Next Issue
Volume 5, September
Previous Issue
Volume 5, March
 
 

Analytica, Volume 5, Issue 2 (June 2024) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 2641 KiB  
Article
Advances in the Use of Four Synthetic Antioxidants as Food Additives for Enhancing the Oxidative Stability of Refined Sunflower Oil (Helianthus annuus L.)
by Moussa Nid Ahmed, Jamila Gagour, Abderrahim Asbbane, Otmane Hallouch, Lahoucine Atrach, Angelo Maria Giuffrè, Khalid Majourhat and Said Gharby
Analytica 2024, 5(2), 273-294; https://doi.org/10.3390/analytica5020018 - 14 Jun 2024
Viewed by 1218
Abstract
The present investigation was performed to evaluate the effects of various synthetic antioxidants (vitamin A, vitamin E, β-carotene, and BHT) on the oxidation of sunflower oil subjected to accelerated thermal storage at 60 °C for three months (12 weeks). The performance of the [...] Read more.
The present investigation was performed to evaluate the effects of various synthetic antioxidants (vitamin A, vitamin E, β-carotene, and BHT) on the oxidation of sunflower oil subjected to accelerated thermal storage at 60 °C for three months (12 weeks). The performance of the antioxidants studied was evaluated using several quality parameters: the free fatty acid value (FFA), primary oxidation (via the peroxide value (PV) and K232 value), secondary oxidation products (via the anisidine value (p-AV) and K270 value), and the total oxidation value (TOTOX). The fatty acid composition (FAC), oxidizability value (COX), iodine value (IV), and pigment content (chlorophyll and carotenoid) were also evaluated. The results revealed that the control sample of sunflower oil exhibited higher susceptibility to oxidative deterioration. Antioxidants at 200 ppm were more effective in preserving the oxidative stability of sunflower oil subjected to accelerated storage compared to the control oil. The smallest increases in all stability parameter indexes were recorded for antioxidant-supplemented sunflower oil. However, the IV and chlorophyll and carotenoid contents were reduced. At 200 ppm, vitamin E and β-carotene showed the greatest stability in sunflower oil, while their combination with vitamin A at 100 ppm of each showed the lowest stability. In addition, synthetic antioxidants provided greater protection against the degradation of polyunsaturated fatty acids (PUFAs). The highest level of PUFA degradation was recorded in the control oil, followed by the oil containing vitamin A. In conclusion, adding synthetic antioxidants to sunflower oil improves its stability during storage. However, some authors associated these molecules with a health risk due to carcinogenic effects as these molecules have been listed as “Generally Recognized As Safe” (GRAS). Full article
Show Figures

Graphical abstract

10 pages, 2133 KiB  
Article
Detection of Gene Doping Using Dried Blood Spots from a Mouse Model with rAAV9 Vector-Mediated Human Erythropoietin Expression as a Pilot Study
by Norihiro Otani, Yasuharu Kanki, Kieu D. M. Nguyen and Takehito Sugasawa
Analytica 2024, 5(2), 263-272; https://doi.org/10.3390/analytica5020017 - 4 Jun 2024
Viewed by 509
Abstract
Rapid advancements in gene technology have raised concerns regarding the potential abuse of techniques, such as gene doping, for enhancing athletic performance. To identify this possibility, a reliable procedure for detecting doping genes is required. Although detection methods for doping genes have been [...] Read more.
Rapid advancements in gene technology have raised concerns regarding the potential abuse of techniques, such as gene doping, for enhancing athletic performance. To identify this possibility, a reliable procedure for detecting doping genes is required. Although detection methods for doping genes have been created, there are still areas for further improvement. One significant challenge is the high storage and transport costs of the test samples. For this issue, the dried blood spot (DBS) method can be a cost-effective solution. This study aimed to assess the practicality of incorporating DBSs into the gene doping detection process as a pilot study. Whole-blood samples were initially collected from mice engineered to express human erythropoietin from the rAAV vector. Then, the blood was placed in filter papers and left to dry at room temperature for five hours to form DBSs. These DBSs were subsequently preserved in sealed plastic bags at room temperature. After the extraction of DNA, DBSs were formed, and TaqMan-qPCR was utilized to detect the presence of rAAV vector-derived DNA. The finding confirmed that doping gene-specific fragments were successfully detected in DBSs. This outcome suggests that the DBS method is an effective approach to be considered when developing a comprehensive protocol for gene doping detection. Full article
Show Figures

Graphical abstract

13 pages, 3573 KiB  
Article
Electrochemical Determination of Catechol Using a Disposable Printed Electrode with Conductive Ink Based on Graphite and Carbon Black
by Sthephane Pereira de Oliveira, Thaís Cristina de Oliveira Cândido, Arnaldo César Pereira and Daniela Nunes da Silva
Analytica 2024, 5(2), 250-262; https://doi.org/10.3390/analytica5020016 - 1 Jun 2024
Viewed by 399
Abstract
Catechol (CT) is a phenolic compound widely used in various industrial sectors, but it is toxic; thus, there is a need for methods that aim to identify and quantify the existence of residues of this material in the environment. In this study a [...] Read more.
Catechol (CT) is a phenolic compound widely used in various industrial sectors, but it is toxic; thus, there is a need for methods that aim to identify and quantify the existence of residues of this material in the environment. In this study a disposable printed electrochemical sensor was developed as an effective alternative for determining CT in water samples. The electrode, called SPEC, was manufactured using the screen-printing method using polyethylene terephthalate (PET) as a support, in which a conductive ink based on carbonaceous materials was used to print the working and auxiliary electrodes and a silver/silver chloride of ink on the reference electrode. The optimal ratio for the conductive ink was 6.25% carbon black, 35.42% graphite, and 58.33% nail polish. The ink obtained was characterized by scanning electron microscopy (SEM). The assessment of the effect of pH on the redox process showed Nernstian behavior (0.057 V pH−1), indicating that the process involves the same number of protons and electrons. Under optimized conditions, with 0.2 mol L−1 acetate buffer at pH 5.0, and by square wave voltammetry, the sensor presented sensitivity values of 0.31 μA L μmol−1, a detection limit of 5.96 μmol L−1, and a quantification limit of 19.87 μmol L−1. The sensor was applied to determine CT in tap water samples, and the results showed recoveries between 97.95 and 100.17%. Full article
Show Figures

Graphical abstract

17 pages, 3181 KiB  
Article
Development of Noninvasive Method for the Automated Analysis of Nine Steroid Hormones in Human Saliva by Online Coupling of In-Tube Solid-Phase Microextraction with Liquid Chromatography–Tandem Mass Spectrometry
by Takashi Hitomi and Hiroyuki Kataoka
Analytica 2024, 5(2), 233-249; https://doi.org/10.3390/analytica5020015 - 9 May 2024
Viewed by 657
Abstract
Accurate measurement of steroid hormones is crucial to elucidate new mechanisms of action and diagnose steroid metabolism-related diseases. This study presents a simple, sensitive, and automated analytical method for nine representative steroid hormones. The method involves on-line coupling of in-tube solid-phase microextraction (IT-SPME) [...] Read more.
Accurate measurement of steroid hormones is crucial to elucidate new mechanisms of action and diagnose steroid metabolism-related diseases. This study presents a simple, sensitive, and automated analytical method for nine representative steroid hormones. The method involves on-line coupling of in-tube solid-phase microextraction (IT-SPME) with liquid chromatography–tandem mass spectrometry (LC–MS/MS). The steroid hormones were extracted and enriched on a Supel-Q PLOT capillary column using IT-SPME. Subsequently, they were separated and detected within 6 min using a Discovery HS F5-3 column and positive ion mode multiple reaction monitoring system via LC–MS/MS. Calibration curves of these compounds using each stable isotope-labeled internal standard (IS) showed linearity with correlation coefficients greater than 0.9990 in the range of 0.01–40 ng/mL, with limits of detection (S/N = 3) of 0.7–21 pg/mL. Moreover, intra- and inter-day variations were lower than 8.1 and 15% (n = 6), respectively. The recoveries of these compounds from saliva samples were in the range of 82–114%. The developed IT-SPME/LC–MS/MS method of steroid hormones is a highly sensitive, specific, and non-invasive analytical method that allows extraction and enrichment with no organic solvents, and enables direct automated online analysis by simply ultrafiltrating a small sample of saliva. Full article
(This article belongs to the Section Sample Pretreatment and Extraction)
Show Figures

Figure 1

14 pages, 2081 KiB  
Article
Quantification of Recycled PET in Commercial Bottles by IR Spectroscopy and Chemometrics
by Alessandro Zappi, Alessandra Biancolillo, Nicholas Kassouf, Valentina Marassi, Pietro Morozzi, Laura Tositti and Dora Melucci
Analytica 2024, 5(2), 219-232; https://doi.org/10.3390/analytica5020014 - 8 May 2024
Viewed by 855
Abstract
A novel approach for the quantification of recycled polyethylene terephthalate (r-PET) in commercial bottles is presented. Fifty-eight bottle samples from several brands and producers containing different percentages of r-PET were purchased from the market. Samples were analyzed by two spectroscopic methods: near-infrared (NIR) [...] Read more.
A novel approach for the quantification of recycled polyethylene terephthalate (r-PET) in commercial bottles is presented. Fifty-eight bottle samples from several brands and producers containing different percentages of r-PET were purchased from the market. Samples were analyzed by two spectroscopic methods: near-infrared (NIR) spectroscopy and attenuated total reflection (ATR) spectroscopy in the mid-infrared (MIR) region. No chemical pre-treatment was applied before analyses. The spectra were analyzed by partial-least squares (PLS) regression, and two models for NIR and MIR data were computed. Then, a multi-block regression was applied to join the two datasets. All models were validated by cross-validation and by excluding and projecting onto the model the replicated spectra of one sample at a time. Results demonstrated the potential of this approach, especially considering the variability of commercial samples in terms of additives, shape, or thickness of the bottles: for samples close to the centroids of the models (i.e., from 10 to 50% r-PET), the predictions of multi-block method seldom departed from the expected values of ±10%. Only for samples with 0% declared r-PET, the models showed poor prediction abilities. Full article
(This article belongs to the Section Chemometrics)
Show Figures

Graphical abstract

16 pages, 3469 KiB  
Article
Treatment of Water Contaminated by Ship Oil: Study of Adsorption in a Fixed-Bed Column
by Rachel de M. Ferreira, Bernardo Dia Ribeiro, Danielle M. A. Stapelfeldt and Maria de F. R. Moreira
Analytica 2024, 5(2), 203-218; https://doi.org/10.3390/analytica5020013 - 1 May 2024
Viewed by 651
Abstract
Aquatic macrophytes like Salvinia sp. have rapid proliferation and a great capacity for ecological adaptation. In addition to these characteristics, this study points to their ability to adsorb contaminants such as dyes, metals, and oils. This work aims, through an adsorption study, to [...] Read more.
Aquatic macrophytes like Salvinia sp. have rapid proliferation and a great capacity for ecological adaptation. In addition to these characteristics, this study points to their ability to adsorb contaminants such as dyes, metals, and oils. This work aims, through an adsorption study, to propose an alternative treatment using chemically modified Salvinia sp. (SOH) biomass to remove oil from water. Batch adsorption experiments were performed to observe the effects of concentration, pH, time, temperature, desorption, and reuse of the biomass. The adsorption mechanisms, performance, kinetics, isotherm, thermodynamics, and reusability of biomass were evaluated. Both adsorbents were well-defined by the Freundlich model isotherm. According to the results obtained, the qmax was 898.0 mg g−1 for SOH in oil-in-salt water emulsion in 15 min and 930.59 mg g−1 for Salvinia sp. in natura (SS) in the oil-in-water emulsion. In the fixed-bed column adsorption, the adsorption capacity was 2.99 g g−1 for SS and 3.49 g g−1 for SOH, and the saturation capacity was 42.89 g g−1 SS and 42.99 g g−1 SOH. According to the adsorption models, the Bohart–Adams model best fits the experimental data of this study. The SOH adsorbed oil recovery test was successful, with 100% oil recovery. Full article
Show Figures

Graphical abstract

16 pages, 320 KiB  
Review
Poly- and Perfluoroalkyl Substance (PFAS) Analysis in Environmental Matrices: An Overview of the Extraction and Chromatographic Detection Methods
by Alessia Iannone, Fabiana Carriera, Cristina Di Fiore and Pasquale Avino
Analytica 2024, 5(2), 187-202; https://doi.org/10.3390/analytica5020012 - 19 Apr 2024
Viewed by 1340
Abstract
Per- and polyfluoroalkyl substances (PFASs) are carbon–fluorine compounds with widespread industrial and domestic use, posing potential toxicological risks to humans and ecosystems. Several analytical methods have been developed to assess the occurrence of PFASs in the environment, but a standardized method, applicable to [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are carbon–fluorine compounds with widespread industrial and domestic use, posing potential toxicological risks to humans and ecosystems. Several analytical methods have been developed to assess the occurrence of PFASs in the environment, but a standardized method, applicable to all matrices, is still lacking. This paper reviews the extraction and chromatographic detection methods for PFAS assessment in environmental samples, considering parameters such as the LOD, LOQ, and recoveries. Solid phase extraction (SPE) is commonly used, showing high recovery rates for water, soil, and sediment samples using HBL and WAX polymeric sorbents (85–100% and 93–111.5%, respectively). LC-MS has demonstrated low LODs and LOQs in seawater (0.01–0.08 ng L−1; 0.03–0.24 ng L−1), marine sediment (0.002–0.018 ng g−1; 0.004–0.054 ng g−1), and dust (0.08–0.68 pg g−1; 0.26–2.25 pg g−1), indicating its sensitivity when detecting trace PFAS levels. Evaluating PFASs is crucial for the development of future removal strategies and risk assessments. Potential solutions including the use of PFAS substitutes and innovative adsorption techniques for their adsorption could present promise in reducing their environmental presence. Full article
(This article belongs to the Section Chromatography)
17 pages, 2647 KiB  
Article
A Metabolomics Study by 1H HRMAS NMR: From Sheep Milk to a Pressed-Curd Cheese: A Proof of Concept
by David Castejón, José Segura, Karen Paola Cruz-Díaz, Víctor Remiro, María Encarnación Fernández-Valle, María Dolores Romero de Ávila, Palmira Villa and María Isabel Cambero
Analytica 2024, 5(2), 170-186; https://doi.org/10.3390/analytica5020011 - 13 Apr 2024
Cited by 1 | Viewed by 1025
Abstract
For the first time, High-Resolution Magic Angle Nuclear Magnetic Resonance spectroscopy (NMR-HRMAS) was applied to directly identify specific metabolites from a Spanish raw ewe’s milk and enzymatic coagulation pressed-curd cheese (Protected Geographical Indication: Castellano) manufactured by two procedures (traditional/artisanal vs. industrial) and [...] Read more.
For the first time, High-Resolution Magic Angle Nuclear Magnetic Resonance spectroscopy (NMR-HRMAS) was applied to directly identify specific metabolites from a Spanish raw ewe’s milk and enzymatic coagulation pressed-curd cheese (Protected Geographical Indication: Castellano) manufactured by two procedures (traditional/artisanal vs. industrial) and including the ewe’s raw milk. The NMR parameters were optimized to study the complex matrixes of this type of cheese. In addition, conventional overcrowded 1H-NMR-HRMAS spectra were selectively simplified by a Carr–Purcell–Meiboom–Gill (CPMG) sequence or a stimulated echo pulse sequence by bipolar gradients (DIFF), thus modulating spin–spin relaxation times and diffusion of molecular components, respectively. 1H-NMR-HRMAS spectroscopy displayed important information about cheese metabolites, which can be associated with different manufacturing processes (industrial vs. traditional) and ripening times (from 2 to 90 days). These results support that this spectroscopy is a useful technique to monitor the ripening process, from raw milk to commercial ripened cheese, using a minimum intact sample, implying the absence of time-consuming sample pretreatments. Full article
Show Figures

Figure 1

17 pages, 3782 KiB  
Article
Headspace-Selected Ion Flow Tube Mass Spectrometry Workflows for Rapid Screening and Quantitation of Hazardous Volatile Impurities in Personal Care Products
by Mark J. Perkins, Colin J. Hastie and Vaughan S. Langford
Analytica 2024, 5(2), 153-169; https://doi.org/10.3390/analytica5020010 - 2 Apr 2024
Viewed by 790
Abstract
Personal care products (PCPs) are intended for regular application by consumers and therefore assuring the safety of these products is very important. Recently, benzene contamination has been highlighted in certain PCPs. The present study applies selected ion flow tube mass spectrometry (SIFT-MS) to [...] Read more.
Personal care products (PCPs) are intended for regular application by consumers and therefore assuring the safety of these products is very important. Recently, benzene contamination has been highlighted in certain PCPs. The present study applies selected ion flow tube mass spectrometry (SIFT-MS) to a simultaneous headspace analysis of benzene, 1,4-dioxane, and formaldehyde—all known or suspected carcinogens—in nine haircare products with supporting qualitative analysis by gas chromatography–mass spectrometry (GC-MS). Headspace-SIFT-MS method development is compatible with the method of standard additions, which is necessary for the quantitation of volatile impurities in these complex emulsions. Benzene was quantified above the low-ng g−1 limit of quantitation (LOQ) in three products, dioxane above the sub-μg g−1 LOQ in all products, and formaldehyde above the low-μg g−1 LOQ in two products, providing a quantitative analysis at concentrations relevant to consumer safety. This study facilitated the development of generic workflows for SIFT-MS method development and application in routine analysis of PCPs. The assessment of workflows for SIFT-MS compared to a conventional GC-MS analysis suggests that 8- to 30-fold throughput enhancements may be possible for quantitative and screening analysis using SIFT-MS. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop