 0.70 | 2.36 ± 0.45 | 43.61 ± 2.02 |
PL51 | 24.25 ± 0.23 | 4.22 ± 0.63 | 1.71 ± 0.07 | 30.18 ± 0.93 |
PL52 | 23.38 ± 1.50 | 2.96 ± 0.15 | 1.97 ± 0.12 | 28.30 ± 1.76 |
PL53 | 22.37 ± 0.32 | 3.34 ± 0.11 | 1.15 ± 0.04 | 26.86 ± 0.47 |
PL54 | 19.49 ± 0.78 | 2.80 ± 0.45 | 1.16 ± 0.14 | 23.45 ± 1.36 |
PL55 | 39.27 ± 0.31 | 10.29 ± 0.22 | 1.86 ± 0.02 | 51.42 ± 0.54 |
PL56 | 18.56 ± 0.75 | 3.95 ± 0.52 | 1.30 ± 0.06 | 23.80 ± 1.33 |
PL57 | 22.78 ± 0.08 | 3.25 ± 0.01 | 1.90 ± 0.02 | 27.93 ± 0.11 |
PL58 | 24.20 ± 0.74 | 7.46 ± 0.02 | 1.39 ± 0.06 | 33.05 ± 0.82 |
PL59 | 22.05 ± 0.78 | 5.13 ± 0.74 | 1.24 ± 0.46 | 28.42 ± 1.99 |
PL60 | 21.90 ± 0.40 | 3.29 ± 0.33 | 1.26 ± 0.05 | 26.44 ± 0.77 |
PL61 | 23.19 ± 1.24 | 2.82 ± 0.01 | 1.38 ± 0.03 | 26.01 ± 0.24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, A.-R.; Hong, M.J.; Nam, B.; Kim, B.-R.; Park, H.H.; Baek, I.; Kil, Y.-S.; Nam, J.-W.; Jin, C.H.; Kim, J.-B. Comparison of Flavonoid Profiles in Sprouts of Radiation Breeding Wheat Lines (Triticum aestivum L.). Agronomy 2020, 10, 1489. https://doi.org/10.3390/agronomy10101489
Han A-R, Hong MJ, Nam B, Kim B-R, Park HH, Baek I, Kil Y-S, Nam J-W, Jin CH, Kim J-B. Comparison of Flavonoid Profiles in Sprouts of Radiation Breeding Wheat Lines (Triticum aestivum L.). Agronomy. 2020; 10(10):1489. https://doi.org/10.3390/agronomy10101489
Chicago/Turabian StyleHan, Ah-Reum, Min Jeong Hong, Bomi Nam, Bo-Ram Kim, Hyeon Hwa Park, Inwoo Baek, Yun-Seo Kil, Joo-Won Nam, Chang Hyun Jin, and Jin-Baek Kim. 2020. "Comparison of Flavonoid Profiles in Sprouts of Radiation Breeding Wheat Lines (Triticum aestivum L.)" Agronomy 10, no. 10: 1489. https://doi.org/10.3390/agronomy10101489
APA StyleHan, A.-R., Hong, M. J., Nam, B., Kim, B.-R., Park, H. H., Baek, I., Kil, Y.-S., Nam, J.-W., Jin, C. H., & Kim, J.-B. (2020). Comparison of Flavonoid Profiles in Sprouts of Radiation Breeding Wheat Lines (Triticum aestivum L.). Agronomy, 10(10), 1489. https://doi.org/10.3390/agronomy10101489