Effects of the Extraction Technology on Pomegranate Juice Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Experimental Plant for Fruit Processing
2.3. Tests
2.4. Yield Computation
2.5. Chemical Analytical Determinations
2.5.1. pH
2.5.2. Total Soluble Solids (TSS)
2.5.3. Titratable Acidity (TA)
2.5.4. Total Phenolic Content (TPC)
2.5.5. Radical-Scavenging Activity (RSA) of 1,1-diphenyl-2-picrylhydrazyl Radical (DPPH)
2.5.6. Total Anthocyanins (T ANT)
2.5.7. SPME-GC-MS Analyses
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Al-Said, F.A.; Opara, U.L.; Al-Yahyai, R.A. Physico-chemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. J. Food Eng. 2009, 90, 129–134. [Google Scholar] [CrossRef]
- Gill, P.P.S.; Dhillon, W.S.; Singh, N.P. Influence of training systems on growth, yield and fruit quality of pomegranate ‘Kandhari’. Acta Hortic. 2011, 890, 305–310. [Google Scholar] [CrossRef]
- Morettini, A. Frutticoltura Generale e Speciale; REDA: Roma, Italy, 1963; pp. 1–692. [Google Scholar]
- Fawole, O.A.; Opara, U.L. Effects of maturity status on biochemical concentration, polyphenol composition and antioxidant capacity of pomegranate fruit arils (cv. Bhagwa). S. Afr. J. Bot. 2013, 85, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Mphahlele, R.R.; Fawolea, O.A.; Stander, M.A.; Opara, U.L. Preharvest and postharvest factors influencing bioactive compounds in pomegranate (Punica granatum L.)—A review. Sci. Hortic. 2014, 178, 114–123. [Google Scholar] [CrossRef]
- Aviram, M.; Dornfeld, L.; Rosenblat, M.; Volkova, N.; Kaplan, M.; Coleman, R.; Hayek, T.; Presser, D.; Fuhrman, B. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: Studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr. 2000, 71, 1062–1076. [Google Scholar] [CrossRef] [PubMed]
- Aviram, M.; Dornfeld, L.L. Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis 2001, 158, 195–198. [Google Scholar] [CrossRef]
- Facial, A.; Calhau, C. The bioactivity of pomegranate: Impact on health and disease. Crit. Rev. Food Sci. Nutr. 2011, 51, 626–634. [Google Scholar] [CrossRef]
- Johanningsmeier, S.D.; Harris, G.K. Pomegranate as a functional food and nutraceutical source. Annu. Rev. Food Sci. Technol. 2011, 2, 181–201. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Stander, M.A.; Fawole, O.A.; Opara, U.L. Effect of fruit maturity and growing location on the postharvest contents of flavonoids, phenolic acids, vitamin C and antioxidant activity of pomegranate juice (cv. Wonderful). Sci. Hortic. 2014, 179, 36–45. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef]
- Negro, C.; Longo, L.; Vasapollo, G.; De Bellis, L.; Miceli, A. Biochemical, antioxidant and anti-inflammatory properties of pomegranate fruits growing in Southern Italy (Salento, Apulia). Acta Aliment. 2012, 41, 190–199. [Google Scholar] [CrossRef]
- Fischer, U.A.; Dettmann, J.S.; Carle, R.; Kammerer, D.R. Impact of processing and storage on the phenolic profiles and contents of pomegranate (Punica granatum L.) juices. Eur. Food Res. Technol. 2011, 233, 797–816. [Google Scholar] [CrossRef]
- Fischer, U.A.; Jaksch, A.V.; Carle, R.; Kammerer, D.R. Influence of origin source, different fruit tissue and juice extraction methods on anthocyanin, phenolic acid, hydrolysable tannin and isolariciresinol contents of pomegranate (Punica granatum L.) fruits and juices. Eur. Food Res. Technol. 2013, 237, 209–221. [Google Scholar] [CrossRef]
- Türkyılmaz, M.; Tagi, S.; Dereli, U.; Özkan, M. Effects of various pressing programs and yields on the antioxidant activity, antimicrobial activity, phenolic content and colour of pomegranate juices. Food Chem. 2013, 138, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Koppel, K.; Anderson, E.L.; Chambers, E., IV. Influence of processing on pomegranate (Punica granatum L.) juice flavor and aroma. J. Sci. Food Agric. 2015, 95, 1066–1071. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Fawole, O.A.; Mokwena, L.M.; Opara, U.L. Effect of extraction method on chemical, volatile composition and antioxidant properties of pomegranate juice. S. Afr. J. Bot. 2016, 103, 135–144. [Google Scholar] [CrossRef]
- De Pasquale, C.; Catania, P.; Vallone, M. Influence of the pressing system on pomegranate juice physical-chemical properties. Chem. Eng. Trans. 2017, 58, 433–438. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sorrenti, V.; Salerno, L.; Di Giacomo, C.; Acquaviva, R.; Siracusa, M.A.; Vanella, A. Imidazole derivates as antioxidants and selective inhibitors of nNOS. Nitric Oxid. 2006, 14, 40–45. [Google Scholar] [CrossRef]
- Nafees, M.; Jaskani, M.J.; Ahmad, I.; Maryam; Ashraf, I.; Maqsood, A.; Ahmar, S.; Azam, M.; Hussain, S.; Hanif, A.; et al. Biochemical analysis of organic acids and soluble sugars in wild and cultivated pomegranate germplasm based in Pakistan. Plants 2020, 9, 493. [Google Scholar] [CrossRef]
- Topalović, A.; Knežević, M.; Gačnik, S.; Mikulic-Petkovsek, M. Detailed chemical composition of juice from autochthonous pomegranate genotypes (Punica granatum L.) grown in different locations in Montenegro. Food Chem. 2020, 330, 127261. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, G.; Giancaspro, A.; Mazzeo, A.; Giove, S.L.; Matarrese, A.M.S.; Pacucci, C.; Punzi, R.; Trani, A.; Gambacorta, G.; Blanco, A.; et al. Characterization of pomegranate (Punica granatum L.) genotypes collected in Puglia region, Southeastern Italy. Sci. Hortic. 2014, 178, 70–78. [Google Scholar] [CrossRef]
- Gözlekçi, S.; Saraçoğlu, O.; Onursal, E.; Ozgen, M. Total phenolic distribution of juice, peel, and seed extracts of four pomegranate cultivars. Pharmacogn. Mag. 2011, 7, 161–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derakhshan, Z.; Ferrante, M.; Tadi, M.; Ansari, F.; Heydari, A.; Hosseini, M.S.; Oliveri Conti, G.; Sadrabad, E.K. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem. Toxicol. 2018, 114, 108–111. [Google Scholar] [CrossRef]
- Li, Y.; Guo, C.; Yang, J.; Wei, J.; Xu, J.; Cheng, S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 2006, 96, 254–260. [Google Scholar] [CrossRef]
- Orak, H.H.; Yagar, H.; Isbilir, S.S. Comparison of antioxidant activities of juice, peel, and seed of pomegranate (Punica granatum L.) and inter-relationships with total phenolic, tannin, anthocyanin, and flavonoid contents. Food Sci. Biotechnol. 2012, 21, 373–387. [Google Scholar] [CrossRef]
Test | Pressure (bar) |
---|---|
T1 | 0 (after drainage) |
T2 | 0 (after setting) |
T3 | 0.3 |
T4 | 0.5 |
T5 | 0.7 |
T6 | 1.2 |
T7 | 1.4 |
T8 | 1.6 |
T9 | 1.8 |
Test | pH | TSS (°Brix) | TA (%) | TPC (mg g−1) | RSA (%) | T ANT (mg L−1) |
---|---|---|---|---|---|---|
T1 | 3.04 ± 0.03 c | 15.2 ± 0.2 b | 1.86 ± 0.03 a | 694 ± 22 f | 51.6 ± 4.4 b | 552 ± 8 a |
T2 | 3.10 ± 0.02 bc | 13.0 ± 0.2 e | 1.58 ± 0.03 e | 825 ± 21 e | 64.2 ± 9.3 ab | 298 ± 11 c |
T3 | 3.14 ± 0.02 ab | 14.0 ± 0.2 d | 1.66 ± 0.03 cd | 867 ± 20 de | 71.1 ± 11.7 ab | 390 ± 10 b |
T4 | 3.08 ± 0.03 bc | 14.0 ± 0.1 d | 1.64 ± 0.02 de | 872 ± 22 de | 73.0 ± 9.4 ab | 297 ± 110 c |
T5 | 3.12 ± 0.03 ab | 14.5 ± 0.1 c | 1.73 ± 0.02 b | 877 ± 22de | 76.4 ± 8.2 ab | 302 ± 8 c |
T6 | 3.15 ± 0.04 ab | 14.0 ± 0.1 d | 1.66 ± 0.03 cd | 928 ± 30 bcd | 77.4 ± 4.6 a | 274 ± 11 c |
T7 | 3.15 ± 0.01 ab | 14.0 ± 0.2 cd | 1.65 ± 0.03 cd | 952 ± 25 bc | 78.5 ± 8.0 a | 281 ± 11 c |
T8 | 3.10 ± 0.03 bc | 17.0 ± 0.2 a | 1.81 ± 0.01 a | 990 ± 30 b | 80.2 ± 9.0 a | 368 ± 12 b |
T9 | 3.18 ± 0.03 a | 14.0 ± 0.2 cd | 1.62 ± 0.02 de | 1076 ± 17 a | 83.2 ± 9.3 a | 290 ± 10 c |
Compounds | RT | RI | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alcohols (17) | ||||||||||||
Etanol | 5.09 | 843.86 | 0.3 d | 0.4 d | 1.2 c | 1.9 a | n.d | n.d | 0.7 d | 1.6 b | nd | ** |
2-Methyl | 6.96 | 976.40 | nd | nd | nd | n.d | nd | nd | nd | 0.98 | nd | - |
3-Methyl | 11.42 | 1171.33 | nd | nd | nd | nd | nd | nd | nd | 1.6 | nd | - |
(E)-2-Hexen-1-ol 1 | 12.03 | 1191.67 | 0.2 b | 0.3 b | 0.6 b | 0.6 b | 0.8 b | 0.6 b | 2.4 a | nd | nd | * |
3-Methyl-2-buten-1-ol | 14.55 | 1297.84 | 14.7 b | 14.5 b | 14.9 b | 15.1 a | 13.1 c | 12.7 c | 6.8 d | 2.4 e | 2.3 e | *** |
1-Hexanol 1 | 15.51 | 1345.73 | 33 b | 34 b | 32 b | 31 b | 26 c | 27 c | 29 b | 32 b | 44 a | ** |
(Z)-3-Hexen-1-ol | 15.80 | 1361.81 | 6.1 d | 6.4 d | 6.6 d | 6.9 d | 7.2 d | 8.6 c | 13.0 b | 15.2 b | 18.0 a | ** |
Heptenol | 16.82 | 1413.69 | nd | nd | nd | nd | nd | nd | nd | 1.1a | 1.0a | NS |
Hexalin(Cyclohexanol) | 16.99 | 1423.81 | nd | nd | nd | nd | nd | nd | 0.5b | 1.3a | 0.8b | * |
2-Ethyl-1-hexanol | 17.35 | 1445.24 | 1.7 a | 1.8 a | 1.6 a | 1.6 a | 1.3 a | 1.3 a | 0.5 c | nd | 1.1 b | * |
L-Linalool | 17.40 | 1448.21 | nd | nd | nd | nd | nd | nd | nd | 0.42 a | 1.09 a | NS |
4-Terpineol | 18.32 | 1502.98 | 0.8 d | 0.9 d | 1.6 c | 1.9 c | 2.9 b | 2.6 b | 3.4 a | 1.2 d | 0.8 d | ** |
1-Nonanol 1 | 19.03 | 1552.41 | nd | nd | nd | nd | nd | nd | 3.8 | nd | nd | - |
β-Citronellol | 20.22 | 1638.76 | nd | nd | nd | nd | 1.3 a | 1.0 a | nd | 0.3 b | nd | *** |
1-Decanol | 21.20 | 1716.24 | nd | nd | nd | nd | nd | nd | nd | nd | 0.97 | - |
α-Terpineol | 24.40 | 2006.54 | 1.4 d | 1.5 d | 1.7 d | 1.9 d | 2.7 c | 3.2 c | 3.8 b | 4.3 b | 4.7 a | *** |
Phenylethyl alcohol | 27.27 | >2000 | nd | nd | nd | nd | nd | nd | 1.2 | nd | nd | - |
Terpenes (10) | ||||||||||||
Limonene | 7.84 | 1031.00 | 3.90 e | 3.85 e | 4.14 e | 4.84 d | 5.04 d | 5.94 c | 6.10 c | 7.70 b | 8.30 a | *** |
β-Pinene 1 | 9.79 | 1117.00 | nd | nd | nd | nd | nd | nd | 1.1 a | 1.2 a | nd | NS |
β-Myrcene | 10.31 | 1134.33 | 14.0 b | 15.0 b | 18.0 a | 15.0 b | 17.0 a | 15.0 b | 3.4 d | 3.5 d | 5.1 c | *** |
γ-Terpinene | 12.68 | 1217.24 | nd | nd | nd | nd | nd | nd | 0.8 | nd | nd | - |
p-Cymene 1 | 13.41 | 1248.71 | nd | nd | nd | nd | nd | nd | 1.4 | nd | nd | - |
α-Pinene | 16.24 | 1382.41 | nd | nd | nd | nd | 2.4 a | 2.4 a | nd | nd | nd | NS |
α-Terpinolene | 18.25 | 1498.81 | 1.2 a | 1.3 a | 1.1 a | 1.0 a | 0.8 b | 0.8 b | nd | nd | nd | * |
(E)-α-Bergamotene | 21.68 | 1757.26 | nd | nd | nd | nd | 0.3 b | 0.4 b | 3.7 a | 0.3 b | nd | *** |
(E)-Caryophyllene | 22.16 | 1798.29 | 2.6 b | 2.8 b | 2.7 b | 2.9 b | 2.8 b | 2.7 b | 5.7 a | 2.5 b | 2.0 c | ** |
(E)-β-Farnesene | 24.11 | 1978.85 | nd | nd | nd | nd | nd | nd | 2.8 a | 0.1 b | nd | *** |
Esters (6) | ||||||||||||
Ethyl acetate 1 | 4.39 | 744.44 | nd | nd | nd | nd | nd | nd | 1.1 b | 14.0 a | nd | *** |
Hexyl isobutyrate | 21.22 | 1717.95 | nd | nd | nd | nd | nd | nd | 2.3 a | 0.3 b | nd | *** |
3-Methyl butyl acetate | 21.84 | 1770.94 | nd | nd | nd | nd | nd | nd | nd | 1.91 | nd | - |
Methyl dihydrojasmonate | 22.57 | 1835.14 | 3.4 a | 3.2 a | 3.3 a | 2.9 b | 2.3 c | 2.1 c | 1.2 d | 1.2 d | 1.1 d | ** |
Ironmonocarbonyl | 26.58 | >2000 | 1.9 a | 1.9 a | 1.9 a | 1.3 a | 0.5 b | 0.5 b | 0.3 b | nd | nd | ** |
Methyl salisylate | 27.22 | >2000 | 1.8 a | 1.0 a | 1.7 a | 1.6 a | 0.6 b | 0.6 b | 0.5 b | nd | nd | ** |
Aldehydes (6) | ||||||||||||
Hexanal 1 | 8.17 | 1042.78 | 0.6 e | 0.8 e | 0.7 e | 0.9 e | 1.0 ce | 1.3cd | 1.5 cd | 3.5 b | 5.7 a | ** |
(E)-2-Hexen-1-al | 12.20 | 1197.33 | nd | nd | nd | nd | nd | nd | 0.8 a | nd | 0.8 a | NS |
Nonanal 1 | 16.01 | 1370.85 | nd | nd | nd | nd | 0.3a | 0.3 a | 0.4 a | nd | nd | NS |
2,4-Hexadienal | 17.01 | 1425.00 | nd | nd | nd | nd | nd | nd | 0.8 a | nd | 0.8 a | NS |
Benzaldehyde 1 | 20.52 | 1662.02 | nd | nd | nd | nd | nd | nd | 0.6 | nd | nd | - |
Phenylacetaldehyde | 23.40 | 1910.58 | 0.9 c | 1.0 c | 1.3 b | 1.4 b | 2.9 a | 2.7 a | 1.5 b | 0.9 c | 3.1 a | ** |
Ketones (4) | ||||||||||||
6-Methyl-5-hepten-2-one | 14.71 | 1305.53 | nd | nd | nd | nd | nd | nd | nd | 0.3 | nd | - |
2-Nonanone | 16.08 | 1412.50 | 1.1 a | 1.1 a | 1.1 a | 0.9 a | nd | nd | nd | 0.3 b | 0.8 a | * |
p-Menth-1-en-3-one semicarbazone | 16.92 | 1419.64 | 0.2 a | 0.3 a | 0.4 a | 0.4 a | nd | nd | 0.4 a | nd | 0.4 a | NS |
6-Methyl-γ-ionone | 21.37 | 1730.77 | nd | nd | nd | nd | nd | nd | nd | nd | 0.3 | - |
Acids (3) | ||||||||||||
3-Methyl butanoic acid | 22.25 | 1806.31 | 0.3 b | 0.2 b | 0.3 b | 0.4 b | nd | nd | nd | 0.8 a | nd | * |
Octanoic acid 1 | 23.38 | 1908.65 | nd | nd | nd | nd | nd | nd | nd | 1.3 | nd | - |
Decanoic acid 1 | 25.05 | 2067.29 | nd | nd | nd | nd | nd | nd | 1.0 b | nd | 1.7 a | ** |
Phenolic compounds (6) | ||||||||||||
Styrene (Cinnamane) | 12.98 | 1230.17 | 3.9a | 3.8 a | 3.7 a | 3.0 b | 2.5 c | 2.2 c | nd | 0.7 d | 0.5 d | ** |
Methyl(1-methylethenyl)-benzene | 18.28 | 1500.60 | nd | nd | 0.30 c | 0.40 c | 0.60 b | 0.65 b | 0.80 a | 0.90 a | nd | * |
2,3-Dimethyl oxirane | 18.46 | 1513.10 | 0.8 a | 1.0 a | 0.9 a | 0.7 a | nd | nd | 0.3 b | nd | nd | * |
6-Methyl-2-phenylindole | 20.57 | 1665.89 | nd | nd | nd | nd | 0.9 a | 0.4 b | nd | nd | 0.4 b | * |
Guaiacol | 25.36 | 2096.26 | 0.8 b | 1.0 b | 0.9 b | 1.0 b | 1.1 b | 0.9 b | 0.8 b | 1.1 b | 1.8 a | * |
Methyl isoeugenol | 38.08 | >2000 | nd | nd | nd | nd | 2.0 a | 2.1 a | 1.4 c | 1.0 c | 1.9 b | ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catania, P.; Comparetti, A.; De Pasquale, C.; Morello, G.; Vallone, M. Effects of the Extraction Technology on Pomegranate Juice Quality. Agronomy 2020, 10, 1483. https://doi.org/10.3390/agronomy10101483
Catania P, Comparetti A, De Pasquale C, Morello G, Vallone M. Effects of the Extraction Technology on Pomegranate Juice Quality. Agronomy. 2020; 10(10):1483. https://doi.org/10.3390/agronomy10101483
Chicago/Turabian StyleCatania, Pietro, Antonio Comparetti, Claudio De Pasquale, Giuseppe Morello, and Mariangela Vallone. 2020. "Effects of the Extraction Technology on Pomegranate Juice Quality" Agronomy 10, no. 10: 1483. https://doi.org/10.3390/agronomy10101483
APA StyleCatania, P., Comparetti, A., De Pasquale, C., Morello, G., & Vallone, M. (2020). Effects of the Extraction Technology on Pomegranate Juice Quality. Agronomy, 10(10), 1483. https://doi.org/10.3390/agronomy10101483