Previous Issue
Volume 6, December
 
 

Analytica, Volume 7, Issue 1 (March 2026) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 269 KB  
Article
Mineral Element Profile in African Penguin (Spheniscus demersus) Feathers and Its Possible Relationship with Molting
by Laura Favilli, Valentina Isaja, Paolo Inaudi, Agnese Giacomino, Mery Malandrino, Stefano Bertinetti, Egle Trincas, Hatice Cansu Sezer and Ornella Abollino
Analytica 2026, 7(1), 11; https://doi.org/10.3390/analytica7010011 - 27 Jan 2026
Viewed by 165
Abstract
Molting is an important biological and physiological stage in penguins, influenced by environmental and nutritional factors. Feather composition analysis before and after molting can consequently place boundaries on element bioaccumulation and excretion. We quantified and compared elemental concentrations in African penguin (Spheniscus [...] Read more.
Molting is an important biological and physiological stage in penguins, influenced by environmental and nutritional factors. Feather composition analysis before and after molting can consequently place boundaries on element bioaccumulation and excretion. We quantified and compared elemental concentrations in African penguin (Spheniscus demersus) feathers collected pre- and post-molt across three zoos to evaluate how molt stage and zoo-specific conditions influence feather elemental composition. Feathers were retrieved from individual penguins at Zoom Torino (Italy), Overloon ZooParc (Netherlands), and Zoo Magdeburg (Germany). Quantification of elemental concentrations were performed by analytical methods, with both ICP-OES and HR-ICP-MS techniques. A statistical approach involving MANOVA and factorial analysis helped identify important trends. Pre-molt features had more variability than post-molt, with both showing significant differences in elemental concentrations. Factorial analysis showed geogenic trends in Mg, Sr, and Ni trends as well as anthropogenic trends in Pb. While Na and K differed among all treatment groups, this likely points to physiological adaptations in response to increased demand during feather regrowth. Additionally, inter-zoo comparisons highlighted distinct elemental profiles linked to local environmental and dietary conditions, particularly in Zoo Magdeburg, where Na levels were markedly elevated. This study highlights the influence of environmental and dietary conditions on feather composition during molt, offering insights for improving captive penguin welfare and broader ecological implications related to climate change and pollution. Full article
30 pages, 3538 KB  
Article
Analytical Characterisation of Oat-Enriched Binary Composites of Wheat Flour and Their Processing Behaviour in Bread Making
by Lucie Jurkaninová, Ivan Švec, Soňa Gavurníková, Marcela Sluková, Peter Hozlár and Michaela Havrlentová
Analytica 2026, 7(1), 10; https://doi.org/10.3390/analytica7010010 - 20 Jan 2026
Viewed by 215
Abstract
Oats (Avena sativa L.) are a rich source of β-d-glucans, dietary fibre, proteins, and lipids. However, the behaviour of these components in wheat–oat composite systems during baking, particularly with regard to matrix-dependent analytical responses, remains unclear. This study evaluated the [...] Read more.
Oats (Avena sativa L.) are a rich source of β-d-glucans, dietary fibre, proteins, and lipids. However, the behaviour of these components in wheat–oat composite systems during baking, particularly with regard to matrix-dependent analytical responses, remains unclear. This study evaluated the compositional changes, technological performance, and sensory quality of wheat bread enriched with various forms of oat. Composite flours containing 5–15% wholegrain oat flour, commercial oat bran, milled commercial oat flakes, or milled sprouted oat grain (sprouted under laboratory conditions for three days at 25 °C) were prepared using the Slovakian oat cultivar ‘Peter’. The raw materials, flour blends, and baked breads were analysed for β-d-glucans (BG), total dietary fibre (TDF), starch, proteins, and lipids using standardised enzymatic, gravimetric, and polarimetric methods. Bread quality was assessed through loaf volume measurements and a sensory evaluation using a 5-point hedonic scale by seven trained panellists. Multivariate statistical analysis was applied to integrate compositional, technological, and sensory data. Compared to wheat flour (0.24% BG and 3.45% TDF), the incorporation of oats significantly increased the contents of BG, TDF, proteins, and lipids, with oat bran showing the strongest enrichment effect (owing to 15.69% TDF in the raw material). Baking induced oat-form-dependent changes in the measured BG and TDF content. The level of BG diminished in wholegrain oat blends but increased or remained stable in bran-rich systems. This reflects differences in matrix structure and analytical extractability, rather than true compositional gains. Meanwhile, starch content consistently declined across all composite breads. Fibre-rich formulations exhibited reduced loaf volume and altered both bread geometry and morphology, particularly at 15% substitution. Breads containing 5% oat flour or moderate levels of oat bran (5 or 10%) were considered the most acceptable in terms of nutritional enhancement and quality attributes. Germinated oat breads showed the greatest technological impairment and the lowest sensory scores. Overall, moderate oat enrichment strikes a balance between nutritional improvement and technological performance without significantly compromising sensory quality. These findings emphasise the significance of matrix effects when interpreting standard total dietary fibre and β-d-glucans analyses and offer an integrated analytical and technological framework for the rational design of fibre-enriched cereal products. Full article
(This article belongs to the Section Chemometrics)
Show Figures

Figure 1

12 pages, 521 KB  
Article
Single-Particle ICP-MS Method for the Determination of TiO2 Nano- and Submicrometric Particles in Biological Tissues
by Francesca Sebastiani, Francesca Tombolini, Fabio Boccuni, Claudio Natale, Silvia Canepari and Riccardo Ferrante
Analytica 2026, 7(1), 9; https://doi.org/10.3390/analytica7010009 - 19 Jan 2026
Viewed by 144
Abstract
Titanium dioxide (TiO2) nano- and submicrometric particles’ widespread use in different sectors raised concerns about human and environmental exposure. The validation of analytical methods is essential to ensure reliability in risk assessment studies. In this study, a single-particle inductively coupled plasma [...] Read more.
Titanium dioxide (TiO2) nano- and submicrometric particles’ widespread use in different sectors raised concerns about human and environmental exposure. The validation of analytical methods is essential to ensure reliability in risk assessment studies. In this study, a single-particle inductively coupled plasma mass spectrometry (spICP-MS) method was validated for the detection, quantification, and dimensional characterization of TiO2 particles in biological tissues. Tissue samples collected after exposure to TiO2 particles underwent mild acidic digestion using a HNO3/H2O2 mixture to achieve complete matrix decomposition while preserving particle integrity. The resulting digests were analyzed by ICP-MS operated in single-particle mode to quantify and size TiO2 particles. Method validation was conducted according to ISO/IEC 17025:2017 and included linearity, repeatability, recovery, and detection limit assessments. The limit of detection for TiO2 particles was 0.04 µg/g, and 55.7 nm was the size the detection limit. Repeatability was within 0.5–11.5% for both TiO2 mass concentrations and particle size determination. The validated method was applied to tissues from inhalation-exposed subjects, showing TiO2 levels of 80 ± 20 µg TiO2/g and particle number concentrations of 5.0 × 105 ± 1.2 × 105 part. TiO2/mg. Detected TiO2 particles’ mean diameter ranged from 230 to 330 nm. The developed and validated spICP-MS method provides robust and sensitive quantification of TiO2 particles in biological matrices, supporting its use in human biomonitoring and exposure assessment studies. Full article
Show Figures

Graphical abstract

22 pages, 5710 KB  
Article
Acetone Sensor Based on a Composite of Calcium Itaconate and Graphene Oxide
by Igor E. Uflyand, Anastasiya O. Zarubina, Aleksandr A. Shcherbatykh and Vladimir A. Zhinzhilo
Analytica 2026, 7(1), 8; https://doi.org/10.3390/analytica7010008 - 9 Jan 2026
Viewed by 285
Abstract
The present paper reports the preparation of a nanocomposite thin film consisting of calcium itaconate and graphene oxide (GO). The composite is a black powder consisting of individual shiny prismatic crystals at varying degrees of maturity. The crystal size distribution is quite narrow: [...] Read more.
The present paper reports the preparation of a nanocomposite thin film consisting of calcium itaconate and graphene oxide (GO). The composite is a black powder consisting of individual shiny prismatic crystals at varying degrees of maturity. The crystal size distribution is quite narrow: from 3.6 to 6.2 μm in length and from 0.7 to 1.1 μm in width. Thin-film-based acetone sensor made of a nanocomposite was fabricated by spin coating of calcium itaconate–GO nanoparticles on glass plates. The thin-film acetone sensor was characterized using FTIR, XRD, SEM, TEM, and the low-temperature nitrogen sorption–desorption method. The sensor response time is 7.66 ± 0.07 s (sr = 0.92%), and the relaxation time when blowing the surface with clean air or inert gas (nitrogen, argon) is 9.26 ± 0.12 s (sr = 1.28%). The sensing mechanism of the sensor for detecting acetone at room temperature was also is proposed based on phenomenological understanding due to the absence of direct electronic/charge-transport evidence. Full article
(This article belongs to the Section Sensors)
Show Figures

Figure 1

17 pages, 3689 KB  
Article
Determination of Vanadium in Alkaline Leachates of Vanadium Slags Using High-Resolution Continuum Source Graphite Atomic Absorption Spectrometry (HR-CS GFAAS) Part I: The Influence of Sample Matrix on the Quality of Graphite Atomizer
by Dagmar Remeteiová, Silvia Ružičková, Ľubomír Pikna and Mária Heželová
Analytica 2026, 7(1), 7; https://doi.org/10.3390/analytica7010007 - 8 Jan 2026
Viewed by 210
Abstract
Interactions between alkaline solutions and the surface of pyrolytically coated graphite tubes (PCGTs) with/without a platform for determination of vanadium using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) are discussed. Changes on the surface of tubes, lifetime of tubes, [...] Read more.
Interactions between alkaline solutions and the surface of pyrolytically coated graphite tubes (PCGTs) with/without a platform for determination of vanadium using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) are discussed. Changes on the surface of tubes, lifetime of tubes, and formation of memory effect in the determination of vanadium in alkaline solutions (NaOH, Na2CO3, and real alkaline slag leachates) were investigated. Based on the results obtained, it is possible to state that HR CS GFAAS determination of vanadium content in alkaline solutions reveals that PCGTs with a platform are more susceptible than those without a platform to the formation of deposits and degradation of the platform surface, especially after the application of hydroxide environments. More marked and faster formation of deposits leads to shortening of the analytical lifetime of PCGTs with a platform (approx. 70 atomization/analytical cycles (ACs)) compared to PCGTs without a platform (approx. 290 ACs). The mechanical life of both types of tubes is comparable (approx. 500 ACs). Deposits formed on the internal surface of PCGTs can be removed in the presence of a carbonate environment and higher temperatures. Damage to the PCGT surface leads to the formation of scaled shapes and cavities, which can result in decreased absorbance due to losses of vanadium in the cavities (negative measurement error), or in increased absorbance by washing out of vanadium from the cavities (positive measurement error, and formation of memory effect). It was found that more frequent cleaning of PCGTs by performing ACs in an environment of 4 mol L−1 HNO3 can eliminate these unfavourable phenomena. Our results have shown that in the case of samples analysed with different sample environments (acidic vs. alkaline), the surface material of the tube/platform wears out more quickly, and therefore it is necessary to include a cleaning stage after changing the nature of the environment. Full article
(This article belongs to the Section Spectroscopy)
Show Figures

Graphical abstract

14 pages, 417 KB  
Article
Iodine and Bromine Analysis in Human Urine and Serum by ICP-MS, Tailored for High-Throughput Routine Analysis in Population-Based Studies
by Thieli Schaefer Nunes, Lucas Schmidt, Kayla Peterson, Rosalind Wright and Julio Alberto Landero-Figueroa
Analytica 2026, 7(1), 6; https://doi.org/10.3390/analytica7010006 - 6 Jan 2026
Viewed by 394
Abstract
Iodine is essential for thyroid hormone synthesis and is particularly critical during pregnancy, where excess and mainly its deficiencies can impair fetal neurodevelopment and increase maternal complications. Bromine has also gained attention due to its potential to interfere with iodine metabolism and contribute [...] Read more.
Iodine is essential for thyroid hormone synthesis and is particularly critical during pregnancy, where excess and mainly its deficiencies can impair fetal neurodevelopment and increase maternal complications. Bromine has also gained attention due to its potential to interfere with iodine metabolism and contribute to adverse health effects when present in excess. Monitoring iodine and bromine in biological samples, especially urine and serum, is therefore important for assessing thyroid function and population health. This work presents a simple and robust ICP-MS method for simultaneous determination of bromine and iodine in urine and serum. The procedure uses a 20-fold dilution with 10 mmol L−1 ammonia containing 0.1% (w/w) EDTA-2Na, ensuring solution stability, minimizing sample-to-sample variability, and eliminating the need for matrix-matched calibration. EDTA-2Na effectively prevents precipitation of metal species at high pH, avoiding blockages in the sample introduction system. Method accuracy was confirmed through certified reference materials and spike-recovery experiments, both showing suitable agreement for the two analytes. Precision was consistently strong (RSD < 6%), and low detection limits were achieved (0.78 μg L−1 for Br and 0.24 μg L−1 for I). The use of a high-efficiency nebulizer enabled analysis with only 50 µL of sample, making the method suitable for limited-volume specimens. Overall, this approach provides a sensitive, accurate, and practical solution for large-scale population studies and clinical applications. Full article
Show Figures

Figure 1

17 pages, 2897 KB  
Article
Green Hybrid Biopolymeric Beads for Efficient Removal of Copper Ions from Aqueous Solutions: Experimental Studies Assisted by Monte Carlo Simulation
by Ilias Barrak, Ikrame Ayouch, Zineb Kassab, Youness Abdellaoui, Jaber Raissouni, Said Sair, Mounir El Achaby and Khalid Draoui
Analytica 2026, 7(1), 5; https://doi.org/10.3390/analytica7010005 - 5 Jan 2026
Viewed by 340
Abstract
The objective of this research is to develop environmentally friendly, risk-free and effective adsorbent composite beads that remove Cu(II) ions from aqueous solutions using cost-effective biopolymers (Carboxymethylcellulose (CMC) and sodium alginate (AL)). The synthesized hydrogel beads (AL@CMC) were dried using two drying modes, [...] Read more.
The objective of this research is to develop environmentally friendly, risk-free and effective adsorbent composite beads that remove Cu(II) ions from aqueous solutions using cost-effective biopolymers (Carboxymethylcellulose (CMC) and sodium alginate (AL)). The synthesized hydrogel beads (AL@CMC) were dried using two drying modes, namely air-drying and freeze-drying, and characterized using scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Brunauer–Emmett–Teller (BET) analysis. The study investigated factors such as pH, adsorbent dosage, reaction time, Cu(II) ions concentration, and temperature to elucidate the adsorption mechanisms involved in removing copper ions. The results indicated that the hydrogel exhibited a maximum adsorption capacity of 99.05 mg·g−1, which is highly competitive compared to previous studies; the AL@CMC beads prepared in this work show a significantly higher adsorption capacity, improved stability due to the interpenetrated biopolymer network, and a clear enhancement from freeze-drying, which greatly increases porosity and active surface area. In addition, the pseudo-second-order nonlinear kinetic model best described the experimental data, implying the chemical nature of the adsorption process. Furthermore, the thermodynamic studies revealed that the adsorption process was endothermic, spontaneous, and homogenous. A Monte Carlo simulation model was utilized to ensure compatibility with the adsorption mechanism, in order to delve deeper into the intricacies of the adsorption process and gain a more comprehensive understanding of its underlying mechanisms and behavior. In conclusion, the prepared hydrogel beads proved to be an effective adsorbent for efficiently removing copper ions, making them a promising solution for addressing Cu(II) ion pollution. Full article
(This article belongs to the Section Sample Pretreatment and Extraction)
Show Figures

Figure 1

18 pages, 2135 KB  
Article
Impact of 3D Printing Parameters on the Electrochemical Response of Additively Manufactured Devices
by Scarlat Ohanna Dávila da Trindade, Thaís Cristina de Oliveira Cândido, Matheus Martins Guedes and Arnaldo César Pereira
Analytica 2026, 7(1), 4; https://doi.org/10.3390/analytica7010004 - 3 Jan 2026
Viewed by 307
Abstract
Additive manufacturing, particularly fused deposition modeling (FDM), has emerged as a promising approach for producing electrochemical sensors based on conductive thermoplastic composites. In this study, the effects of various printing parameters (extrusion temperature, layer height and width, printing speed, and the number of [...] Read more.
Additive manufacturing, particularly fused deposition modeling (FDM), has emerged as a promising approach for producing electrochemical sensors based on conductive thermoplastic composites. In this study, the effects of various printing parameters (extrusion temperature, layer height and width, printing speed, and the number of conductive layers) on the electrochemical performance of PLA/CB electrodes fabricated via FDM were investigated. Electrochemical impedance spectroscopy analyses showed that properly adjusting these parameters promoted the formation of more efficient conductive pathways and reduced charge transfer resistance during monitoring of the redox behavior of the potassium ferrocyanide/ferricyanide probe. Furthermore, the electrochemical performance of the device was demonstrated through the detection of different model analytes, including dopamine, catechol, hydroquinone, paracetamol, and uric acid. The device was also applied to the determination of dopamine, achieving a detection limit of 0.16 µmol L−1. Overall, the results highlighted that optimizing printing conditions is essential for improving the electrochemical performance of 3D-printed devices, reinforcing the potential of 3D printing as a promising route for the fabrication of electrodes for electroanalytical applications. Full article
(This article belongs to the Section Electroanalysis)
Show Figures

Graphical abstract

21 pages, 3414 KB  
Article
Spectroscopic and Physicochemical Analysis of Bioactive Cobalt(II) β-Diketo Ester Complexes: Insights into DNA and BSA Binding Mechanisms
by Ignjat Filipović, Snežana Stojanović, Jelena Petronijević, Milena Milutinović, Danijela Nikodijević, Nevena Petrović, Marijana Kosanić and Nenad Joksimović
Analytica 2026, 7(1), 3; https://doi.org/10.3390/analytica7010003 - 29 Dec 2025
Viewed by 320
Abstract
The urgent need for effective therapies against cancer and antimicrobial-resistant pathogens motivates the development of novel metal-based complexes. Herein, we report the synthesis and characterization of four novel cobalt(II) complexes with biologically relevant β-diketo ester ligands. The complexes were characterized via UV-Vis, FTIR, [...] Read more.
The urgent need for effective therapies against cancer and antimicrobial-resistant pathogens motivates the development of novel metal-based complexes. Herein, we report the synthesis and characterization of four novel cobalt(II) complexes with biologically relevant β-diketo ester ligands. The complexes were characterized via UV-Vis, FTIR, mass spectrometry, and elemental analysis. Their biological activities were evaluated through antimicrobial and cytotoxic assays. Complex B1 exhibited the strongest antimicrobial activity, with minimum inhibitory concentrations (MICs) of 0.23 mg/mL against Staphylococcus aureus and Proteus mirabilis, and 0.01 mg/mL against Mucor mucedo, exceeding the performance of ketoconazole. Cytotoxicity studies on SW480 colorectal cancer cells and HaCaT normal keratinocytes identified B3 as the most potent anticancer agent (IC50 = 11.49 µM), selectively targeting tumor cells. Morphological analysis indicated apoptosis as the primary mode of cell death. Mechanistic studies were performed to elucidate interactions with biomolecules. UV-Vis and fluorescence spectroscopy, viscosity measurements, and molecular docking revealed that B3 binds strongly to calf thymus DNA via hydrophobic interactions and groove binding, and exhibits selective binding to bovine serum albumin (site II, subdomain IIIA). These results highlight the potential of cobalt(II) complexes as multifunctional agents with significant antimicrobial and antitumor activities and provide detailed insight into their molecular interactions with DNA and serum proteins. Full article
Show Figures

Graphical abstract

16 pages, 700 KB  
Systematic Review
Systematic Review of Different Methods for the Quantification of Vitamin C in Human Plasma Samples by HPLC and UV Detector
by Miriam Demtschuk and Priska Heinz
Analytica 2026, 7(1), 2; https://doi.org/10.3390/analytica7010002 - 23 Dec 2025
Viewed by 620
Abstract
In clinical medicine it is of interest to know vitamin C blood levels. There are numerous variations in published sample preparation methods for quantifying vitamin C using HPLC. For the determination of vitamin C in human probes, the method needs to be simple, [...] Read more.
In clinical medicine it is of interest to know vitamin C blood levels. There are numerous variations in published sample preparation methods for quantifying vitamin C using HPLC. For the determination of vitamin C in human probes, the method needs to be simple, fast, and accurate. A systematic search in Pubmed was carried out to identify the methods for the quantification of vitamin C with HPLC in combination with a UV detector in human plasma. A total of 83 reports were screened, from which seven methods were selected and examined in detail. Tabular overviews compare the different sample preparation options, HPLC parameters, and validation criteria. Different reagents for protein precipitation and extraction are discussed. By allowing the user to see the criteria of interest at a glance, it can be used as a tool for the rapid development and establishment of a vitamin C determination method using HPLC. Full article
Show Figures

Figure 1

14 pages, 2025 KB  
Article
Propylene Glycol as a Promising Eluent in Green Reversed Phase Liquid Chromatographic Separation of Ascorbic Acid and Glutathione in Effervescent Tablets
by Pasant T. Elbanna, Mohamed A. Hammad, Inas A. Abdallah, Marcello Locatelli and Fotouh R. Mansour
Analytica 2026, 7(1), 1; https://doi.org/10.3390/analytica7010001 - 23 Dec 2025
Viewed by 386
Abstract
Exploring green organic solvents is a global demand. Most of the currently used solvents pose some concerns regarding environmental sustainability and occupational health risks. In this work, propylene glycol was employed for the first time as a green solvent for mobile phase preparation [...] Read more.
Exploring green organic solvents is a global demand. Most of the currently used solvents pose some concerns regarding environmental sustainability and occupational health risks. In this work, propylene glycol was employed for the first time as a green solvent for mobile phase preparation in the reversed phase chromatographic separation of a mixture of two antioxidants, glutathione and ascorbic acid. The slight viscosity of propylene glycol was manipulated by using water as a co-fluidizing agent to facilitate pumping. Method optimization was performed using factorial design experimental Expert 13® Software (Minneapolis, MN, USA) to achieve the maximum resolution and the minimum run time. The reported method was properly validated according to the International Conference on Harmonization criteria at the linearity range of 1–500 µg/mL, with acceptable accuracy and precision for both drugs. The method was effectively applied for the quantification of both drugs in their commercial pharmaceutical formulation. The proposed method was assessed for environmental and operator safety by means of global tools like AGREE and MoGAPI and has proved high degrees of greenness. Propylene glycol has several benign properties, such as low volatility, less toxicity, compatibility with UV detectors and very low flammability, that will soon assemble it as a promising alternative for the conventionally used solvents. Full article
(This article belongs to the Section Chromatography)
Show Figures

Figure 1

Previous Issue
Back to TopTop