Previous Issue
Volume 5, June
 
 

Metrology, Volume 5, Issue 3 (September 2025) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
29 pages, 22821 KiB  
Article
Geometric Calibration of Thermal Infrared Cameras: A Comparative Analysis for Photogrammetric Data Fusion
by Neil Sutherland, Stuart Marsh, Fabio Remondino, Giulio Perda, Paul Bryan and Jon Mills
Metrology 2025, 5(3), 43; https://doi.org/10.3390/metrology5030043 - 8 Jul 2025
Viewed by 123
Abstract
The determination of precise and reliable interior (IO) and relative (RO) orientation parameters for thermal infrared (TIR) cameras is critical for their subsequent use in photogrammetric processes. Although 2D calibration boards have become the predominant approach for TIR geometric calibration, these targets are [...] Read more.
The determination of precise and reliable interior (IO) and relative (RO) orientation parameters for thermal infrared (TIR) cameras is critical for their subsequent use in photogrammetric processes. Although 2D calibration boards have become the predominant approach for TIR geometric calibration, these targets are susceptible to projective coupling and often introduce error through manual construction methods, necessitating the development of 3D targets tailored to TIR geometric calibration. Therefore, this paper evaluates TIR geometric calibration results obtained from 2D board and 3D field calibration approaches, documenting the construction, observation, and calculation of IO and RO parameters. This includes a comparative analysis of values derived from three popular commercial software packages commonly used for geometric calibration: MathWorks’ MATLAB, Agisoft Metashape, and Photometrix’s Australis. Furthermore, to assess the validity of derived parameters, two InfraRed Thermography 3D-Data Fusion (IRT-3DDF) methods are developed to model historic building façades and medieval frescoes. The results demonstrate the success of the proposed 3D field calibration targets for the calculation of both IO and RO parameters tailored to photogrammetric data fusion. Additionally, a novel combined TIR-RGB bundle block adjustment approach demonstrates the success of applying ‘out-of-the-box’ deep-learning neural networks for multi-modal image matching and thermal modelling. Considerations for the development of TIR geometric calibration approaches and the evolution of proposed IRT-3DDF methods are provided for future work. Full article
Show Figures

Figure 1

15 pages, 1240 KiB  
Article
A Metrological Approach to Developing Quality Testing Standards for Emerging Advanced Materials
by Akira Ono
Metrology 2025, 5(3), 42; https://doi.org/10.3390/metrology5030042 - 8 Jul 2025
Viewed by 103
Abstract
The rapid advancement of materials science is driving the development of emerging advanced materials, such as nanomaterials, composites, biomaterials, and high-performance metals. These materials possess unique properties and offer significant potential for innovative applications across industries. Standardization plays a crucial role in ensuring [...] Read more.
The rapid advancement of materials science is driving the development of emerging advanced materials, such as nanomaterials, composites, biomaterials, and high-performance metals. These materials possess unique properties and offer significant potential for innovative applications across industries. Standardization plays a crucial role in ensuring the reliability, consistency, and comparability of material quality assessments. Although typical material specification standards, which rigidly define allowable characteristic ranges, are well-suited for established materials like steel, they may not be directly applicable to emerging advanced materials due to their novelty and evolving nature. To address this challenge, a distinct approach is required—flexible yet robust testing standards for assessing material quality. This paper introduces scenario-based methodologies, a structured approach to developing such standards, with a particular focus on metrological aspects of measurement methods and procedures. Additionally, self-assessment processes aimed at verifying measurement reliability are integrated into the methodology. These methodologies involve defining target materials and their applications, identifying critical material characteristics, specifying appropriate measurement methods and procedures, and promoting adaptable yet reliable guidelines. To maintain relevance with metrological advancements and evolving market demands, these quality testing standards should undergo periodic review and updates. This approach enhances industrial confidence and facilitates market integration. Full article
Show Figures

Figure 1

22 pages, 13907 KiB  
Article
Fabrication and Characterization of a Thermal Flow Sensor Based on the Ensinger Microsystems Technology
by Daniela Walter, André Bülau, Sebastian Bengsch, Kerstin Gläser and André Zimmermann
Metrology 2025, 5(3), 41; https://doi.org/10.3390/metrology5030041 - 3 Jul 2025
Viewed by 124
Abstract
Thermal mass flow sensors (TMFS) are used to detect the flow rates of gases. TMFS elements are available in different technologies and, depending on the one used, the material choice of substrate, heater, and temperature sensors can limit their performance. In this work, [...] Read more.
Thermal mass flow sensors (TMFS) are used to detect the flow rates of gases. TMFS elements are available in different technologies and, depending on the one used, the material choice of substrate, heater, and temperature sensors can limit their performance. In this work, a sensor element based on the Ensinger Microsystems Technology (EMST) is presented that uses PEEK as the substrate, nickel-chromium as the heater, and nickel as the temperature sensor material. The fabrication process of the element is described, the completion to a flow sensor with a control and readout circuit based on discharge time measurement with picosecond resolution is presented, and measurement results are shown, which are compared to sensors with a commercially available element based on thin film technology on ceramic and an element built with discrete components, all using the same electronics. It is shown that the operation of all sensor elements with the proposed readout circuit was successful, flow-dependent signals were achieved, and the performance of TMFS in EMST improved. Its heater shows better results compared to the commercial element due to material choice with a smaller temperature coefficient of resistance. In its current state, the TMFS in EMST is suitable to detect flow rates > 20 SLPM. The performance needs to be improved further, since the temperature sensors still differ too much from another. Full article
Show Figures

Figure 1

29 pages, 4333 KiB  
Article
A Distributed Sensing- and Supervised Deep Learning-Based Novel Approach for Long-Term Structural Health Assessment of Reinforced Concrete Beams
by Minol Jayawickrema, Madhubhashitha Herath, Nandita Hettiarachchi, Harsha Sooriyaarachchi, Sourish Banerjee, Jayantha Epaarachchi and B. Gangadhara Prusty
Metrology 2025, 5(3), 40; https://doi.org/10.3390/metrology5030040 - 3 Jul 2025
Viewed by 146
Abstract
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) [...] Read more.
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) beam and the structural health based on the tension side of a rebar under flexural loading. The developed SHM system was verified by four-point bending experiments on three RC beams cast in the dimensions of 4000 mm × 200 mm × 400 mm. Distributed optical fibre sensors (DOFS) were mounted on the concrete surface and on the bottom rebar to maximise sample points and investigate the reliability of the strain data. The FEA model was validated using a single beam and subsequently used to generate labelled SHM strain data by altering the dilation angle and rebar sizes. The generated strain data were then used to train an artificial neural network (ANN) classifier using deep learning (DL). Training and validation accuracy greater than 98.75% were recorded, and the model was trained to predict the tension state up to 90% of the steel yield limit. The developed model predicts the health condition with the input of strain data acquired from the concrete surface of reinforced concrete beams under various loading regimes. The model predictions were accurate for the experimental DOFS data acquired from the tested beams. Full article
Show Figures

Graphical abstract

16 pages, 4591 KiB  
Article
Influence of Process Parameters on the Ultrasonic Atomization Efficiency and Possibility of Testing Properties of Liquid Metals
by Rafał Szostak-Staropiętka, Wojciech Presz, Roksana Pawlic, Anna Dziubińska and Katarzyna Kołacz
Metrology 2025, 5(3), 39; https://doi.org/10.3390/metrology5030039 - 2 Jul 2025
Viewed by 161
Abstract
Over recent years, ultrasonic atomization, especially with regard to liquid metals, has become an object of increased interest, mainly from industry, for additive manufacturing, but also from investigators, for research purposes. A strong correlation between the average particle size, distribution of particle sizes, [...] Read more.
Over recent years, ultrasonic atomization, especially with regard to liquid metals, has become an object of increased interest, mainly from industry, for additive manufacturing, but also from investigators, for research purposes. A strong correlation between the average particle size, distribution of particle sizes, and other process parameters like frequency and vibration amplitude was noted based on the analysis of available theoretical studies, simulations and experiments. The influence of parameters of the atomized fluid-like viscosity and surface tension on process parameters was also mentioned. The objective of this study is further research on the feasibility of using ultrasonic atomization to examine the properties of liquids, especially metals in liquid state. It attempts to close a gap in existing knowledge in searching for a new, possibly simple and cost-effective method to study the properties of liquid metals and further clarify the relationship between ultrasonic atomization parameters (amplitude, frequency, characteristics of metal being spilled on a vibrating surface) and obtained atomization results meant by average particle size and atomization time. Using numerical modeling (finite element method and computational fluid dynamics) as a methodology, combined with tests of using ultrasonic atomization as an instrument to determine properties of liquid metals, was considered as an introduction to a series of experiments. These tests were followed by real experiments that are also presented. At the first stage, numerical modeling was applied to a case of a specific liquid being spilled over a vibrating surface of different angles of inclination and specified, constant frequency and amplitude. The results of the simulation are in line with the current state of knowledge about ultrasonic atomization. Moreover, they can provide some more information on scalability, thus easing the comparison of the results of other experiments presented in the available literature. As a result, the relationship between fluid properties and the average size of atomized particles was demonstrated independently of the surface inclination angle. In the same way, the dependence of successful atomization on a sufficiently thin layer of a liquid was demonstrated. Thirdly, a correlation between the aforementioned layer thickness and the value of vibration amplitude has also been shown. Taking all the above into consideration, ultrasonic atomization can also be considered a research method and can be applied to study the properties of liquid metals. Further research, simulations and experimentation will be conducted to verify, develop and describe this method in full. Full article
Show Figures

Figure 1

16 pages, 3538 KiB  
Article
Performance Measurement of an Electromagnetic Guided-Wave Liquid Level Sensor
by Parisa Esmaili, Federico Cavedo and Michele Norgia
Metrology 2025, 5(3), 38; https://doi.org/10.3390/metrology5030038 - 1 Jul 2025
Viewed by 140
Abstract
Slight changes in the local properties of a transmission line, dipped in a liquid, can be used to estimate its level through two different determination techniques, involving the capacitance and electromagnetic wave speed, measured by the time of flight. Indeed, the overall capacitance [...] Read more.
Slight changes in the local properties of a transmission line, dipped in a liquid, can be used to estimate its level through two different determination techniques, involving the capacitance and electromagnetic wave speed, measured by the time of flight. Indeed, the overall capacitance of a transmission line varies linearly with the liquid level, as well as the time of flight of the electromagnetic wave. Both quantities can be estimated via the measurement of a phase shift at radio frequencies, and the simultaneous measurements can be realized using a compact and low-cost design working at a few megahertz. This paper presents a further improvement in sensitivity to challenge the performance of this kind of level sensor, dealing with liquids with low dielectric constants. To better describe this effect, a study on the overall capacitance of different transmission path segments was conducted in COMSOL Multiphysics. The level measurement was performed experimentally on the realized prototype while considering the measured phase shift as a function of the liquid level, for both an unshielded twisted-pair and magnet wires. As the results showed, with the magnet wires the sensitivity was improved by a factor of about 4, consistently aligning with the simulation results and providing a predictable phase shift response with increasing liquid levels. Consequently, magnet wire is a good choice for precise level measurements through RF phase shifts, especially in the case of low relative permittivity liquids. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop