Next Issue
Volume 5, September
Previous Issue
Volume 5, March
 
 

Metrology, Volume 5, Issue 2 (June 2025) – 19 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 8215 KiB  
Article
Assessment of a Translating Fluxmeter for Precision Measurements of Super-FRS Dipole Magnets
by Pawel Kosek, Anthony Beaumont and Melvin Liebsch
Metrology 2025, 5(2), 37; https://doi.org/10.3390/metrology5020037 - 17 Jun 2025
Viewed by 2
Abstract
In particle physics experiments, fragment separators utilize dipole magnets to distinguish and isolate specific isotopes based on their mass-to-charge ratio as particles traverse the dipole’s magnetic field. Accurate fragment selection relies on precise knowledge of the magnetic field generated by the dipole magnets, [...] Read more.
In particle physics experiments, fragment separators utilize dipole magnets to distinguish and isolate specific isotopes based on their mass-to-charge ratio as particles traverse the dipole’s magnetic field. Accurate fragment selection relies on precise knowledge of the magnetic field generated by the dipole magnets, necessitating dedicated measurement instrumentation to characterize the field in the constructed magnets. This study presents measurements of the two first-of-series dipole magnets (Type II—11 degrees bending angle—and Type III—9.5 degrees bending angle) for the Superconducting Fragment Separator that is being built in Darmstadt, Germany. Stringent field quality requirements necessitated a novel measurement system—the so-called translating fluxmeter. It is based on a PCB coil array installed on a moving trolley that scans the field while passing through the magnet aperture. While previous publications have discussed the design of the moving fluxmeter and the characterization of its components, this article presents the results of a measurement campaign conducted using the new system. The testing campaign was supplemented with conventional methods, including integral field measurements using a single stretched wire system and three-dimensional field mapping with a Hall probe. We provide an overview of the working principle of the translating fluxmeter system and validate its performance by comparing the results with those obtained using conventional magnetic measurement methods. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Figure 1

17 pages, 1669 KiB  
Article
Setting the Emissivity of an Imaging Bolometer in the Surface Temperature Profile Measurement of SiC-Based MEMS Heaters
by Reinoud Wolffenbuttel, David Bilby and Jaco Visser
Metrology 2025, 5(2), 36; https://doi.org/10.3390/metrology5020036 - 17 Jun 2025
Viewed by 2
Abstract
The proper usage of a bandwidth-limited imaging bolometer for the measurement of the lateral temperature profile of microstructures in Silicon-Carbide (SiC) is analyzed. The SiC spectral emissivity, ϵSiC(λ), has a dip at λ12μ [...] Read more.
The proper usage of a bandwidth-limited imaging bolometer for the measurement of the lateral temperature profile of microstructures in Silicon-Carbide (SiC) is analyzed. The SiC spectral emissivity, ϵSiC(λ), has a dip at λ12μm, which is in the band of a typical commercially available instrument and complicates the selection of the value of the equivalent emissivity, ϵeq,SiC, in the instrument settings. The impact is analyzed by deduction using simulation, and by experimental validation. Membranes of 3C-SiC of 1000 μm diameter and 3 μm thickness have been fabricated on Si wafers, with integrated poly-SiC resistors for both membrane heating and on-membrane temperature measurement for calibration purposes. The optimum setting was found as ϵeq,SiC = 0.705 ± 0.025 by deduction and as ϵeq,SiC = 0.66 ± 0.06 by experimental validation in the temperature range 120 °C to 400 °C. The apparent temperature coefficient of emissivity, TCE< 2 × 10−4 °C−1 is due to the shift of the Wien peak wavelength relative to the instrument’s sensitivity band. Full article
Show Figures

Figure 1

16 pages, 5307 KiB  
Article
Revisiting an Indentation Method for Measuring Low Wear Rates Using 3D Interferometry
by Gabriela R. Piazzetta, Thomas M. Zeller, Juan M. Hernandez-Otalvaro and Giuseppe Pintaude
Metrology 2025, 5(2), 35; https://doi.org/10.3390/metrology5020035 - 8 Jun 2025
Viewed by 428
Abstract
Predicting the wear of disc cutters in Tunnel Boring Machines (TBMs) is a complex challenge due to the large scale of the machinery and the numerous operational variables involved. Laboratory-scale tests offer a controlled approach to isolating and analyzing specific wear mechanisms. However, [...] Read more.
Predicting the wear of disc cutters in Tunnel Boring Machines (TBMs) is a complex challenge due to the large scale of the machinery and the numerous operational variables involved. Laboratory-scale tests offer a controlled approach to isolating and analyzing specific wear mechanisms. However, the extremely low wear rates observed in such simulations pose challenges for conventional characterization methods, as gravimetric and profilometric techniques often lack the precision and accuracy needed to measure low wear patterns with an uneven morphology. To address this, this study revisited a methodology for quantifying low wear rates in a reciprocating wear test using AISI H13 tool steel disc cutters. This approach integrates spherical indentation marks as reference points with 3D white-light interferometry, enabling high-precision material loss measurements. Eighteen disc samples were subjected to wear testing, with 3 indentations analyzed per sample, for a total of 54 indentations. The statistical validation confirmed the method’s reproducibility and reliability. The proposed approach provides a robust alternative to existing techniques, addressing a critical gap regarding the accurate quantification of low wear rates in controlled laboratory settings. Full article
(This article belongs to the Special Issue Advances in Optical 3D Metrology)
Show Figures

Figure 1

13 pages, 2221 KiB  
Article
Investigation and Improvement of Inconsistency in Surface-Form Measurement Results Due to Difference of Incident Direction of Measuring Light in Abramson-Type Oblique-Incident Interferometer
by So Ito, Takumi Yamagishi, Kimihisa Matsumoto and Kazuhide Kamiya
Metrology 2025, 5(2), 34; https://doi.org/10.3390/metrology5020034 - 7 Jun 2025
Viewed by 280
Abstract
An Abramson-type oblique-incident interferometer was used for the surface-form measurement of hand-scraped marks consisting of rough surfaces. Although the Abramson interferometer could measure the rough surface of hand-scraped marks under noncontact conditions, the inconsistency in the measurement results was caused by the differences [...] Read more.
An Abramson-type oblique-incident interferometer was used for the surface-form measurement of hand-scraped marks consisting of rough surfaces. Although the Abramson interferometer could measure the rough surface of hand-scraped marks under noncontact conditions, the inconsistency in the measurement results was caused by the differences in the incident direction of the measuring light. This study investigated the inconsistency in the measurement results of the Abramson interferometer caused by the oblique incidence of the measuring light. The reproducibility of inconsistencies due to the difference in the incident direction of the measuring light was confirmed, and the relationship between the inconsistency of the measurement results and the incident angle of the measuring light was investigated. Consequently, it was confirmed that the inconsistency of the measurement results due to the difference in the incident direction of the measuring light could be reduced by decreasing the incident angle of the measuring light. To avoid the overcrowding of the interference fringes caused by the reduction in the incident angle of the measuring light, an oblique-incident interferometer with a near-infrared laser was constructed. The validity of the developed oblique-incident interferometer was evaluated by comparison with a commercially available contour measurement instrument. The surface form obtained by the developed oblique-incident interferometer was confirmed to be consistent with the envelope of the cross-sectional profile measured by the contour measurement instrument. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

14 pages, 1795 KiB  
Communication
Common Practices and Methodologies in Scientific Functional Characterization of Surface Topography
by Abbass Walid and Matthias Eifler
Metrology 2025, 5(2), 33; https://doi.org/10.3390/metrology5020033 - 5 Jun 2025
Viewed by 336
Abstract
More and more surfaces are required to fulfill functional characteristics that are embodied by their surface topography. In the process of measuring and characterizing the corresponding surfaces, many research activities have been conducted, and a broad variety of measuring principles and evaluation strategies [...] Read more.
More and more surfaces are required to fulfill functional characteristics that are embodied by their surface topography. In the process of measuring and characterizing the corresponding surfaces, many research activities have been conducted, and a broad variety of measuring principles and evaluation strategies have been developed. However, in industrial practice, there is still a lack of experience and a significant unhinged potential in this field. To predict which techniques will most likely be transferred more commonly into industrial applications, a study to identify the most frequently used measurement principles, methods, and surface texture parameters for characterizing functional surfaces through a systematic literature review of scientific research studies is conducted here. It can be shown that optical measuring instruments have emerged significantly, whereas the analysis is mostly performed using traditional and simple amplitude-based surface texture parameters. Based on the results, untapped potential in functional analysis can be revealed and the use of, e.g., function-oriented parameters or a direct measurement of the angular distribution can be recommended for a wider range of applications. Full article
Show Figures

Figure 1

18 pages, 4929 KiB  
Article
Design and Analysis of Smart Reconstruction Plate for Wireless Monitoring of Bone Regeneration and Fracture Healing in Maxillofacial Reconstruction Applications
by Shahrokh Hatefi, Farouk Smith, Kayla Auld and Stefan Van Aardt
Metrology 2025, 5(2), 32; https://doi.org/10.3390/metrology5020032 - 3 Jun 2025
Viewed by 219
Abstract
In Maxillofacial Reconstruction Applications (MRA), nonunion is one of the critical complications after the reconstruction process and fracture treatment, including bone grafts and vascularized flap. Nonunion describes the failure of a fractured bone to heal and mend after an extended period. Different systems [...] Read more.
In Maxillofacial Reconstruction Applications (MRA), nonunion is one of the critical complications after the reconstruction process and fracture treatment, including bone grafts and vascularized flap. Nonunion describes the failure of a fractured bone to heal and mend after an extended period. Different systems and methods have been developed to monitor bone regeneration and fracture healing during and after the treatment. However, the developed systems have limitations and are yet to be used in MRA. The proposed smart reconstruction plate is a microdevice that could be used in MRA for wireless monitoring of fracture healing by measuring the forces applied to the reconstruction plate. The device is wireless and can transmit the acquired data to a human–machine interface or an application. The designed system is small and suitable for use in MRA. The results of finite element analysis, as well as experimental verification, showed the functionality of the proposed system in measuring small changes on the surface strain of the reconstruction plate and determining the corresponding load. By using the proposed system, continuous monitoring of bone regeneration and fracture healing in oral and maxillofacial areas is possible. Full article
Show Figures

Figure 1

15 pages, 797 KiB  
Article
Incremental Capacity and Voltammetry of Batteries, and Implications for Electrochemical Impedance Spectroscopy
by Christopher Dunn, Jonathan Scott, Marcus Wilson, Michael Mucalo and Michael Cree
Metrology 2025, 5(2), 31; https://doi.org/10.3390/metrology5020031 - 3 Jun 2025
Viewed by 268
Abstract
Incremental capacity analysis (ICA), where incremental charge (Q) movements associated with changes in potential are tracked, and cyclic voltammetry (CV), where current response to a linear voltage sweep is recorded, are used to investigate the properties of electrochemical systems. Electrochemical impedance spectroscopy (EIS), [...] Read more.
Incremental capacity analysis (ICA), where incremental charge (Q) movements associated with changes in potential are tracked, and cyclic voltammetry (CV), where current response to a linear voltage sweep is recorded, are used to investigate the properties of electrochemical systems. Electrochemical impedance spectroscopy (EIS), on the other hand, is a powerful, non-destructive technique that can be used to determine small-signal AC impedance over a wide frequency range. It is frequently used to design battery equivalent-circuit models. This manuscript explores the relationships between ICA, CV and EIS and demonstrates how sweep rate in CV is related to charging (C) rate in ICA. In addition, it shows the connection between observations linked to rate of charge movement in CV and ICA and intermittent, irregular behavior seen in EIS when performed on a battery. It also explains the use of an additional DC stimulus during EIS to ensure reliability of battery impedance data and to facilitate equivalent-circuit modeling, and suggests a method for obtaining data analogous to CV from a whole battery without risking its destruction. Full article
Show Figures

Figure 1

45 pages, 6707 KiB  
Review
Advancing Metal Additive Manufacturing: A Review of Numerical Methods in DED, WAAM, and PBF
by Allen Love, Omar Alejandro Valdez Pastrana, Saeed Behseresht and Young Ho Park
Metrology 2025, 5(2), 30; https://doi.org/10.3390/metrology5020030 - 20 May 2025
Viewed by 851
Abstract
Metal additive manufacturing (AM) techniques such Direct Energy Deposition (DED), Powder Bed Fusion (PBF), and Wire Arc Additive Manufacturing (WAAM) enable the production of complex metal components built at rapid rates. Because of the complexity of the process, including high thermal gradients, residual [...] Read more.
Metal additive manufacturing (AM) techniques such Direct Energy Deposition (DED), Powder Bed Fusion (PBF), and Wire Arc Additive Manufacturing (WAAM) enable the production of complex metal components built at rapid rates. Because of the complexity of the process, including high thermal gradients, residual stress, and parameter optimization, these techniques pose significant challenges necessitating the need for advanced computational modeling. A powerful technique to reduce or, in some cases, eliminate these challenges at a much lower cost compared to trial-and-error experiments, is Finite Element Analysis (FEA). This study provides a comprehensive review of the FEA techniques being used and developed to model metal AM processes focusing on the thermal, mechanical, and coupled thermo-mechanical models in DED, PBF, and WAAM. Key topics include heat transfer, residual stress and distortion prediction, microstructure evolution and parameter optimization. Recent advancements in FEA have improved the accuracy of AM process simulations, reducing the need for costly experimental testing, though there is still room for improvement and further development of FEA in metal AM. This review serves as a foundation for future work in the metal AM modeling field, enabling the development of optimized process parameters, defect reduction strategies and improved computational methodologies for high-fidelity simulations. Full article
Show Figures

Figure 1

14 pages, 1576 KiB  
Article
Calibration of Inductance Using a PXI-Based Maxwell–Wien Bridge from 20 Hz to 20 kHz
by Mohamed Ouameur and Emmanuel Patois
Metrology 2025, 5(2), 29; https://doi.org/10.3390/metrology5020029 - 16 May 2025
Viewed by 190
Abstract
This paper presents a Maxwell–Wien bridge for use in the calibration of standard inductances with values between 100 µH and 10 H and frequencies from 20 Hz to 20 kHz. The inductances are measured by comparison with a variable standard capacitor, in parallel [...] Read more.
This paper presents a Maxwell–Wien bridge for use in the calibration of standard inductances with values between 100 µH and 10 H and frequencies from 20 Hz to 20 kHz. The inductances are measured by comparison with a variable standard capacitor, in parallel association with a variable standard resistor, on the bridge modified by a Wagner balance. The variable standards are calibrated after the bridge balance. The other resistors in the bridge are standard resistors, pre-calibrated in AC using an automatic Wheatstone bridge and in DC after the bridge has been balanced using a comparison bridge with standard resistors traceable to the quantum Hall effect standards. PXI modules are used to supply the bridge with two voltages controllable in amplitude and phase. Design details and the uncertainty budget are discussed. For an inductance of 100 mH characterized by an internal resistance of 83 Ω, the expanded uncertainties are less than 6 µH on the inductance and 20 mΩ on the internal resistance. For inductances from 100 µH to 10 H, the relative uncertainties are less than 0.02% of the inductance and 0.2% of the internal resistance from 20 Hz to 20 kHz. Full article
Show Figures

Figure 1

28 pages, 5695 KiB  
Article
Comparison of Magnetic Field Maps by Direct Measurement and Reconstruction Using Boundary Element Methods
by Alexander Hinton, Alexander Bainbridge and Olli Tarvainen
Metrology 2025, 5(2), 28; https://doi.org/10.3390/metrology5020028 - 13 May 2025
Viewed by 429
Abstract
Boundary Element Methods (BEMs) can be applied to determine the value of the magnetic field at any point within a domain if the magnetic field components are measured on the surface of the domain. For large magnetic volumes, BEMs provide an attractive alternative [...] Read more.
Boundary Element Methods (BEMs) can be applied to determine the value of the magnetic field at any point within a domain if the magnetic field components are measured on the surface of the domain. For large magnetic volumes, BEMs provide an attractive alternative to fine three-dimensional Hall probe scans for determining the local shape of the field as the fields can be evaluated inside the volume with an arbitrary position and with a reduced measurement time. BEMs have been applied to the field data measured on the boundary of three-dimensional Hall probe scans for two example magnets, which have been measured at STFC Daresbury Laboratory, UK. The fields reconstructed using BEMs are compared to the fields directly measured during the Hall probe scans. The reconstructed fields can be calculated to within 1 mT rms of the directly measured fields. For the transverse field components greater than 1 mT, the fields can be reconstructed to within 5% rms of the directly measured fields. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Figure 1

8 pages, 190 KiB  
Communication
The Silent Benefactor: Why Explaining the Importance of Metrology Involves Addressing the Counterfactual
by Richard J. C. Brown and Paul J. Brewer
Metrology 2025, 5(2), 27; https://doi.org/10.3390/metrology5020027 - 8 May 2025
Viewed by 462
Abstract
Metrology, the science of measurement, is an essential underpinning technology—an infratechnology. The correct functioning of the international measurement system that metrology supports is a prerequisite for the development of technology and wider progress in science. Metrology and the measurement system are at risk [...] Read more.
Metrology, the science of measurement, is an essential underpinning technology—an infratechnology. The correct functioning of the international measurement system that metrology supports is a prerequisite for the development of technology and wider progress in science. Metrology and the measurement system are at risk of being underappreciated. They potentially face a ‘no-win’ environment: their consistent success, a testament to their effectiveness, ironically leads to invisibility. The public and media tend only to pay attention when things go wrong, resulting in negative headlines. Furthermore, metrology’s emphasis on gradual, incremental improvements, crucial for maintaining long-term stability and safety, is incompatible with the short-term focus of the media. This leaves metrology perpetually struggling to gain recognition for its vital contributions and can lead to a danger that metrology will not receive the recognition or resources that it needs to continue delivering benefits. A different way of explaining the indispensability of metrology is therefore needed. This work takes a novel approach to explaining the benefits of metrology by considering the counterfactual argument—examining the consequences if the international measurement system was to fail. It concludes that a balanced argument demonstrating what benefits metrology provides, challenged with the counterfactual of what would happen if it did not, is likely to be the most effective mechanism to ensure the work of metrology and the indispensability of the international measurement system are properly appreciated. Full article
17 pages, 4964 KiB  
Article
Spatial Patterns in Fibrous Materials: A Metrological Framework for Pores and Junctions
by Efi-Maria Papia, Vassilios Constantoudis, Youmin Hou, Prexa Shah, Michael Kappl and Evangelos Gogolides
Metrology 2025, 5(2), 26; https://doi.org/10.3390/metrology5020026 - 7 May 2025
Viewed by 318
Abstract
Several materials widely used in scientific research and industrial applications, including nano-filters and neuromorphic circuits, consist of fiber structures. Despite the fundamental structural similarity, the key feature that should be considered depends on the specific application. In the case of membranes and filters, [...] Read more.
Several materials widely used in scientific research and industrial applications, including nano-filters and neuromorphic circuits, consist of fiber structures. Despite the fundamental structural similarity, the key feature that should be considered depends on the specific application. In the case of membranes and filters, the main concern has been on the pores among fibers, whereas in neuromorphic networks the main functionality is performed through the junctions of nanowires simulating neuron synapses for information dissemination. Precise metrological characterization of these structural features, along with methods for their effective control and replication, is essential for optimizing performance across various applications. This paper presents a comprehensive metrological framework for characterizing the spatial point patterns formed by pores or junctions within fibrous materials. The aim is to probe the influence of fiber randomness on both the point patterns of intersections (ppi) and pores (ppp). Our findings indicate a strong tendency of ppi toward aggregation, contrasting with a tendency of ppp toward periodicity and consequent pore uniformity. Both patterns are characterized by peculiarities related to collinearity effects on neighboring points that cannot be captured by the conventional anisotropy analysis of point patterns. To characterize local collinearity, we develop a method that counts the number of collinear triplets of nearest neighbor points in a pattern and designs an appropriate parameter to quantify them, also applied to scanning electron microscopy (SEM) images of membranes, demonstrating consistency with simulated data. Full article
Show Figures

Figure 1

25 pages, 466 KiB  
Article
Modelling Metrological Traceability
by Blair D. Hall
Metrology 2025, 5(2), 25; https://doi.org/10.3390/metrology5020025 - 1 May 2025
Viewed by 302
Abstract
Metrological traceability is essential for ensuring the accuracy of measurement results and enabling a comparison of results to support decision-making in society. This paper explores a structured approach to modelling traceability chains, focusing on the role of residual measurement errors and their impact [...] Read more.
Metrological traceability is essential for ensuring the accuracy of measurement results and enabling a comparison of results to support decision-making in society. This paper explores a structured approach to modelling traceability chains, focusing on the role of residual measurement errors and their impact on measurement accuracy. This work emphasises a scientific description of these errors as physical quantities. By adopting a simple modelling framework grounded in physical principles, the paper offers a formal way to account for the effects of errors through an entire traceability chain, from primary reference standards to end users. Real-world examples from microwave and optical metrology highlight the effectiveness of this rigorous modelling approach. Additionally, to further advance digital systems development in metrology, the paper advocates a formal semantic structure for modelling, based on principles of Model-Driven Architecture. This architectural approach will enhance the clarity of metrological practices and support ongoing efforts toward the digital transformation of international metrology infrastructure. Full article
(This article belongs to the Special Issue Metrological Traceability)
Show Figures

Figure 1

11 pages, 4414 KiB  
Review
High-Speed 3D Vision Based on Structured Light Methods
by Leo Miyashita, Satoshi Tabata and Masatoshi Ishikawa
Metrology 2025, 5(2), 24; https://doi.org/10.3390/metrology5020024 - 15 Apr 2025
Viewed by 665
Abstract
Three-dimensional measurement technologies based on computer vision have been developed with the aim of achieving perceptual speeds equivalent to humans (30 fps). However, in a highly mechanized society, there is no need for computers and robots to work slowly to match the speed [...] Read more.
Three-dimensional measurement technologies based on computer vision have been developed with the aim of achieving perceptual speeds equivalent to humans (30 fps). However, in a highly mechanized society, there is no need for computers and robots to work slowly to match the speed of human perception. From this kind of circumstance, high-speed 3D vision with speeds far beyond that of humans, such as 1000 fps, has emerged. High-speed 3D measurement has great applicability not only for accurately recognizing a moving and deforming target but also for enabling real-time feedback, such as manipulation of the dynamic targets based on the measurement. In order to accelerate 3D vision and control the dynamic targets in real time, high-speed vision devices and high-speed image processing algorithms are essential. In this review, we revisit the basic strategy, triangulation as a suitable measurement principle for high-speed 3D vision, and introduce state-of-the-art 3D measurement methods based on high-speed vision devices and high-speed image processing utilizing structured light patterns. In addition, we introduce recent applications using high-speed 3D measurement and show that high-speed 3D measurement is one of the key technologies for real-time feedback in various fields such as robotics, mobility, security, interface, and XR. Full article
Show Figures

Figure 1

23 pages, 2728 KiB  
Article
A Phantom-Based Study of the X-Ray Fluorescence Detectability of Iron, Copper, Zinc, and Selenium in the Human Blood of Superficial and Cutaneous Vasculature
by Mihai Raul Gherase and Vega Mahajan
Metrology 2025, 5(2), 23; https://doi.org/10.3390/metrology5020023 - 15 Apr 2025
Viewed by 587
Abstract
Blood concentrations of essential trace elements can be used to diagnose conditions and diseases associated with excess or deficiency of these elements. Inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and graphite furnace atomic absorption spectrometry (GF-AAS) have [...] Read more.
Blood concentrations of essential trace elements can be used to diagnose conditions and diseases associated with excess or deficiency of these elements. Inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and graphite furnace atomic absorption spectrometry (GF-AAS) have been employed for such measurements, but maintenance and operation costs are high. X-ray fluorescence (XRF) detectability in cutaneous blood of iron (Fe), copper (Cu), zinc (Zn), and selenium (Se) was assessed as an alternative to ICP-MS. Three phantoms were made up of two polyoxymethylene (POM) plastic cylindrical cups of 0.6 mm and 1.0 mm thick walls and a 5.3 mm diameter POM cylindrical insert. Six aqueous solutions of Fe in 0 to 500 mg/L and Cu, Zn, and Se in 0 to 50 mg/L concentrations were poured into the phantoms to simulate X-ray attenuation of skin. Measurements using an integrated X-ray tube and polycapillary X-ray lens unit generated 24 calibration lines. Detection limit intervals in mg/L were (36–100), (14–40), (3.7–10), and (2.1–3.4) for Fe, Cu, Zn, and Se, respectively. Fe was the only element with detection limits lower than its 480 mg/L median human blood concentration. The estimated radiation dose and equivalent dose to skin were below those of common radiological procedures. Applications will require further instrumental development and finding a calibration method. Full article
Show Figures

Figure 1

14 pages, 3331 KiB  
Article
Portable Magnetic Field Mapping Measurement System Based on Large-Scale Dipole Magnets in HIAF
by Xiang Zhang, Zidi Wu, Li’an Jin, Jing Yang, Xianjin Ou, Dongsheng Ni, Yue Cheng, Lixia Zhao, Yujin Tong, Weigang Dong, Beimin Wu, Guohong Li and Qinggao Yao
Metrology 2025, 5(2), 22; https://doi.org/10.3390/metrology5020022 - 14 Apr 2025
Viewed by 369
Abstract
The High-Intensity Heavy-Ion Accelerator Facility (HIAF) is a significant national science and technology infrastructure project, constructed by the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). It is designed to provide intense proton, heavy ion beams, and target-produced radioactive ion beams [...] Read more.
The High-Intensity Heavy-Ion Accelerator Facility (HIAF) is a significant national science and technology infrastructure project, constructed by the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). It is designed to provide intense proton, heavy ion beams, and target-produced radioactive ion beams for nuclear physics and related research. Large-aperture, high-precision, room-temperature, and superconducting dipole magnets are extensively used to achieve high-intensity beams. However, for large-scale magnets (particularly superconducting magnets), the traditional Hall probe mapping measurement platform encounters several limitations: a long preparation time, high cost, low testing efficiency, and positional inaccuracies caused by repeated magnet disassembly. This paper presents a new magnetic field mapping measurement system incorporating ultrasonic motors operable in strong magnetic fields (≥7 T), enabling portable, highly efficient, and high-precision magnetic field measurements. After system integration and commissioning, the prototype dipole magnet for the high-precision spectrometer ring (SRing) was measured. The measurement system demonstrated superior accuracy and efficiency compared with traditional Hall probe mapping systems. On this basis, the magnetic field distribution and integral excitation curve of all 11 warm-iron superconducting dipole magnets and 3 anti-irradiation dipole magnets in the HIAF fragment separator (HFRS) were measured. Each magnet took less than 1 day to measure, and all magnetic field measurement results met the physical specifications. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Figure 1

19 pages, 828 KiB  
Article
Gallium Nitride High-Electron-Mobility Transistor-Based High-Energy Particle-Detection Preamplifier
by Gilad Orr, Moshe Azoulay, Gady Golan and Arnold Burger
Metrology 2025, 5(2), 21; https://doi.org/10.3390/metrology5020021 - 3 Apr 2025
Viewed by 352
Abstract
GaN High-Electron-Mobility Transistors have gained some foothold in the power-electronics industry. This is due to wide frequency bandwidth and power handling. Gallium Nitride offers a wide bandgap and higher critical field strength compared to most wide-bandgap semiconductors, resulting in better radiation resistance. Theoretically, [...] Read more.
GaN High-Electron-Mobility Transistors have gained some foothold in the power-electronics industry. This is due to wide frequency bandwidth and power handling. Gallium Nitride offers a wide bandgap and higher critical field strength compared to most wide-bandgap semiconductors, resulting in better radiation resistance. Theoretically, it supports higher speeds as the device dimensions could be reduced without suffering voltage breakdown. The simulation and experimental results illustrate the superior performance of the Gallium Nitride High-Electron-Mobility Transistors in an amplifying circuit. Using a spice model for commercially available Gallium Nitride High-Electron-Mobility Transistors, non-distorted output to an input signal of 200 ps was displayed. Real-world measurements underscore the fast response of the Gallium Nitride High-Electron-Mobility Transistors with its measured slew rate at approximately 3000 V/μs, a result only 17% lower than the result obtained from the simulation. This fast response, coupled with the amplifier radiation resistance, shows promise for designing improved detection and imaging circuits with long Mean Time Between Failure required, for example, by next-generation industrial-process gamma transmission-computed tomography. Full article
Show Figures

Figure 1

39 pages, 49962 KiB  
Review
Learning-Based 3D Reconstruction Methods for Non-Collaborative Surfaces—A Metrological Evaluation
by Ziyang Yan, Nazanin Padkan, Paweł Trybała, Elisa Mariarosaria Farella and Fabio Remondino
Metrology 2025, 5(2), 20; https://doi.org/10.3390/metrology5020020 - 3 Apr 2025
Viewed by 1111
Abstract
Non-collaborative (i.e., reflective, transparent, metallic, etc.) surfaces are common in industrial production processes, where 3D reconstruction methods are applied for quantitative quality control inspections. Although the use or combination of photogrammetry and photometric stereo performs well for well-textured or partially textured objects, it [...] Read more.
Non-collaborative (i.e., reflective, transparent, metallic, etc.) surfaces are common in industrial production processes, where 3D reconstruction methods are applied for quantitative quality control inspections. Although the use or combination of photogrammetry and photometric stereo performs well for well-textured or partially textured objects, it usually produces unsatisfactory 3D reconstruction results on non-collaborative surfaces. To improve 3D inspection performances, this paper investigates emerging learning-based surface reconstruction methods, such as Neural Radiance Fields (NeRF), Multi-View Stereo (MVS), Monocular Depth Estimation (MDE), Gaussian Splatting (GS) and image-to-3D generative AI as potential alternatives for industrial inspections. A comprehensive evaluation dataset with several common industrial objects was used to assess methods and gain deeper insights into the applicability of the examined approaches for inspections in industrial scenarios. In the experimental evaluation, geometric comparisons were carried out between the reference data and learning-based reconstructions. The results indicate that no method can outperform all the others across all evaluations. Full article
Show Figures

Figure 1

12 pages, 364 KiB  
Article
Enhanced Vectorial Measurement Uncertainty Model
by Ingo Ortlepp, Simon Eisele, Kevin Treptow, Josias Rühle, Christof Pruß, Tobias Haist, Stephan Reichelt, Oliver Sawodny, Eberhard Manske and Thomas Kissinger
Metrology 2025, 5(2), 19; https://doi.org/10.3390/metrology5020019 - 3 Apr 2025
Viewed by 292
Abstract
Quantitative determination of the uncertainty of a measurement result is the key to assessing the quality and reliability of a measurement process and its result. The comparability of measurement results is ensured by the method for evaluating and expressing uncertainty defined by the [...] Read more.
Quantitative determination of the uncertainty of a measurement result is the key to assessing the quality and reliability of a measurement process and its result. The comparability of measurement results is ensured by the method for evaluating and expressing uncertainty defined by the Joint Committee for Guides in Metrology, where the model of the measurement process—which expresses the causal relationship of the measurand and the input quantities—is fundamental for the uncertainty evaluation. Setting up this model is very specific to the particular measurement setup and process, as well as the required level of detail. In this contribution, a vectorial method is presented which has been developed to assist users in modelling complex relationships, based on basic physical effects and their combination. Using a hierarchical approach, the method aims to be flexible, extensible and adaptable to a wide range of applications. Full article
(This article belongs to the Collection Measurement Uncertainty)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop