Error Analysis of an Economical On-Site Calibration System for Linear Optical Encoders
Abstract
:1. Introduction
2. Design of the Calibration System
2.1. Abbe Configuration of the Calibration System
2.2. Design of an Economical On-Site Calibration System
2.3. Uncertainty Budget of the Calibration System
2.4. Experiment Results of the Calibration System
3. Error Analysis
3.1. Mounting Misalignments
3.2. Non-Ideal Motions
4. Discussion
- An economical interferometer is to be designed to replace the commercial one. The accuracy of the incoming interferometer is determined by error budgeting based on the error analysis.
- The moveable stage is only used for open-loop motion. The system will be further upgraded to a close-loop configuration by using the displacement data from the incoming interferometer. A stage with a linear motor is also in the upgrading plan.
- The performance of the calibration system could be further improved by error compensation algorithms without changing the hardware devices. The artificial neural network method is planned to be used for error recognition.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chena, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement technologies for precision positioning. CIRP Ann. Manuf. Technol. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Yu, H.Y.; Chen, X.L.; Liu, C.J.; Cai, G.G.; Wang, W.D. A survey on the grating based optical position encoder. Opt. Laser Technol. 2021, 143, 107352. [Google Scholar] [CrossRef]
- Oiwa, T.; Katsuki, M.; Karita, M.; Gao, W.; Makinouchi, S.; Sato, K.; Oohashi, Y. Questionnaire survey on ultra-precision positioning. Int. J. Autom. Technol. 2011, 5, 766–772. [Google Scholar] [CrossRef]
- Hsieh, T.-H.; Watanabe, T.; Hsu, P.-E. Calibration of Rotary Encoders Using a Shift-Angle Method. Appl. Sci. 2022, 12, 5008. [Google Scholar] [CrossRef]
- Geckeler, R.D.; Fricke, A.; Elster, C. Calibration of angle encoders using transfer functions. Meas. Sci. Technol. 2006, 17, 2811–2818. [Google Scholar] [CrossRef]
- Lu, X.D.; Graetz, R.; Amin-Shahidi, D.; Smeds, K. On-axis self-calibration of angle encoders. CIRP Ann. Manuf. Technol. 2010, 59, 529–534. [Google Scholar] [CrossRef]
- Kinnane, M.N.; Hudson, L.T.; Henins, A.; Mendenhall, M.H. A simple method for high-precision calibration of long-range errors in an angle encoder using an electronic nulling autocollimator. Metrologia 2015, 52, 244–250. [Google Scholar] [CrossRef]
- Deng, F.; Chen, J.; Wang, Y.Y.; Gong, K. Measurement and calibration method for an optical encoder based on adaptive differential evolution-Fourier neural networks. Meas. Sci. Technol. 2013, 24, 055007. [Google Scholar] [CrossRef]
- Ban, J.X.; Chen, G.; Wang, L.; Meng, Y. A calibration method for rotary optical encoder temperature error in a rotational inertial navigation system. Meas. Sci. Technol. 2022, 33, 065203. [Google Scholar] [CrossRef]
- Filatov, Y.V.; Agapov, M.Y.; Bournachev, M.N.; Loukianov, D.P.; Pavlov, P.A. Laser goniometer systems for dynamic calibration of optical encoders. In Proceedings of the Optical Measurement Systems for Industrial Inspection III, Munich, Germany, 23–26 June 2003; pp. 381–391. [Google Scholar]
- Kajima, M.; Minoshima, K. Calibration of linear encoders with sub-nanometer uncertainty using an optical-zooming laser interferometer. Precis. Eng. 2014, 38, 769–774. [Google Scholar] [CrossRef]
- Kajima, M.; Minoshima, K. A precision length calibrator based on the optical zooming positioning stage. Opt. Commun. 2013, 292, 1–4. [Google Scholar] [CrossRef]
- Yu, H.Y.; Liu, H.Z.; Li, X.; Ye, G.Y.; Shi, Y.S.; Yin, L.; Jiang, W.T.; Chen, B.D.; Liu, X.K. Calibration of non-contact incremental linear encoders using a macro-micro dual-drive high-precision comparator. Meas. Sci. Technol. 2015, 26, 095103. [Google Scholar] [CrossRef]
- Gurauskis, D.; Kilikevicius, A.; Kasparaitis, A. Thermal and Geometric Error Compensation Approach for an Optical Linear Encoder. Sensors 2021, 21, 360. [Google Scholar] [CrossRef]
- Hu, F.; Chen, X.D.; Cai, N.; Lin, Y.J.; Zhang, F.J.; Wang, H. Error analysis and compensation of an optical linear encoder. IET Sci. Meas. Technol. 2018, 12, 561–566. [Google Scholar] [CrossRef]
- Taniguchi, K.; Tamiya, H.; Enomoto, T.; Aoyama, H.; Yamazaki, K. Advanced linear encoder calibration system with sub-nanometer resolution. CIRP Ann. Manuf. Technol. 2020, 69, 437–440. [Google Scholar] [CrossRef]
- Coveney, T. A review of state-of-the-art 1D length scale calibration instruments. Meas. Sci. Technol. 2020, 31, 042002. [Google Scholar] [CrossRef]
- Flügge, J.; Weichert, C.; Hu, H.; Köning, R.; Bosse, H.; Wiegmann, A.; Schulz, M.; Elster, C.; Geckeler, R.D. Interferometry at the PTB Nanometer Comparator—Design, Status and Development. In Proceedings of the Fifth International Symposium on Instrumentation Science and Technology, Shenyang, China, 15–18 September 2008; p. 713346. [Google Scholar]
- Köchert, P.; Köning, R.; Weichert, C.; Flügge, J.; Manske, E. Dynamics and control of the PTB Nanometer Comparator. In Proceedings of the ASPE Spring Topical Meeting, Online, 6–8 May 2020. [Google Scholar]
- Zhang, G.X. A Study on the Abbe Principle and Abbe Error. CIRP Ann. Manuf. Technol. 1989, 38, 525–528. [Google Scholar] [CrossRef]
- Dong, X.Y.; Sun, S.H.; Cui, J.Y.; Shen, X.P.; Duan, F.J.; Wang, S.H. Error Analysis of Two-dimensional Grating Calibration System Based on Orthogonal Dual-axis Laser Interferometer. Acta Metrol. Sin. 2019, 40, 36–41. [Google Scholar]
- Qian, Y.; Li, J.; Feng, Q.; He, Q.; Long, F. Error Analysis of Heterodyne Interferometry Based on One Single-Mode Polarization-Maintaining Fiber. Sensors 2023, 23, 4108. [Google Scholar] [CrossRef] [PubMed]
- Haitjema, H. The Calibration of Displacement Sensors. Sensors 2020, 20, 584. [Google Scholar] [CrossRef]
- Ali, A.; Amer, M.; Nada, N. Error analysis of laser interferometric system for measuring radius of curvature. J. Opt. 2023. [Google Scholar] [CrossRef]
- SIOS Meßtechnik GmbH. Laser Interferometer LP-NG Series Technical Data Sheet. Available online: https://www.sios-precision.com/fileadmin/user_upload/Produkte/Produktdetails/Datenblaetter/datasheet-laser-interferometer-SP-NG-engl.pdf (accessed on 26 December 2023).
Source of Uncertainty | Calculation | Standard Uncertainty |
---|---|---|
Reference interferometer | 0.15 ppm × (200 + 20) mm | 0.033 μm |
Angular misalignment | (See Section 3) | 0.183 μm |
Thermal expansion of the scale | l × 8 × 10−6 K−1 × 3 K | 8 × 10−6 l |
Thermal expansion of the table | 0.5 m × 0.2 K × 10.5 × 10−6 K−1 | 1.05 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Su, Z.; Chang, D.; Sun, Y.; Tan, J. Error Analysis of an Economical On-Site Calibration System for Linear Optical Encoders. Metrology 2024, 4, 131-140. https://doi.org/10.3390/metrology4010009
Huang Y, Su Z, Chang D, Sun Y, Tan J. Error Analysis of an Economical On-Site Calibration System for Linear Optical Encoders. Metrology. 2024; 4(1):131-140. https://doi.org/10.3390/metrology4010009
Chicago/Turabian StyleHuang, Yatao, Zihan Su, Di Chang, Yunke Sun, and Jiubin Tan. 2024. "Error Analysis of an Economical On-Site Calibration System for Linear Optical Encoders" Metrology 4, no. 1: 131-140. https://doi.org/10.3390/metrology4010009
APA StyleHuang, Y., Su, Z., Chang, D., Sun, Y., & Tan, J. (2024). Error Analysis of an Economical On-Site Calibration System for Linear Optical Encoders. Metrology, 4(1), 131-140. https://doi.org/10.3390/metrology4010009