Optimizing Maize Agronomic Performance Through Adaptive Management Systems in the Mid-Atlantic United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Characterization
2.2. Weather Conditions
2.3. Experimental Details
2.4. Experimental Design and Treatments
2.5. Data Collection and Analysis
3. Results
Effect of Irrigation, Management Levels, and Treatments on Grain Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACMS | Adaptive Maize Management System |
CEC | cation exchange capacity |
VCE | Virginia Cooperative Extension |
TAREC | Tidewater Agricultural Research and Extension Center |
References
- UNESCO. World Population Prospects; United Nations: New York, NY, USA, 2024; Available online: https://population.un.org/wpp/ (accessed on 4 March 2025).
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Agricultural productivity and food supply to meet increased demands. In Future Foods; Academic Press: Cambridge, MA, USA, 2022; pp. 539–553. [Google Scholar]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef] [PubMed]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [PubMed]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO J. Hum. Environ. 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, D.K.; West, P.C. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Ruffo, M.L.; Gentry, L.F.; Henninger, A.S.; Seebauer, J.R.; Below, F.E. Evaluating management factor contributions to reduce corn yield gaps. Agron. J. 2015, 107, 495–505. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Rathore, L.S.; Kumar, M.; McNider, R.T.; Magliocca, N.; Ellenburg, W. Contrasting corn acreage trends in the Midwest and Southeast: The role of yield, climate, economics, and irrigation. J. Agric. Food Res. 2024, 18, 101373. [Google Scholar] [CrossRef]
- NCGA. The 60th Annual Yield Contest. Available online: https://www.ncga.com/ (accessed on 26 April 2025).
- Reiter, M.S.; Frame, W.H.; Thomason, W.E. Consider Your Whole System: Nitrogen and Sulfur Leaching Potential in Virginia; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2018. [Google Scholar]
- Ciampitti, I.A.; Vyn, T.J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Res. 2012, 133, 48–67. [Google Scholar] [CrossRef]
- Ransom, C.J.; Kitchen, N.R.; Sawyer, J.E.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernández, F.G.; Franzen, D.W.; Laboski, C.A.; Myers, D.B.; et al. Improving publicly available corn nitrogen rate recommendation tools with soil and weather measurements. Agron. J. 2021, 113, 2068–2090. [Google Scholar] [CrossRef]
- Barker, D.; Sawyer, J. Variable rate nitrogen management in corn: Response in two crop rotations. J. Soil Water Conserv. 2017, 72, 183–190. [Google Scholar] [CrossRef]
- Frame, W.H. Excess Rains and Leaching of Nitrogen, Potassium and Sulfur. 2024. Available online: https://blogs.ext.vt.edu/ag-pest-advisory/files/2015/07/Excess-rains-and-leaching-of-nitrogen.pdf (accessed on 20 October 2024).
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Holford, I. Soil phosphorus: Its measurement, and its uptake by plants. Soil Res. 1997, 35, 227–240. [Google Scholar] [CrossRef]
- Kovar, J.L.; Claassen, N. Soil-root interactions and phosphorus nutrition of plants. Phosphorus Agric. Environ. 2005, 46, 379–414. [Google Scholar]
- Truog, E. The determination of the readily available phosphorus of soils 1. Agron. J. 1930, 22, 874–882. [Google Scholar] [CrossRef]
- Sharpley, A.N. Dependence of Runoff Phosphorus on Extractable Soil Phosphorus; Wiley Online Library: Hoboken, NJ, USA, 1995. [Google Scholar]
- Donohue, S.; Heckendorn, S. Soil test recommendations for Virginia. Va. Coop. Ext. Serv. Publ 1994, 834, 23–27. [Google Scholar]
- Alley, M.M.; Martz, M.E.; Davis, P.H.; Hammons, J. Nitrogen and Phosphorus Fertilization of Corn; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2009. [Google Scholar]
- Camberato, J.; Casteel, S.; Steinke, K. Sulfur Deficiency in Corn, Soybean, Alfalfa, and Wheat; Purdue University Extension: West Lafayette, IN, USA, 2022; Available online: https://www.extension.purdue.edu/extmedia/AY (accessed on 20 October 2024).
- Steinke, K.; Rutan, J.; Thurgood, L. Corn response to nitrogen at multiple sulfur rates. Agron. J. 2015, 107, 1347–1354. [Google Scholar] [CrossRef]
- Mueller, D.S.; Wise, K.A.; Sisson, A.J.; Allen, T.W.; Bergstrom, G.C.; Bissonnette, K.M.; Bradley, C.A.; Byamukama, E.; Chilvers, M.I.; Collins, A.A.; et al. Corn yield loss estimates due to diseases in the United States and Ontario, Canada, from 2016 to 2019. Plant Health Prog. 2020, 21, 238–247. [Google Scholar] [CrossRef]
- Ward, J.M.; Stromberg, E.L.; Nowell, D.C.; Nutter, F.W., Jr. Gray leaf spot: A disease of global importance in maize production. Plant Dis. 1999, 83, 884–895. [Google Scholar] [CrossRef]
- Wise, K.A.; Smith, D.; Freije, A.; Mueller, D.S.; Kandel, Y.; Allen, T.; Bradley, C.A.; Byamukama, E.; Chilvers, M.; Faske, T.; et al. Meta-analysis of yield response of foliar fungicide-treated hybrid corn in the United States and Ontario, Canada. PLoS ONE 2019, 14, e0217510. [Google Scholar] [CrossRef]
- Wise, K.; Mueller, D. Are fungicides no longer just for fungi? An analysis of foliar fungicide use in corn. APSnet Features 2011, 10. [Google Scholar] [CrossRef]
- Wise, K. Fungicide efficacy for control of corn diseases. In Crop Prot Network; University of Kentucky: Lexington, KY, USA, 2018. [Google Scholar]
- Morris, T.F.; Murrell, T.S.; Beegle, D.B.; Camberato, J.J.; Ferguson, R.B.; Grove, J.; Ketterings, Q.; Kyveryga, P.M.; Laboski, C.A.; McGrath, J.M.; et al. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 2018, 110, 1–37. [Google Scholar] [CrossRef]
- Ades, A.; Welton, N.; Lu, G. Introduction to Mixed Treatment Comparisons; MRC Health Services Research Collaboration: Bristol, UK, 2007.
- Abaye, A.; Bendfeldt, E.; Brann, D.; Evanylo, G.; Fike, J.; Hardiman, T. Virginia Cooperative Extension Agronomy Handbook 2023; Virginia Tech Publishing: Blacksburg, VA, USA, 2023. [Google Scholar]
- Bendfeldt, E. Agronomy Handbook 2023: Part VII. Soil Health Management; Virginia Tech: Blacksburg, VA, USA, 2023. [Google Scholar]
- McWilliams, D.; Berglund, D.; Endres, G. Corn Growth and Management Quick Guide, A-1173; North Dakota State University: Fargo, ND, USA; USDA: Fargo, ND, USA, 1999.
- Klasson, K.T. A Non-Iterative Approximation for Critical Value for Dunnett’s Test. ARS USDA, Southern Re-Gional Research Center. 2023. Available online: https://www.ars.usda.gov/ARSUserFiles/60540520/CriticalValuesForDunnett.pdf (accessed on 20 October 2024).
- Subedi, K.; Ma, B. Assessment of some major yield-limiting factors on maize production in a humid temperate environment. Field Crops Res. 2009, 110, 21–26. [Google Scholar] [CrossRef]
- Franzen, D.; Camberato, J.; Nafziger, E.; Kaiser, D.; Nelson, K.; Singh, G. Performance of Selected Commercially Available Asymbiotic N-Fixing Products in the North Central Region; North Dakota State University: Fargo, ND, USA, 2024. [Google Scholar]
- Bano, H.N.A. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J. Plant Interact. 2014, 9, 689–701. [Google Scholar]
- Sible, C.; Below, F. Role of Biologicals in Enhancing Nutrient Efficiency in Corn and Soybean. Crops Soils 2023, 56, 13–19. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Yin, X. Effects of nitrogen rate, irrigation rate, and plant population on corn yield and water use efficiency. Agron. J. 2003, 95, 1475–1482. [Google Scholar] [CrossRef]
- Di Paolo, E.; Rinaldi, M. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Res. 2008, 105, 202–210. [Google Scholar] [CrossRef]
- Derby, N.E.; Steele, D.D.; Terpstra, J.; Knighton, R.E.; Casey, F.X. Interactions of nitrogen, weather, soil, and irrigation on corn yield. Agron. J. 2005, 97, 1342–1351. [Google Scholar] [CrossRef]
- Mahoney, K.J.; Klapwyk, J.H.; Stewart, G.A.; Jay, W.S.; Hooker, D.C. Agronomic management strategies to reduce the yield loss associated with spring harvested corn in Ontario. Am. J. Plant Sci. 2015, 6, 372. [Google Scholar] [CrossRef]
- Bradley, C.; Ames, K. Effect of foliar fungicides on corn with simulated hail damage. Plant Dis. 2010, 94, 83–86. [Google Scholar] [CrossRef]
Location | Year | P | K | Ca | Mg | pH † | Est CEC ‡ |
---|---|---|---|---|---|---|---|
kg ha−1 | 1:1 | meq/100 g | |||||
Blacksburg irrigated and non-irrigated | 2022 | 69 | 289 | 1283 | 312 | 6.1 | 6.0 |
Mt. Holly non-irrigated | 2022 | 72 | 149 | 1129 | 301 | 6.8 | 3.9 |
New Kent irrigated | 2022 | 38 | 129 | 731 | 133 | 5.5 | 3.6 |
New Kent non-irrigated | 2022 | 61 | 121 | 867 | 169 | 5.6 | 4.1 |
Mt. Holly irrigated | 2022 | 74 | 164 | 563 | 107 | 5.0 | 4.3 |
Mt. Holly non-irrigated | 2023 | 58 | 214 | 696 | 173 | 6.3 | 3.0 |
Mt. Holly irrigated | 2023 | 54 | 161 | 1031 | 217 | 6.3 | 3.7 |
Suffolk irrigated and non-irrigated | 2023 | 56 | 82 | 665 | 74 | 6.6 | 1.9 |
Treatments | +P and K | +Side-dress N | +CoRon® | +Headline® | +Biological |
---|---|---|---|---|---|
Management level | Standard management | ||||
† Standard management check | NO | NO | NO | NO | NO |
+P and K | ✓ | NO | NO | NO | NO |
+Side-dress N | NO | ✓ | NO | NO | NO |
+CoRon® | NO | NO | ✓ | NO | NO |
+Headline® | NO | NO | NO | ✓ | NO |
+Biological | NO | NO | NO | NO | ✓ |
Intensive management | |||||
‡ Intensive management check | ✓ | ✓ | ✓ | ✓ | ✓ |
-P and K | NO | ✓ | ✓ | ✓ | ✓ |
-Side-dress N | ✓ | NO | ✓ | ✓ | ✓ |
-CoRon® | ✓ | ✓ | NO | ✓ | ✓ |
-Headline® | ✓ | ✓ | ✓ | NO | ✓ |
-Biological | ✓ | ✓ | ✓ | ✓ | NO |
Year | 2022 | 2023 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Location | Blacksburg | New Kent | Mt. Holly | Mt. Holly | Suffolk | |||||
Irrigation Status | Irrigated | Non-Irrigated | Irrigated | Non-Irrigated | Irrigated | Non-Irrigated | Irrigated | Non-Irrigated | Irrigated | Non-Irrigated |
Standard management compared to the †Standard management check | ||||||||||
Management level | Grain yield, kg ha−1 | |||||||||
+Biological | 10,354 | 11,111 | 19,188 | 15,233 | 13,201 | 9750 | 15,472 | 11,527 | 15,454 | 14,238 * |
+CoRon® | 8755 * | 7900 | 17,834 | 16,902 | 14,194 | 9441 | 15,455 | 13,790 | 14,262 | 10,109 |
+Headline® | 10,113 | 7936 | 18,445 | 16,263 | 13,847 | 9666 | 14,300 * | 11,786 | 16,122 * | 11,692 |
+P and K | 9374 | 9729 | 16,317 | 18,022 | 12,696 | 9845 | 14,144 * | 12,693 | 14,651 | 13,659 * |
+Sidedress N | 8233 * | 9166 | 18,923 | 16,855 | 13,464 | 10,285 | 14,718* | 13,245 | 14,204 | 15,545 * |
† Standard management check | 11,195 | 8149 | 18,202 | 15,751 | 13,789 | 9832 | 16,624 | 14,529 | 13,962 | 8685 |
Intensive management Compared to the ‡ Intensive management check | ||||||||||
Management level | Grain yield, kg ha−1 | |||||||||
-Biological | 9207 | 11,513 | 18,770 | 16,086 | 13,665 | 10,145 | 13,411 | 12,706 | 16,226 * | 12,810 |
-CoRon® | 10,768 | 11,240 | 17,963 | 16,675 | 13,542 | 8584 | 13,266 | 12,711 | 15,531 | 12,839 |
-Headline® | 10,115 | 9161 | 18,212 | 16,398 | 12,826 | 10,345 | 12,800 | 13,093 | 15,522 | 11,610 |
-P and K | 9461 | 7702 * | 17,744 | 17,287 | 12,488 | 9131 | 13,182 | 13,311 | 16,337 * | 12,071 |
-Side-dress N | 7337 | 9031 | 18743 | 15859 | 12570 | 9711 | 13186 | 13569 | 16023 | 14639 * |
‡ Intensive management check | 10,286 | 10,944 | 18,138 | 18,743 | 13,029 | 9437 | 13,373 | 13,179 | 14,645 | 12,810 |
Management level | ||||||||||
‡ Intensive management check | 10,286 | 10,944 | 18,138 | 18,743 | 13,029 | 9437 | 13,373 | 13,179 | 14,645 | 12,810 |
† Standard management check | 11,195 | 8149 | 18,202 | 15,751 | 13,789 | 9832 | 16,624 | 14,529 | 13,962 | 8685 |
p-value | 0.608 | 0.051 | 0.944 | 0.004 | 0.343 | 0.694 | 0.041 | 0.233 | 0.334 | 0.357 |
Irrigation impact, % | ||||||||||
Intensive management check | −6% | −3% | 38% | 1.5% | 14% | |||||
Standard management check | 37% | 16% | 40% | 14% | 61% |
Irrigation | Irrigated | Non-Irrigated | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2022 | 2023 | 2022 | 2023 | ||||||||
Site | Blacksburg | New Kent | Mt. Holly | Mt. Holly | Tidewater | Avg | Blacksburg | New Kent | Mt. Holly | Mt. Holly | Tidewater | Avg |
Standard management compared to the † Standard management check, % | ||||||||||||
+Biological | 92 | 105 | 96 | 93 | 104 | 98 | 136 | 97 | 99 | 79 | 164 | 115 |
+CoRon® | 78 | 98 | 103 | 93 | 102 | 95 | 97 | 107 | 96 | 95 | 116 | 102 |
+Headline® | 90 | 101 | 100 | 86 | 115 | 99 | 97 | 103 | 98 | 81 | 135 | 103 |
+P and K | 84 | 90 | 92 | 85 | 105 | 91 | 119 | 114 | 100 | 87 | 157 | 116 |
+Side-dress N | 74 | 104 | 98 | 89 | 102 | 93 | 112 | 107 | 105 | 91 | 179 | 119 |
Mean | 95 | 111 | ||||||||||
Intensive management compared to ‡ Intensive management check % | ||||||||||||
-Biological | 90 | 98 | 105 | 100 | 111 | 101 | 105 | 86 | 108 | 96 | 120 | 103 |
-CoRon® | 105 | 94 | 104 | 99 | 106 | 102 | 103 | 89 | 91 | 96 | 120 | 100 |
-Headline® | 98 | 95 | 98 | 96 | 106 | 99 | 84 | 87 | 110 | 99 | 108 | 98 |
-P and K | 92 | 93 | 96 | 99 | 112 | 98 | 70 | 92 | 97 | 101 | 113 | 95 |
-Side-dress N | 71 | 98 | 96 | 99 | 109 | 95 | 83 | 85 | 103 | 103 | 137 | 102 |
Mean | 99 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arinaitwe, U.; Thomason, W.; Frame, W.H.; Reiter, M.S.; Langston, D. Optimizing Maize Agronomic Performance Through Adaptive Management Systems in the Mid-Atlantic United States. Agronomy 2025, 15, 1059. https://doi.org/10.3390/agronomy15051059
Arinaitwe U, Thomason W, Frame WH, Reiter MS, Langston D. Optimizing Maize Agronomic Performance Through Adaptive Management Systems in the Mid-Atlantic United States. Agronomy. 2025; 15(5):1059. https://doi.org/10.3390/agronomy15051059
Chicago/Turabian StyleArinaitwe, Unius, Wade Thomason, William Hunter Frame, Mark S. Reiter, and David Langston. 2025. "Optimizing Maize Agronomic Performance Through Adaptive Management Systems in the Mid-Atlantic United States" Agronomy 15, no. 5: 1059. https://doi.org/10.3390/agronomy15051059
APA StyleArinaitwe, U., Thomason, W., Frame, W. H., Reiter, M. S., & Langston, D. (2025). Optimizing Maize Agronomic Performance Through Adaptive Management Systems in the Mid-Atlantic United States. Agronomy, 15(5), 1059. https://doi.org/10.3390/agronomy15051059