Next Issue
Volume 4, June
Previous Issue
Volume 3, December
 
 

Metrology, Volume 4, Issue 1 (March 2024) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
10 pages, 3397 KiB  
Article
Error Analysis of an Economical On-Site Calibration System for Linear Optical Encoders
by Yatao Huang, Zihan Su, Di Chang, Yunke Sun and Jiubin Tan
Metrology 2024, 4(1), 131-140; https://doi.org/10.3390/metrology4010009 - 13 Mar 2024
Viewed by 442
Abstract
A calibration system was designed to evaluate the accuracy of linear optical encoders at the micron level in a fast and economical manner. The system uses a commercial interferometer and motor stage as the calibrator and moving platform. Error analysis is necessary to [...] Read more.
A calibration system was designed to evaluate the accuracy of linear optical encoders at the micron level in a fast and economical manner. The system uses a commercial interferometer and motor stage as the calibrator and moving platform. Error analysis is necessary to prove the effectiveness and identify areas for optimization. A fixture was designed for the scale and interferometer target to meet the Abbe principle. A five-degree-of-freedom manual stage was utilized to adjust the reading head in optimal or suboptimal working conditions, such as working distance, offset, and angular misalignment. The results indicate that the calibration system has an accuracy of ±2.2 μm. The geometric errors of the calibration system, including mounting errors and non-ideal motions, are analyzed in detail. The system could be an inexpensive solution for encoder manufacturers and customers to calibrate a linear optical encoder or test its performance. Full article
(This article belongs to the Special Issue Advances in Laser Interferometry for Precision Engineering)
Show Figures

Figure 1

14 pages, 4742 KiB  
Article
Study of the Errors in Interpolated Fast Fourier Transform for Interferometric Applications
by Federico Cavedo, Parisa Esmaili and Michele Norgia
Metrology 2024, 4(1), 117-130; https://doi.org/10.3390/metrology4010008 - 08 Mar 2024
Viewed by 489
Abstract
Frequency estimation is often the basis of various measurement techniques, among which optical distance measurement stands out. One of the most used techniques is interpolated fast Fourier transform due to its simplicity, combined with good performance. In this work, we study the limits [...] Read more.
Frequency estimation is often the basis of various measurement techniques, among which optical distance measurement stands out. One of the most used techniques is interpolated fast Fourier transform due to its simplicity, combined with good performance. In this work, we study the limits of this technique in the case of real signals, with reference to a particular interferometric technique known as self-mixing interferometry. The aim of this research is the better understanding of frequency estimation performances in real applications, together with guidance on how to improve them in specific optical measurement techniques. An optical rangefinder, based on self-mixing interferometry, has been realized and characterized. The simulation results allow us to explain the limits of the interpolated fast Fourier transform applied to the realized instrument. Finally, a method for overcoming them is proposed by decorrelating the errors between the measurements, which can provide a guideline for the design of frequency-modulated interferometric distance meters. Full article
(This article belongs to the Special Issue Advances in Laser Interferometry for Precision Engineering)
Show Figures

Figure 1

19 pages, 6999 KiB  
Article
A 10 V Transfer Standard Based on Low-Noise Solid-State Zener Voltage Reference ADR1000
by André Bülau, Daniela Walter and André Zimmermann
Metrology 2024, 4(1), 98-116; https://doi.org/10.3390/metrology4010007 - 05 Mar 2024
Viewed by 809
Abstract
Voltage standards are widely used to transfer volts from Josephson voltage standards (JVSs) at national metrology institutes (NMIs) into calibration labs to maintain the volts and to transfer them to test equipment at production lines. Therefore, commercial voltage standards based on Zener diodes [...] Read more.
Voltage standards are widely used to transfer volts from Josephson voltage standards (JVSs) at national metrology institutes (NMIs) into calibration labs to maintain the volts and to transfer them to test equipment at production lines. Therefore, commercial voltage standards based on Zener diodes are used. Analog Devices Inc. (San Jose, CA, USA), namely, Eric Modica, introduced the ADR1000KHZ, a successor to the legendary LTZ1000, at the Metrology Meeting 2021. The first production samples were already available prior to this event. In this article, this new temperature-stabilized Zener diode is compared to several others as per datasheet specifications. Motivated by the superior parameters, a 10 V transfer standard prototype for laboratory use with commercial off-the-shelf components such as resistor networks and chopper amplifiers was built. How much effort it takes to reach the given parameters was investigated. This paper describes how the reference was set up to operate it at its zero-temperature coefficient (z.t.c.) temperature and to lower the requirements for the oven stability. Furthermore, it is shown how the overall temperature coefficient (t.c.) of the circuit was reduced. For the buffered Zener voltage, a t.c. of almost zero, and with amplification to 10 V, a t.c. of <0.01 µV/V/K was achieved in a temperature span of 15 to 31 °C. For the buffered Zener voltage, a noise of ~584 nVp-p and for the 10 V output, ~805 nVp-p were obtained. Finally, 850 days of drift data were taken by comparing the transfer standard prototype to two Fluke 7000 voltage standards according to the method described in NBS Technical Note 430. The drift specification was, however, not met. Full article
Show Figures

Figure 1

16 pages, 10314 KiB  
Article
Foam Pressure Mapping with Optimized Electrodes
by Jake Sundet, Jake Merrell, Maxwell Tree, Trevor Christensen and Stephen Schultz
Metrology 2024, 4(1), 82-97; https://doi.org/10.3390/metrology4010006 - 07 Feb 2024
Viewed by 618
Abstract
Nano-composite piezo-responsive foam (NCPF) is an inexpensive foam that can be used to measure a static load while still providing a comfortable interface. The purpose of this study was to create a modularized foam-based pressure measurement system. A measurement system was developed that [...] Read more.
Nano-composite piezo-responsive foam (NCPF) is an inexpensive foam that can be used to measure a static load while still providing a comfortable interface. The purpose of this study was to create a modularized foam-based pressure measurement system. A measurement system was developed that uses an interdigitated electrode applied to the NCPF. Applied pressure changes the impedance of the NCPF, which, in turn, is converted into a voltage using a voltage divider. A modular measurement system is described that uses an ATtiny 1627 microcontroller to measure the pressure at nine electrodes. The nine electrode modules are controlled by an ESP32 microcontroller that aggregates the data and wirelessly transmits the data to a tablet. The modular system was demonstrated with 1008 individual electrodes. The characterization of the electrode combined with the NCPF is presented, along with optimization of the electrode geometry. Full article
Show Figures

Figure 1

16 pages, 5548 KiB  
Article
Deep Learning for Concrete Crack Detection and Measurement
by Mthabisi Adriano Nyathi, Jiping Bai and Ian David Wilson
Metrology 2024, 4(1), 66-81; https://doi.org/10.3390/metrology4010005 - 05 Feb 2024
Viewed by 720
Abstract
Concrete structures inevitably experience cracking, which is a common form of damage. If cracks are left undetected and allowed to worsen, catastrophic failures, with costly implications for human life and the economy, can occur. Traditional image processing techniques for crack detection and measurement [...] Read more.
Concrete structures inevitably experience cracking, which is a common form of damage. If cracks are left undetected and allowed to worsen, catastrophic failures, with costly implications for human life and the economy, can occur. Traditional image processing techniques for crack detection and measurement have several limitations, which include complex parameter selection and restriction to measuring cracks in pixels, rather than more practical units of millimetres. This paper presents a three-stage approach that utilises deep learning and image processing for crack classification, segmentation and measurement. In the first two stages, custom CNN and U-Net models were employed for crack classification and segmentation. The final stage involved measuring crack width in millimetres by using a novel laser calibration method. The classification and segmentation models achieved 99.22% and 96.54% accuracy, respectively, while the mean absolute error observed for crack width measurement was 0.16 mm. The results demonstrate the adequacy of the developed crack detection and measurement method, and shows the developed deep learning and laser calibration method promotes safer, quicker inspections that are less prone to human error. The method’s ability to measure cracks in millimetres provides a more insightful assessment of structural damage, which is, in comparison to traditional pixel-based measurement methods, a significant improvement for practical field applications. Full article
(This article belongs to the Special Issue Novel Dynamic Measurement Methods and Systems)
Show Figures

Figure 1

20 pages, 7564 KiB  
Article
Experimental Investigation on the Transfer Behavior and Environmental Influences of Low-Noise Integrated Electronic Piezoelectric Acceleration Sensors
by Jan-Hauke Bartels, Ronghua Xu, Chongjie Kang, Ralf Herrmann and Steffen Marx
Metrology 2024, 4(1), 46-65; https://doi.org/10.3390/metrology4010004 - 01 Feb 2024
Viewed by 683
Abstract
Acceleration sensors are vital for assessing engineering structures by measuring properties like natural frequencies. In practice, engineering structures often have low natural frequencies and face harsh environmental conditions. Understanding sensor behavior on such structures is crucial for reliable measurements. The research focus is [...] Read more.
Acceleration sensors are vital for assessing engineering structures by measuring properties like natural frequencies. In practice, engineering structures often have low natural frequencies and face harsh environmental conditions. Understanding sensor behavior on such structures is crucial for reliable measurements. The research focus is on understanding the behavior of acceleration sensors in harsh environmental conditions within the low-frequency acceleration range. The main question is how to distinguish sensor behavior from structural influences to minimize errors in assessing engineering structure conditions. To investigate this, the sensors are tested using a long-stroke calibration unit under varying temperature and humidity conditions. Additionally, a mini-monitoring system configured with four IEPE sensors is applied to a small-scale support structure within a climate chamber. For the evaluation, a signal-energy approach is employed to distinguish sensor behavior from structural behavior. The findings show that IEPE sensors display temperature-dependent nonlinear transmission behavior within the low-frequency acceleration range, with humidity having negligible impact. To ensure accurate engineering structure assessment, it is crucial to separate sensor behavior from structural influences using signal energy in the time domain. This study underscores the need to compensate for systematic effects, preventing the underestimation of vibration energy at low temperatures and overestimation at higher temperatures when using IEPE sensors for engineering structure monitoring. Full article
Show Figures

Figure 1

22 pages, 726 KiB  
Article
Conservation Voltage Reduction Impact Investigation for Personal Computing Devices Using Experimental Measurements and Computation Performance Metrics
by Muhammad Ayaz, Syed Muhammad Hur Rizvi and Muhammad Akbar
Metrology 2024, 4(1), 24-45; https://doi.org/10.3390/metrology4010003 - 16 Jan 2024
Viewed by 584
Abstract
Conservation Voltage Reduction (CVR) is a potential energy management approach for increasing computer system energy efficiency. This study uniquely contributes to the field by thoroughly investigating the impact of CVR on computing devices, filling a significant gap in the existing literature. The research [...] Read more.
Conservation Voltage Reduction (CVR) is a potential energy management approach for increasing computer system energy efficiency. This study uniquely contributes to the field by thoroughly investigating the impact of CVR on computing devices, filling a significant gap in the existing literature. The research employs a novel experimental approach, considering the temporal variations in energy use behavior, and presents a comprehensive benchmark analysis of desktop PCs and laptops. Notable gains in processing efficiency are observed, with specific instances such as Desktop 1’s 1.53% Single-Core performance improvement and Desktop 3’s 3.19% total performance boost. Despite variations, the thermal performance of CVR-equipped devices, particularly Desktop 3 and Laptop 3, consistently demonstrates lower temperatures, indicating thermal management enhanced by 3.19% and 1.35%, respectively. Additionally, the study introduces the CVR Performance Enhancement Ratio (%), providing a unique metric for evaluating the trade-offs between energy efficiency and system performance. This research highlights the dual impact of CVR on thermal and computational elements, emphasizing its broad advantages. Integrating CVR emerges as a viable strategy for developing more durable, efficient, and sustainable computing devices, setting the stage for advancements in voltage regulation. Full article
Show Figures

Figure 1

9 pages, 1321 KiB  
Communication
Design of Experiments for Evaluating the Relevance of Change in Test Method for Kinematic Viscosity of Opaque Oils
by Mauro Alves Correa de Camargo, Gabriela Knippelberg Bifano Manea and Elcio Cruz de Oliveira
Metrology 2024, 4(1), 15-23; https://doi.org/10.3390/metrology4010002 - 05 Jan 2024
Viewed by 660
Abstract
Viscosity is a physicochemical property that evaluates the resistance that fuel offers to flow, influencing the engine’s operation and combustion process. Its control is aimed at good fuel atomization and the preservation of lubricating characteristics. Changes in viscosity can lead to wear on [...] Read more.
Viscosity is a physicochemical property that evaluates the resistance that fuel offers to flow, influencing the engine’s operation and combustion process. Its control is aimed at good fuel atomization and the preservation of lubricating characteristics. Changes in viscosity can lead to wear on various parts of the engine. Viscometers typically measure the viscosity of fuels in the oil and gas industry. These instruments can measure the time it takes for a fluid to move a given distance through a pipe or the time it takes for an object of a given size and density to pass through the liquid. The traditional test method, ASTM D445, differentiates the procedure for opaque liquids from transparent ones; that is, it requires a warm-up of the sample between 60 °C and 65 °C for 1 h. This additional step can overload laboratory routines, although it is not guaranteed to have a metrologically significant effect on the final result. Thus, this study evaluated the relevance of complying with this step in the test method for the kinematic viscosity of opaque liquids using a 32 factorial experimental design. Based on the F test, p-value, confidence intervals, and percentage contribution of the sum of squares approaches concerning the regression analysis, one concluded that the warm-up time was not a relevant factor in the kinematic viscosity, specifically of very low sulphur fuel oil, Brazilian fuel oil, and atmospheric residue diluted with diesel oil, which are fluids at room temperature. Full article
Show Figures

Graphical abstract

14 pages, 2956 KiB  
Article
Digital Impedance Bridge for Four-Terminal-Pair AC Resistor Calibration up to 20 kHz
by Mohamed Ouameur, Renata Vasconcellos and Mohamed Agazar
Metrology 2024, 4(1), 1-14; https://doi.org/10.3390/metrology4010001 - 04 Jan 2024
Viewed by 619
Abstract
For this study, a substitution principle-based impedance bridge has been developed to calibrate AC resistors in a four-terminal-pair (4TP) configuration. The calibration is performed in the full complex plane for resistances ranging from 100 mΩ to 400 Ω and frequencies of between 50 [...] Read more.
For this study, a substitution principle-based impedance bridge has been developed to calibrate AC resistors in a four-terminal-pair (4TP) configuration. The calibration is performed in the full complex plane for resistances ranging from 100 mΩ to 400 Ω and frequencies of between 50 Hz and 20 kHz. The automated bridge is based on four resistors associated with two high-impedance stages. The balancing of the bridge is achieved by means of PXI modules. The bridge is automatically balanced via a simplex top-down algorithm. The new bridge is primarily used for the measurement chain of AC standard resistors defined in a 4TP configuration at LNE, which are used for routine customer calibrations. The traceability of LNE’s standard resistors when defined in a 4TP configuration is ensured by a measurement chain from a 1 kΩ reference resistor using the new bridge. The reference resistor was calibrated previously via comparison with a calculable resistor up to 20 kHz. The bridge was validated via comparison with calibration results obtained in 1983 and 2009. For a resistor of 1 Ω at 1 kHz, the uncertainty of the series resistance variation and the phase shift are less than 6 µΩ/Ω (k = 1) and 6 µrad (k = 1), respectively. Full article
(This article belongs to the Special Issue Power and Electronic Measurement Systems)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop