European Partnership in Metrology Project: Photonic and Quantum Sensors for Practical Integrated Primary Thermometry (PhoQuS-T)
Abstract
1. Introduction
2. Methods
- −
- Absolute primary thermometry allows the measurement of thermodynamic temperature directly in terms of the definition of the base unit kelvin, i.e., the defined numerical value of the Boltzmann constant k. No reference is made to any temperature fixed point (n = 0, n = number of points) and all other parameters specified in the equation of state are measured or otherwise determined.
- −
- Relative primary thermometry allows the measurement of thermodynamic temperature indirectly using a specified equation of state, with one or more key parameter values determined from temperature fixed points (n > 0), for which values of the thermodynamic temperature T and their uncertainties are known a priori from previous absolute or relative primary thermometry.
2.1. Photonic Thermometry
2.2. Optomechanical Noise Thermometry
2.3. Quantum Correlation Thermometry
3. Progress Beyond the State-of-the-Art
3.1. Workpackage 1: Development of Optical Noise Thermometry from 4 K to 300 K and Quantum Thermometry Below 10 K
3.1.1. State-of-the-Art for Optomechanical Thermometry
3.1.2. Progress Beyond the State-of-the-Art for Optomechanical Thermometry
3.2. Workpackage 2: Advanced Photonic Thermometry from 80 K to 500 K
3.2.1. State-of-the-Art of On-Chip Photonic Thermometry
3.2.2. Progress Beyond the State-of-the-Art for Photonics Thermometry
3.2.3. Active Photonic Thermometry (State-of-the-Art and Progress Beyond)
3.3. Workpackage 3: Robust Fibre-to-Chip Coupling Packaging Solutions over 4–500 K Temperature Range
3.3.1. State-of-the-Art for Robust Fibre-to-Chip Coupling
3.3.2. Progress Beyond the State-of-the-Art for Robust Fibre-to-Chip Coupling
3.4. Workpackage 4: Metrological Validation and Applications
3.4.1. State-of-the-Art for Metrological Validation
3.4.2. Progress Beyond the State-of-the-Art for Metrological Validation
3.4.3. Quantum Application Demonstrations
4. Discussion: Expected Project Results and Impact
4.1. Expected Project Results
- −
- New device fabrication capabilities for photonic ring resonators, active photonic devices, and optomechanical resonators important for embedded sensor technologies.
- −
- New sensor packaging capabilities via laser welding, glueing, or mechanical supports aiding implementation.
- −
- Special calibration facilities traceable to ITS-90 for photonic and optomechanical sensors from 80 K to 500 K and 4 K to 300 K, respectively, to facilitate implementation.
- −
- Demonstration of the self-calibration of photonic techniques with a quantum reference.
- −
- Demonstration of the application of the developed photonic sensor for quantum applications (ion-trap, pressure standard).
4.2. Expected Project Impacts
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EPM | European Partnership in Metrology |
ITS-90 | International Temperature Scale of 1990 |
JNT | Johnson noise thermometry |
MeP-K-19D | Mise-en-pratique for the definition of the kelvin |
PIC | Photonic Integrated Chips |
SOI | Silicon On Insulator |
References
- Augustin, S.; Bünger, L.; Friederici, S.; Hager, H.; Mammen, H.; Reinshaus, P.; Rudtsch, S.; Tegeler, E.; Trageser, P. Guideline DKD-R 5-1 Calibration of Resistance Thermometers; Physikalisch-Technische Bundesanstalt: Braunschweig and Berlin, Germany, 2023. [Google Scholar] [CrossRef]
- Park, S.-N.; Yang, I. Calibration interval of standard platinum resistance thermometers in a range between 0 °C and 419 °C. J. Phys. Conf. Ser. 2018, 1065, 122016. [Google Scholar] [CrossRef]
- SI Brochure—9th Edition (2019)—Appendix 2 20 May 2019 on the “Mise en Pratique for the Definition of the Kelvin in the SI”. Available online: https://www.bipm.org/documents/20126/41489682/SI-App2-kelvin.pdf/cd36cb68-3f00-05fd-339e-452df0b6215e (accessed on 15 July 2025).
- 23FUN01 PhoQuS-T Project. Available online: https://phoqus-t.com (accessed on 15 July 2025).
- 17FUN05 PhotOQuanT Project. Available online: https://projectsites.vtt.fi/sites/photoquant/index.html (accessed on 15 July 2025).
- Briant, T.; Krenek, S.; Cupertino, A.; Loubar, F.; Braive, R.; Weituschat, L.; Ramos, D.; Martin, M.J.; Postigo, P.A.; Casas, A.; et al. Photonic and Optomechanical Thermometry. Optics 2022, 3, 159–176. [Google Scholar] [CrossRef]
- Dedyulin, S.; Ahmed, Z.; Machin, G. Emerging technologies in the field of thermometry. Meas. Sci. Technol. 2022, 33, 092001. [Google Scholar] [CrossRef]
- Qu, J.; Benz, S.; Rogalla, H.; Tew, W.; White, D.R.; Zhou, K. Johnson noise thermometry. Meas. Sci. Technol. 2019, 30, 112001. [Google Scholar] [CrossRef] [PubMed]
- Gianfrani, L. Linking the thermodynamic temperature to an optical frequency: Recent advances in Doppler broadening thermometry. Phil. Trans. R. Soc. 2016, 374, 20150047. [Google Scholar] [CrossRef] [PubMed]
- Kitching, J.; Donley, E.A.; Knappe, S.; Hummon, M.; Dellis, A.T.; Sherman, J.; Srinivasan, K.; Aksyuk, V.A.; Li, Q.; Westly, D.; et al. NIST on a Chip: Realizing SI units with microfabricated alkali vapour cell. J. Phys. Conf. Ser. 2016, 723, 012056. [Google Scholar] [CrossRef]
- Rosso, L.; Tabandeh, S.; Beltramino, G.; Fernicola, V. Validation of phosphor thermometry 8 for industrial surface temperature measurements. Meas. Sci. Technol. 2020, 31, 034002. [Google Scholar] [CrossRef]
- Kucsko, G.; Maurer, P.C.; Yao, N.Y.; Kubo, M.; Noh, H.J.; Lo, P.K.; Park, H.; Lukin, M.D. Nanometre-scale thermometry in a living cell. Nature 2013, 500, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Filla, J.; Guthrie, W.; Quintavalle, J. Fiber Bragg Grating Based Thermometry. NCSLI Meas. 2015, 10, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Failleau, G.; Beaumont, O.; Razouk, R.; Delepine-Lesoille, S.; Landolt, M.; Courthial, B.; Hénault, J.M.; Martinot, F.; Bertrand, J.; Hay, B. A metrological comparison of Raman-distributed temperature sensors. Measurement 2018, 116, 18–24. [Google Scholar] [CrossRef]
- Klimov, N.; Purdy, T.; Ahmed, Z. Towards replacing resistance thermometry with photonic thermometry. Sens. Actuators A Phys. 2018, 269, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Purdy, T.P.; Yu, P.-L.; Kampel, N.S.; Peterson, R.W.; Cicak, K.; Simmonds, R.W.; Regal, C.A. Optomechanical Raman-ratio thermometry. Phys. Rev. A 2015, 92, 031802. [Google Scholar] [CrossRef]
- Purdy, T.P.; Grutter, K.E.; Srinivasan, K.; Taylor, J.M. Quantum correlations from a room-temperature optomechanical cavity. Science 2017, 356, 1265–1268. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.-X.; Delâge, A.; Verly, P.; Janz, S.; Wang, S.; Vachon, M.; Ma, P.; Lapointe, J.; Melati, D.; Cheben, P.; et al. Empirical model for the temperature dependence of silicon refractive index from O to C bandbased on waveguide measurements. Opt. Express 2019, 27, 27229–27242. [Google Scholar] [CrossRef] [PubMed]
- Dedyulin, S.; Grzetic-Muffo, A.; Janz, S.; Xu, D.-X.; Wang, S.; Vachon, M.; Weber, J. Practical ring-resonator thermometer with an uncertainty of 10 mK. Measurement 2023, 221, 113453. [Google Scholar] [CrossRef]
- Eisermann, R.; Krenek, S.; Winzer, G.; Rudtsch, S. Photonic contact thermometry using silicon ring resonators and tuneable laser-based spectroscopy. Tech. Mess. 2021, 88, 640–654. [Google Scholar] [CrossRef]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391–1452. [Google Scholar] [CrossRef]
- Leinders, S.; Westerveld, W.; Pozo, J.; van Neer, P.; Snyder, B.; O’bRien, P.; Urbach, H.; de Jong, N.; Verweij, M.D. A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane. Sci. Rep. 2015, 5, 14328. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, Y.; Gao, J.; Zhang, C.; Qu, Z.; Xu, T.; Shen, Y.; Qu, J. An On-Chip Silicon Photonics Thermometer with Milli-Kelvin Resolution. Appl. Sci. 2022, 12, 3713. [Google Scholar] [CrossRef]
- Ahmed, Z. Role of quantum technologies in reshaping the future of temperature metrology. Meas. Sens. 2021, 18, 100308. [Google Scholar] [CrossRef]
- Yamsiri, A.; Duffy, D.A.; Machin, G.; Sweeney, S.J. Active Photonic Thermometry using quantum well heterostructures and ring resonators. AIP Conf. Proc. 2024, 3230, 110004. [Google Scholar] [CrossRef]
- Preston-Thomas, H. The International Temperature Scale of 1990 (ITS-90). Metrologia 1990, 27, 3. [Google Scholar] [CrossRef]
- Hausser, H.N.; Keller, J.; Nordmann, T.; Bhatt, N.M.; Kiethe, J.; Liu, H.; Richter, I.M.; von Boehn, M.; Rahm, J.; Weyers, S.; et al. 115In+-172Yb+ Coulomb Crystal Clock with 2.5 × 10−18 Systematic Uncertainty. Phys. Rev. Lett. 2025, 134, 023201. [Google Scholar] [CrossRef] [PubMed]
- Huntemann, N.; Sanner, C.; Lipphardt, B.; Tamm, C.; Peik, E. Single-Ion Atomic Clock with 3 × 10−18 Systematic Uncertainty. Phys. Rev. Lett. 2016, 116, 063001. [Google Scholar] [CrossRef] [PubMed]
- Mehta, K.K.; Zhang, C.; Malinowski, M.; Nguyen, T.-L.; Stadler, M.; Home, J.P. Integrated optical multi-ion quantum logic. Nature 2020, 586, 533. [Google Scholar] [CrossRef]
- Niffenegger, R.J.; Stuart, J.; Sorace-Agaskar, C.; Kharas, D.; Bramhavar, S.; Bruzewicz, C.D.; Loh, W.; Maxson, R.T.; McConnell, R.; Reens, D.; et al. Integrated multi-wavelength control of an ion qubit. Nature 2020, 586, 538. [Google Scholar] [CrossRef] [PubMed]
- Peshkov, A.A.; Jordan, E.; Kromrey, M.; Mehta, K.K.; Mehlstäubler, T.E.; Surzhykov, A. Excitation of Forbidden Electronic Transitions in Atoms by Hermite–Gaussian Modes. Ann. Phys. 2023, 535, 2300204. [Google Scholar] [CrossRef]
- Jousten, K.; Hendricks, J.; Barker, D.; Douglas, K.; Eckel, S.; Egan, P.; Fedchak, J.; Flügge, J.; Gaiser, C.; Olson, D.; et al. Perspectives for a new realization of the pascal by optical methods. Metrologia 2017, 54, S146. [Google Scholar] [CrossRef]
- Qu-PIC Project. Available online: https://www.qu-pic.eu/ (accessed on 15 July 2025).
- 22IEM04 MQB-Pascal Project. Available online: https://www.mqb-pascal.ptb.de/home (accessed on 15 July 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlova, O.; Braive, R.; Briant, T.; Briaudeau, S.; Rodríguez, P.C.; Du, G.; Erdoğan, T.; Eisermann, R.; Ferreux, E.; Imbraguglio, D.; et al. European Partnership in Metrology Project: Photonic and Quantum Sensors for Practical Integrated Primary Thermometry (PhoQuS-T). Metrology 2025, 5, 44. https://doi.org/10.3390/metrology5030044
Kozlova O, Braive R, Briant T, Briaudeau S, Rodríguez PC, Du G, Erdoğan T, Eisermann R, Ferreux E, Imbraguglio D, et al. European Partnership in Metrology Project: Photonic and Quantum Sensors for Practical Integrated Primary Thermometry (PhoQuS-T). Metrology. 2025; 5(3):44. https://doi.org/10.3390/metrology5030044
Chicago/Turabian StyleKozlova, Olga, Rémy Braive, Tristan Briant, Stéphan Briaudeau, Paulina Castro Rodríguez, Guochun Du, Tufan Erdoğan, René Eisermann, Emile Ferreux, Dario Imbraguglio, and et al. 2025. "European Partnership in Metrology Project: Photonic and Quantum Sensors for Practical Integrated Primary Thermometry (PhoQuS-T)" Metrology 5, no. 3: 44. https://doi.org/10.3390/metrology5030044
APA StyleKozlova, O., Braive, R., Briant, T., Briaudeau, S., Rodríguez, P. C., Du, G., Erdoğan, T., Eisermann, R., Ferreux, E., Imbraguglio, D., Jordan, J. E., Krenek, S., Machin, G., Marko, I. P., Martel, T., Martin, M. J., Norte, R. A., Pitre, L., Pourjamal, S., ... Zimmermann, L. (2025). European Partnership in Metrology Project: Photonic and Quantum Sensors for Practical Integrated Primary Thermometry (PhoQuS-T). Metrology, 5(3), 44. https://doi.org/10.3390/metrology5030044