Advances in the Use of Four Synthetic Antioxidants as Food Additives for Enhancing the Oxidative Stability of Refined Sunflower Oil (Helianthus annuus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sunflower Oil Sampling
2.2. Mixture Preparation and Storage of Supplemented Sunflower Oil
2.3. Analytical Methods
2.3.1. Determination of Free Fatty Acids Value (FFA)
2.3.2. Determination of Peroxide Value (PV)
2.3.3. Determination of K232 (Conjugated Diene) and K270 (Conjugated Triene) Values
2.3.4. Determination of p-Anisidine Value (p-AV)
2.3.5. Determination of Total Oxidation Value (TOTOX)
2.3.6. Determination of Fatty Acid Composition (FAC)
2.3.7. Determination of Iodine Value (IV)
2.3.8. Determination of Oxidizability Value (COX)
2.3.9. Determination of Pigment Content
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Thermal Storage on Free Fatty Acids (FFAs)
3.2. Primary Oxidation
3.2.1. Effect of Thermal Storage on Peroxide Value (PV)
3.2.2. Effect of Thermal Storage on K232 (Conjugated Diene) Value
3.3. Secondary Oxidation
3.3.1. Effect of Thermal Storage on p-Anisidine Value (p-AV)
3.3.2. Effect of Thermal Storage on K270 (Conjugated Triene) Value
3.4. Effect of Thermal Storage on Total Oxidation (TOTOX) Value
3.5. Effect of Thermal Storage on Fatty Acid Composition (FAC)
3.6. Effect of Thermal Storage on Iodine Value (IV)
3.7. Effect of Thermal Storage on Oxidizability Value (COX)
3.8. Effect of Thermal Storage on Pigment Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syed, A. Oxidative Stability and Shelf Life of Vegetable Oils. In Oxidative Stability and Shelf Life of Foods Containing Oils and Fats; Hu, M., Jacobsen, C., Eds.; AOCS Press: Champaign, IL, USA, 2016; pp. 187–207. ISBN 978-1-63067-056-6. [Google Scholar]
- Hussain, S.A.; Hameed, A.; Ajmal, I.; Nosheen, S.; Suleria, H.A.R.; Song, Y. Effects of Sesame Seed Extract as a Natural Antioxidant on the Oxidative Stability of Sunflower Oil. J. Food Sci. Technol. 2018, 55, 4099–4110. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, M.; Gruczyńska, E. Comparison of the Oxidative Stability of Soybean and Sunflower Oils Enriched with Herbal Plant Extracts. Chem. Pap. 2018, 72, 2607–2615. [Google Scholar] [CrossRef] [PubMed]
- Rauf, S.; Jamil, N.; Tariq, S.A.; Khan, M.; Kausar, M.; Kaya, Y. Progress in Modification of Sunflower Oil to Expand Its Industrial Value. J. Sci. Food Agric. 2017, 97, 1997–2006. [Google Scholar] [CrossRef] [PubMed]
- Rauf, S.; Ortiz, R.; Shehzad, M.; Haider, W.; Ahmed, I. The Exploitation of Sunflower (Helianthus annuus L.) Seed and Other Parts for Human Nutrition, Medicine and the Industry. Helia 2020, 43, 167–184. [Google Scholar] [CrossRef]
- Silva, H.R.P.; Iwassa, I.J.; Marques, J.; Postaue, N.; Stevanato, N.; Silva, C. Enrichment of Sunflower Oil with Β-carotene from Carrots: Maximization and Thermodynamic Parameters of the Β-carotene Extraction and Oil Characterization. J. Food Process. Preserv. 2020, 44, e14399. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Yıldız, Ş.; Dilmen, Ş.; Turan, S.; Kıralan, M.; Ramadan Hassanien, M.F. Effects of Natural Phenolics and Synthetic Antioxidants on the Oxidative Thermal Stability of Refined and Purified Sunflower Oils. Riv. Ital. Delle Sostanze Grasse 2021, 98, 93–103. [Google Scholar]
- Upadhyay, R.; Mishra, H.N. Effect of Relative Humidity and Light Conditions on the Oxidative Stability of Sunflower Oil Blends Stabilised with Synthetic and Natural Antioxidants. Int. J. Food Sci. Technol. 2016, 51, 293–299. [Google Scholar] [CrossRef]
- Mishra, S.K.; Belur, P.D.; Iyyaswami, R. Use of Antioxidants for Enhancing Oxidative Stability of Bulk Edible Oils: A Review. Int. J. Food Sci. Technol. 2021, 56, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Zhang, F.; Thakur, K.; Ci, A.-T.; Wang, H.; Zhang, J.-G.; Wei, Z.-J. Effect of Natural Polyphenol on the Oxidative Stability of Pecan Oil. Food Chem. Toxicol. 2018, 119, 489–495. [Google Scholar] [CrossRef]
- Viana Da Silva, M.; Santos, M.R.C.; Alves Silva, I.R.; Macedo Viana, E.B.; Dos Anjos, D.A.; Santos, I.A.; Barbosa De Lima, N.G.; Wobeto, C.; Jorge, N.; Lannes, S.C.D.S. Synthetic and Natural Antioxidants Used in the Oxidative Stability of Edible Oils: An Overview. Food Rev. Int. 2022, 38, 349–372. [Google Scholar] [CrossRef]
- Nayak, P.K.; Dash, U.; Rayaguru, K.; Krishnan, K.R. Physio-Chemical Changes During Repeated Frying of Cooked Oil: A Review: Deep Frying of Oil. J. Food Biochem. 2016, 40, 371–390. [Google Scholar] [CrossRef]
- Yang, J.H.; Tran, T.T.T.; Le, V.V.M. Effects of Natural Antioxidants on the Palm Olein Quality during the Heating and Frying. Food Meas. 2020, 14, 2713–2720. [Google Scholar] [CrossRef]
- Redondo-Cuevas, L.; Castellano, G.; Torrens, F.; Raikos, V. Revealing the Relationship between Vegetable Oil Composition and Oxidative Stability: A Multifactorial Approach. J. Food Compos. Anal. 2018, 66, 221–229. [Google Scholar] [CrossRef]
- Van Der Westhuizen, I.; Focke, W.W. Stabilizing Sunflower Biodiesel with Synthetic Antioxidant Blends. Fuel 2018, 219, 126–131. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Aladedunye, F.; Przybylski, R.; Matthaus, B. Performance of Antioxidative Compounds under Frying Conditions: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1539–1561. [Google Scholar] [CrossRef] [PubMed]
- Akbarirad, H.; Gohari Ardabili, A.; Kazemeini, S.m.; Khaneghah, M. An Overview on Some of Important Sources of Natural Antioxidants. Int. Food Res. J. 2016, 23, 928–933. [Google Scholar]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Turan, S.; Köroğlu, D.G. Oxidative Stability of Soybean Oil Enriched with Ethyl Acetate Extract of Olive By-Products. Turk. J. Agric. Food Sci. Technol. 2020, 8, 1373–1379. [Google Scholar] [CrossRef]
- Gunal Köroglu, D.; Turan, S.; Kiralan, M.; Ramadan Hassanien, M.F. Enhancement of Sunflower Oil Stability during Deep-Frying Using Extracts from Olive Oil by-Products and Soy Lecithin. Int. Food Res. J. 2019, 4, 1269–1277. [Google Scholar]
- Shadyro, O.I.; Sosnovskaya, A.A.; Edimecheva, I.P. Flaxseed Oil Stabilization Using Natural and Synthetic Antioxidants. Eur. J. Lipid Sci. Technol. 2017, 119, 1700079. [Google Scholar] [CrossRef]
- Bijla, L.; Hmitti, A.; Fadda, A.; Oubannin, S.; Gagour, J.; Aissa, R.; Laknifli, A.; Sakar, E.H.; Gharby, S. Valorization of Spent Coffee Ground as a Natural Antioxidant and Its Use for Sunflower Oil Shelf-Life Extension. Eur. J. Lipid Sci. Technol. 2024, 126, 2300115. [Google Scholar] [CrossRef]
- ISO 660; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/55/75594.html (accessed on 7 October 2022).
- ISO 3960; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/12/71268.html (accessed on 7 October 2022).
- ISO 3656; Animal and Vegetable Fats and Oils—Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction. ISO: Geneva, Switzerland, 2011. Available online: https://www.iso.org/standard/51008.html (accessed on 16 February 2023).
- Gagour, J.; Hallouch, O.; Asbbane, A.; Laknifli, A.; Sakar, E.H.; Majourhat, K.; Gharby, S. Physicochemical Characterization of ‘Moroccan Picholine’ Olive (Olea europaea L.) Oil Produced in Southern Morocco Using Multivariate Statistical Analysis. Analytica 2024, 5, 119–138. [Google Scholar] [CrossRef]
- ISO 6885; Animal and Vegetable Fats and Oils—Determination of Anisidine Value. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/95/69593.html (accessed on 7 October 2022).
- Nid Ahmed, M.; Abourat, K.; Gagour, J.; Sakar, E.H.; Majourhat, K.; Koubachi, J.; Gharby, S. Valorization of Saffron (Crocus sativus L.) Stigma as a Potential Natural Antioxidant for Soybean (Glycine max L.) Oil Stabilization. Heliyon 2024, 10, e25875. [Google Scholar] [CrossRef]
- ISO 12966-2; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/21/72142.html (accessed on 7 October 2022).
- Amini, M.; Golmakani, M.T.; Abbasi, A.; Nader, M. Effects of Sesame Dehulling on Physicochemical and Sensorial Properties of Its Oil. Food Sci. Nutr. 2023, 11, 6596–6603. [Google Scholar] [CrossRef]
- Aydenız, B.; Yilmaz, E. Performance of Different Natural Antioxidant Compounds in Frying Oil. Food Technol. Biotechnol. 2016, 54, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Rajab, Z.M.; Kareem, A.A. Fortification of Vegetable Oils—A Review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1262, 062013. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Zu, Y.; Yang, L.; Lu, Q.; Wang, W. Antioxidant Effects of Rosemary Extracts on Sunflower Oil Compared with Synthetic Antioxidants. Int. J. Food Sci. Technol. 2014, 49, 385–391. [Google Scholar] [CrossRef]
- Alizadeh, L.; Nayebzadeh, K.; Mohammadi, A. A Comparative Study on the in Vitro Antioxidant Activity of Tocopherol and Extracts from Rosemary and Ferulago Angulata on Oil Oxidation during Deep Frying of Potato Slices. J. Food Sci. Technol. 2016, 53, 611–620. [Google Scholar] [CrossRef]
- Ling, S.S.C.; Chang, S.K.; Sia, W.C.M.; Yim, H.S. Antioxidant Effcacy of Unripe Banana (Musa Acuminata Colla) Peel Extracts in Sunflower Oil during Accelerated Storage. Acta Sci. Pol. Technol. Aliment. 2015, 14, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Adiiba, S.H.; Song, C.P.; Lee, Y.Y.; Amelia; Chang, M.Y.; Chan, E.-S. Effects of Water-Soluble Secondary Antioxidants on the Retention of Carotene and Tocols during Hydrolysis of Crude Palm Oil Catalysed by Eversa® Transform 2.0 for Alcohol-Free Production of Palm Phytonutrients Concentrate. Ind. Crops Prod. 2024, 209, 117929. [Google Scholar] [CrossRef]
- Bodoira, R.M.; Penci, M.C.; Ribotta, P.D.; Martínez, M.L. Chia (Salvia hispanica L.) Oil Stability: Study of the Effect of Natural Antioxidants. LWT 2017, 75, 107–113. [Google Scholar] [CrossRef]
- Koohikamali, S.; Alam, M.S. Improvement in Nutritional Quality and Thermal Stability of Palm Olein Blended with Macadamia Oil for Deep-Fat Frying Application. J. Food Sci. Technol. 2019, 56, 5063–5073. [Google Scholar] [CrossRef] [PubMed]
- FAO. Standard for Named Vegetable Oils CXS 210-1999. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210e.pdf (accessed on 17 January 2024).
- Arabsorkhi, B.; Pourabdollah, E.; Mashadi, M. Investigating the Effect of Replacing the Antioxidants Ascorbyl Palmitate and Tocopherol Instead of TBHQ on the Shelf Life of Sunflower Oil Using Temperature Accelerated Method. Food Chem. Adv. 2023, 2, 100246. [Google Scholar] [CrossRef]
- Karabulut, I. Effects of α-Tocopherol, β-Carotene and Ascorbyl Palmitate on Oxidative Stability of Butter Oil Triacylglycerols. Food Chem. 2010, 123, 622–627. [Google Scholar] [CrossRef]
- Smyk, B. Singlet Oxygen Autoxidation of Vegetable Oils: Evidences for Lack of Synergy between β-Carotene and Tocopherols. Food Chem. 2015, 182, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Kehili, M.; Choura, S.; Zammel, A.; Allouche, N.; Sayadi, S. Oxidative Stability of Refined Olive and Sunflower Oils Supplemented with Lycopene-Rich Oleoresin from Tomato Peels Industrial by-Product, during Accelerated Shelf-Life Storage. Food Chem. 2018, 246, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Sun, X.; Zheng, W.; Luo, X.; Zhang, Y.; Yin, L.; Jia, Q.; Fu, Y. Screening of Highly Effective Mixed Natural Antioxidants to Improve the Oxidative Stability of Microalgal DHA-Rich Oil. RSC Adv. 2021, 11, 4991–4999. [Google Scholar] [CrossRef]
- Keramat, M.; Golmakani, M.-T.; Aminlari, M.; Shekarforoush, S.S. Comparative Effect of Bunium Persicum and Rosmarinus Officinalis Essential Oils and Their Synergy with Citric Acid on the Oxidation of Virgin Olive Oil. Int. J. Food Prop. 2016, 19, 2666–2681. [Google Scholar] [CrossRef]
- Cizkova, H. A New Approach for Stabilization of Gac Oil by Natural Antioxidants. Curr. Appl. Sci. Technol. 2021, 21, 431444. [Google Scholar] [CrossRef]
- Mohanan, A.; Nickerson, M.T.; Ghosh, S. Oxidative Stability of Flaxseed Oil: Effect of Hydrophilic, Hydrophobic and Intermediate Polarity Antioxidants. Food Chem. 2018, 266, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Song, X.; Sui, X.; Qi, B.; Wang, Z.; Li, Y.; Jiang, L. Rosemary Extract Can Be Used as a Synthetic Antioxidant to Improve Vegetable Oil Oxidative Stability. Ind. Crops Prod. 2016, 80, 141–147. [Google Scholar] [CrossRef]
- Ye, L.; Wang, H.; Duncan, S.E.; Eigel, W.N.; O’Keefe, S.F. Antioxidant Activities of Vine Tea (Ampelopsis Grossedentata) Extract and Its Major Component Dihydromyricetin in Soybean Oil and Cooked Ground Beef. Food Chem. 2015, 172, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Aşkın, B.; Kaya, Y. Effect of Deep Frying Process on the Quality of the Refined Oleic/Linoleic Sunflower Seed Oil and Olive Oil. J. Food Sci. Technol. 2020, 57, 4716–4725. [Google Scholar] [CrossRef] [PubMed]
- Günal, D.; Turan, S. Effects of Olive Wastewater and Pomace Extracts, Lecithin, and Ascorbyl Palmitate on the Oxidative Stability of Refined Sunflower Oil. J. Food Process. Preserv. 2018, 42, e13705. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; Matthäus, B.; Bouzoubaa, Z.; Charrouf, Z. The Chemical Parameters and Oxidative Resistance to Heat Treatment of Refined and Extra Virgin Moroccan Picholine Olive Oil. J. Taibah Univ. Sci. 2016, 10, 100–106. [Google Scholar] [CrossRef]
- Tavakoli, A.; Sahari, M.A.; Barzegar, M. Antioxidant Activity of Berberis Integerrima Seed Oil as a Natural Antioxidant on the Oxidative Stability of Soybean Oil. Int. J. Food Prop. 2017, 20, S2914–S2925. [Google Scholar] [CrossRef]
- Gagour, J.; Ahmed, M.N.; Bouzid, H.A.; Oubannin, S.; Bijla, L.; Ibourki, M.; Hajib, A.; Koubachi, J.; Harhar, H.; Gharby, S. Proximate Composition, Physicochemical, and Lipids Profiling and Elemental Profiling of Rapeseed (Brassica napus L.) and Sunflower (Helianthus annuus L.) Grown in Morocco. Evid. -Based Complement. Altern. Med. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Sidhu, A.R.; Naz, S.; Mahesar, S.A.; Kandhro, A.A.; Khaskheli, A.R.; Ali, Z.; Memon, H.D.; Shoaib, H.; Ur Rehman Mahesar, H. Effect of Storage at Elevated Temperature on the Quality and Stability of Different Almond Oils: A Comprehensive Study. Food Mater. 2023, 3, 30. [Google Scholar] [CrossRef]
- Aissa, R.; Asbbane, A.; Oubannin, S.; Bijla, L.; Bousaid, Z.; Hallouch, O.; El Harkaoui, S.; Matthäus, B.; Sakar, E.H.; Gharby, S. Oxidative Stability of Virgin and Refined Argan [Argania spinosa L. (Skeels)] Oil under Accelerated Aging Conditions and Shelf-Life Prediction at Room Temperature: A Comparative Study. Analytica 2023, 4, 500–512. [Google Scholar] [CrossRef]
- Kiralan, M.; Ulaş, M.; Özaydin, A.; Özdemır, N.; Özkan, G.; Bayrak, A.; Ramadan, M.F. Blends of Cold Pressed Black Cumin Oil and Sunflower Oil with Improved Stability: A Study Based on Changes in the Levels of Volatiles, Tocopherols and Thymoquinone during Accelerated Oxidation Conditions: Blends of Cold Pressed Black Cumin Oil and Sunflower Oil. J. Food Biochem. 2017, 41, e12272. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Palaiogiannis, D.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Evaluation of the Efficacy and Synergistic Effect of α- and δ-Tocopherol as Natural Antioxidants in the Stabilization of Sunflower Oil and Olive Pomace Oil during Storage Conditions. Int. J. Mol. Sci. 2023, 24, 1113. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.M.; Chang, S.K.; Sia, W.C.M.; Yim, H.S. Antioxidant Efficacy of Mangosteen (Garcinia Mangostana Linn.) Peel Extracts in Sunflower Oil during Accelerated Storage. Food Biosci. 2015, 12, 18–25. [Google Scholar] [CrossRef]
- Sahunie, A. Effect of Rosmarinus Officinalis and Origanum Majorana Extracts on Stability of Sunflower Oil during Storage and Repeated Heating. Oil Crop Sci. 2024, 9, 29–37. [Google Scholar] [CrossRef]
- Sousa, G.; Alves, M.I.; Neves, M.; Tecelão, C.; Ferreira-Dias, S. Enrichment of Sunflower Oil with Ultrasound-Assisted Extracted Bioactive Compounds from Crithmum maritimum L. Foods 2022, 11, 439. [Google Scholar] [CrossRef] [PubMed]
- Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini, M.; et al. Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability 2022, 14, 849. [Google Scholar] [CrossRef]
- Alsufiani, H.; Ashour, W. Effectiveness of the Natural Antioxidant 2,4,4′-Trihydroxychalcone on the Oxidation of Sunflower Oil during Storage. Molecules 2021, 26, 1630. [Google Scholar] [CrossRef]
- Yildiz, S.; Turan, S.; Kiralan, M.; Ramadan, M.F. Antioxidant Properties of Thymol, Carvacrol, and Thymoquinone and Its Efficiencies on the Stabilization of Refined and Stripped Corn Oils. Food Meas. 2021, 15, 621–632. [Google Scholar] [CrossRef]
- Marinova, E.; Toneva, A.; Yanishlieva, N. Synergistic Antioxidant Effect of α-Tocopherol and Myricetin on the Autoxidation of Triacylglycerols of Sunflower Oil. Food Chem. 2008, 106, 628–633. [Google Scholar] [CrossRef]
- El Moudden, H.; El Idrissi, Y.; Belmaghraoui, W.; Belhoussaine, O.; El Guezzane, C.; Bouayoun, T.; Harhar, H.; Tabyaoui, M. Olive Mill Wastewater Polyphenol-based Extract as a Vegetable Oil Shelf Life Extending Additive. J. Food Process. Preserv. 2020, 44, e14990. [Google Scholar] [CrossRef]
- Gharby, S.; Charrouf, Z. Argan Oil: Chemical Composition, Extraction Process, and Quality Control. Front. Nutr. 2021, 8, 804587. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Chopra, R.; Garg, M. Comparative Study on the Use of Rosemary Bioactive for Enhancing the Oxidative Stability of Blended Perilla Seed Oil: A Multivariant Kinetic Approach. Food Chem. Adv. 2023, 3, 100447. [Google Scholar] [CrossRef]
- El Bernoussi, S.; Boujemaa, I.; Harhar, H.; Belmaghraoui, W.; Matthäus, B.; Tabyaoui, M. Evaluation of Oxidative Stability of Sweet and Bitter Almond Oils under Accelerated Storage Conditions. J. Stored Prod. Res. 2020, 88, 101662. [Google Scholar] [CrossRef]
- Cherif, A.; Slama, A. Stability and Change in Fatty Acids Composition of Soybean, Corn, and Sunflower Oils during the Heating Process. J. Food Qual. 2022, 2022, e6761029. [Google Scholar] [CrossRef]
- Meng, Y.; Yang, H.; Wang, D.; Ma, Y.; Wang, X.; Blasi, F. Improvement for Oxidative Stability and Sensory Properties of Sunflower Oil Flavored by Huai Chrysanthemum × Morifolium Ramat. Essential Oil during Accelerated Storage. Processes 2021, 9, 1199. [Google Scholar] [CrossRef]
- Yılmaz, B.; Şahin, T.Ö.; Ağagündüz, D. Oxidative Changes in Ten Vegetable Oils Caused by the Deep-Frying Process of Potato. J. Food Biochem. 2023, 2023, 1–11. [Google Scholar] [CrossRef]
- Alireza, S.; Tan, C.P.; Hamed, M.; Che Man, Y.B. Effect of Frying Process on Fatty Acid Composition and Iodine Value of Selected Vegetable Oils and Their Blends. Int. Food Res. J. 2010, 17, 295–302. [Google Scholar]
- Romanić, R.; Lužaić, T.; Grgić, K. Examining the Possibility of Improving the Properties of Sunflower Oil in Order to Obtain a Better Medium for the Process of Frying Food. Proceedings 2020, 70, 104. [Google Scholar] [CrossRef]
- Silva de Sousa, L.; Verônica Rodarte de Moura, C.; Miranda de Moura, E. Action of Natural Antioxidants on the Oxidative Stability of Soy Biodiesel during Storage. Fuel 2021, 288, 119632. [Google Scholar] [CrossRef]
- Farahmandfar, R.; Asnaashari, M.; Pourshayegan, M.; Maghsoudi, S.; Moniri, H. Evaluation of Antioxidant Properties of Lemon Verbena (Lippia citriodora) Essential Oil and Its Capacity in Sunflower Oil Stabilization during Storage Time. Food Sci. Nutr. 2018, 6, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Nogales-Delgado, S.; Encinar, J.M.; Guiberteau, A.; Márquez, S. The Effect of Antioxidants on Corn and Sunflower Biodiesel Properties under Extreme Oxidation Conditions. J. Am. Oil Chem. Soc. 2020, 97, 201–212. [Google Scholar] [CrossRef]
- Hassanein, M.M.M.; Al-Amrousi, E.F.; Abo-Elwafa, G.A.; Abdel-Razek, A.G. Characterization of Egyptian Monovarietal Koroneiki Virgin Olive Oil and Its Co-Products. Egypt. J. Chem. 2022, 65, 637–645. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Utilization of Blackthorn Plums (Prunus spinosa) and Sweet Cherry (Prunus avium) Kernel Oil: Assessment of Chemical Composition, Antioxidant Activity, and Oxidative Stability. Biomass 2024, 4, 49–64. [Google Scholar] [CrossRef]
- Singh, P.K.; Chopra, R.; Garg, M.; Chauhan, K.; Agarwal, A. Stability of Perilla Seed Oil Based PUFA-Rich Structured Lipids Using Enzymatic Interesterification: A Thermo-Oxidative Kinetic Study. Ind. Crops Prod. 2024, 209, 118029. [Google Scholar] [CrossRef]
- Ghaliaoui, N.; Hazzit, M.; Seridi, H.; Mokrane, H. Oxidative Stability of Soybean And Sunflower Oils Enriched With Pigment Extracts of the Brown Seaweed Phyllaria Reniformis: Stabilisation of Edible Oils by Alga Pigments. J. Microbiol. Biotechnol. Food Sci. 2023, 13, e9290. [Google Scholar] [CrossRef]
- Rhazi, L.; Depeint, F.; Ayerdi Gotor, A. Loss in the Intrinsic Quality and the Antioxidant Activity of Sunflower (Helianthus annuus L.) Oil during an Industrial Refining Process. Molecules 2022, 27, 916. [Google Scholar] [CrossRef] [PubMed]
- Banaś, J.; Maciejaszek, I.; Surówka, K.; Zawiślak, A. Temperature-Induced Storage Quality Changes in Pumpkin and Safflower Cold-Pressed Oils. Food Meas. 2020, 14, 1213–1222. [Google Scholar] [CrossRef]
- Díez-Betriu, A.; Bustamante, J.; Romero, A.; Ninot, A.; Tres, A.; Vichi, S.; Guardiola, F. Effect of the Storage Conditions and Freezing Speed on the Color and Chlorophyll Profile of Premium Extra Virgin Olive Oils. Foods 2023, 12, 222. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef]
- Gharby, S.; Oubannin, S.; Ait Bouzid, H.; Bijla, L.; Ibourki, M.; Gagour, J.; Koubachi, J.; Sakar, E.H.; Majourhat, K.; Lee, L.-H.; et al. An Overview on the Use of Extracts from Medicinal and Aromatic Plants to Improve Nutritional Value and Oxidative Stability of Vegetable Oils. Foods 2022, 11, 3258. [Google Scholar] [CrossRef] [PubMed]
- Ghendov-Mosanu, A.; Popovici, V.; Constantinescu (Pop), C.G.; Deseatnicova, O.; Siminiuc, R.; Subotin, I.; Druta, R.; Pintea, A.; Socaciu, C.; Sturza, R. Stabilization of Sunflower Oil with Biologically Active Compounds from Berries. Molecules 2023, 28, 3596. [Google Scholar] [CrossRef] [PubMed]
Sunflower Oil Control | Sunflower Oil with Vitamin A | |||||||
---|---|---|---|---|---|---|---|---|
W0 | W4 | W8 | W12 | W0 | W4 | W8 | W12 | |
C14:0 Myristic acid | 0.07 ± 0.02 a | 0.08 ± 0.01 a | 0.11 ± 0.02 a | 0.09 ± 0.03 a | 0.10 ± 0.01 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.09 ± 0.02 a |
C16:0 Palmitic acid | 7.72 ± 0.09 a | 7.83 ± 0.04 b | 7.55 ± 0.03 a | 8.55 ± 0.05 c | 7.62 ± 0.03 a | 7.77 ± 0.06 a | 7.98 ± 0.08 b | 8.75 ± 0.11 c |
C16:1 Palmitoleic acid | 0.11 ± 0.03 ab | 0.12 ± 0.03 b | 0.11 ± 0.01 ab | 0.22 ± 0.02 a | 0.15 ± 0.01 ab | 0.16 ± 0.01 ab | 0.11 ± 0.02 a | 0.20 ± 0.04 b |
C18:0 Stearic acid | 3.34 ± 0.09 a | 3.40 ± 0.11 ab | 3.6 ± 0.09 b | 3.05 ± 0.06 c | 3.72 ± 0.06 ab | 3.66 ± 0.10 ab | 3.80 ± 0.10 b | 3.58 ± 0.05 a |
C18:1 Oleic acid | 36.16 ± 0.14 a | 36.53 ± 0.09 b | 38.32 ± 0.18 c | 40.26 ± 0.11 d | 36.33 ± 0.09 a | 37.63 ± 0.14 b | 36.85 ± 0.13 c | 38.88 ± 0.22 d |
C18:2 Olinoleic acid | 51.04 ± 0.23 a | 50.41 ± 0.16 b | 47.84 ± 0.25 c | 46.03 ± 0.12 d | 51.30 ± 0.11 a | 49.66 ± 0.04 b | 47.84 ± 0.09 c | 45.88 ± 0.20 d |
C18:3 Linolenic acid | 0.31 ± 0.05 a | 0.41 ± 0.03 b | 0.32 ± 0.04 ab | 0.21 ± 0.02 c | 0.20 ± 0.01 a | 0.21 ± 0.02 a | 0.21 ± 0.02 a | 0.23 ± 0.03 a |
C20:0 Arachidic acid | 0.24 ± 0.03 a | 0.23 ± 0.03 a | 0.28 ± 0.01 ab | 0.31 ± 0.02 b | 0.09 ± 0.02 a | 0.15 ± 0.01 b | 0.21 ± 0.01 c | 0.08 ± 0.02 a |
C22:0 Docosanoic acid | 1.01 ± 0.05 a | 0.98 ± 0.03 a | 0.94 ± 0.03 a | 1.02 ± 0.04 a | 0.99 ± 0.02 a | 1.00 ± 0.03 a | 1.02 ± 0.04 a | 0.98 ± 0.05 a |
MUFA | 36.27 ± 0.17 a | 36.65 ± 0.12 a | 38.43 ± 0.19 b | 40.48 ± 0.13 c | 36.48 ± 0.10 a | 37.79 ± 0.15 b | 36.96 ± 0.15 c | 39.08 ± 0.25 d |
PUFA | 51.35 ± 0.28 a | 50.82 ± 0.19 a | 48.16 ± 0.29 b | 46.24 ± 0.14 c | 51.5 ± 0.12 a | 49.87 ± 0.16 b | 48.05 ± 0.11 c | 46.11 ± 0.23 d |
UFA | 87.62 ± 0.23 a | 87.47 ± 0.16 a | 86.59 ± 0.24 b | 86.72 ± 0.14 b | 87.98 ± 0.11 a | 87.66 ± 0.16 a | 85.01 ± 0.13 b | 85.19 ± 0.24 b |
SFA | 12.38 ± 0.28 a | 12.52 ± 0.22 ab | 12.48 ± 0.18 ab | 13.02 ± 0.20 b | 12.52 ± 0.14 a | 12.66 ± 0.21 ab | 13.09 ± 0.24 bc | 13.48 ± 0.25 c |
COX | 5.69 ± 0.44 a | 5.65 ± 0.33 a | 5.38 ± 0.23 a | 5.19 ± 0.19 a | 5.69 ± 0.12 a | 5.54 ± 0.16 a | 5.34 ± 0.28 a | 5.17 ± 0.29 a |
Sunflower Oil with Vitamin E | Sunflower Oil with β-Carotene | |||||||
---|---|---|---|---|---|---|---|---|
W0 | W4 | W8 | W12 | W0 | W4 | W8 | W12 | |
C14:0 Myristic acid | 0.09 ± 0.01 a | 0.09 ± 0.02 a | 0.05 ± 0.02 a | 0.07 ± 0.01 a | 0.11 ± 0.02 ab | 0.07 ± 0.03 ab | 0.06 ± 0.01 a | 0.14 ± 0.04 b |
C16:0 Palmitic acid | 6.81 ± 0.05 a | 7.77 ± 0.04 b | 7.60 ± 0.07 b | 7.76 ± 0.09 b | 6.80 ± 0.11 a | 7.98 ± 0.06 b | 8.01 ± 0.13 b | 8.18 ± 0.10 b |
C16:1 Palmitoleic acid | 0.20 ± 0.02 a | 0.15 ± 0.02 a | 0.18 ± 0.01 ab | 0.17 ± 0.01 ab | 0.22 ± 0.01 a | 0.25 ± 0.03 a | 0.19 ± 0.02 a | 0.22 ± 0.04 a |
C18:0 Stearic acid | 3.82 ± 0.11 a | 3.86 ± 0.08 a | 3.65 ± 0.15 a | 3.77 ± 0.08 a | 3.82 ± 0.14 a | 3.79 ± 0.12 a | 3.77 ± 0.09 a | 3.60 ± 0.17 a |
C18:1 Oleic acid | 39.24 ± 0.17 a | 37.86 ± 0.13 b | 35.58 ± 0.15 c | 34.58 ± 0.19 d | 39.2 ± 0.20 a | 37.89 ± 0.11 b | 36.66 ± 0.13 c | 35.11 ± 0.10 d |
C18:2 Olinoleic acid | 48.46 ± 0.15 a | 47.52 ± 0.16 b | 48.49 ± 0.19 ab | 48.65 ± 0.13 a | 48.41 ± 0.18 a | 49.14 ± 0.14 bc | 48.76 ± 0.14 ab | 49.20 ± 0.17 c |
C18:3 Linolenic acid | 0.29 ± 0.02 a | 0.36 ± 0.02 b | 0.32 ± 0.01 ab | 0.31 ± 0.02 a | 0.31 ± 0.01 a | 0.22 ± 0.01 b | 0.25 ± 0.01 c | 0.17 ± 0.01 d |
C20:0 Arachidic acid | 0.21 ± 0.01 a | 0.23 ± 0.02 a | 0.25 ± 0.03 a | 0.24 ± 0.03 a | 0.12 ± 0.02 a | 0.23 ± 0.01 b | 0.21 ± 0.01 c | 0.18 ± 0.01 d |
C22:0 Docosanoic acid | 0.95 ± 0.02 a | 0.87 ± 0.03 b | 0.69 ± 0.02 b | 0.54 ± 0.06 c | 0.74 ± 0.01 a | 0.88 ± 0.04 a | 0.84 ± 0.06 a | 0.54 ± 0.08 b |
MUFA | 39.44 ± 0.19 a | 38.01 ± 0.15 b | 35.76 ± 0.16 c | 34.75 ± 0.20 d | 39.42 ± 0.21 a | 38.14 ± 0.14 b | 36.85 ± 0.15 c | 35.33 ± 0.14 d |
PUFA | 48.75 ± 0.17 a | 47.88 ± 0.18 b | 48.81 ± 0.20 a | 48.96 ± 0.15 a | 48.72 ± 0.19 a | 49.36 ± 0.15 b | 49.01 ± 0.15 ab | 49.37 ± 0.18 b |
UFA | 88.19 ± 0.18 a | 85.89 ± 0.17 b | 84.57 ± 0.18 c | 83.71 ± 0.18 d | 88.14 ± 0.20 a | 87.5 ± 0.15 b | 85.86 ± 0.15 c | 84.70 ± 0.16 d |
SFA | 11.88 ± 0.20 a | 12.82 ± 0.19 b | 12.24 ± 0.29 ab | 12.38 ± 0.27 ab | 11.59 ± 0.30 a | 12.95 ± 0.26 b | 12.89 ± 0.30 b | 12.63 ± 0.40 b |
COX | 5.45 ± 0.18 a | 5.35 ± 0.20 a | 5.42 ± 0.09 a | 5.43 ± 0.13 a | 5.45 ± 0.09 a | 5.49 ± 0.17 a | 5.44 ± 0.15 a | 5.46 ± 0.25 a |
Sunflower Oil with BHT | Sunflower Oil with Vitamin E/β-Carotene | |||||||
---|---|---|---|---|---|---|---|---|
W0 | W4 | W8 | W12 | W0 | W4 | W8 | W12 | |
C14:0 Myristic acid | 0.14 ± 0.01 a | 0.09 ± 0.02 b | 0.11 ± 0.02 ab | 0.11 ± 0.01 ab | 0.14 ± 0.01 a | 0.13 ± 0.01 a | 0.08 ± 0.01 b | 0.12 ± 0.01 a |
C16:0 Palmitic acid | 7.47 ± 0.06 a | 7.32 ± 0.08 a | 7.30 ± 0.10 a | 7.46 ± 0.11 a | 6.72 ± 0.10 a | 6.98 ± 0.09 a | 7.45 ± 0.08 b | 8.00 ± 0.13 c |
C16:1 Palmitoleic acid | 0.20 ± 0.02 a | 0.14 ± 0.01 ab | 0.12 ± 0.03 b | 0.51 ± 0.03 c | 0.19 ± 0.03 a | 0.12 ± 0.05 a | 0.14 ± 0.07 a | 0.13 ± 0.04 a |
C18:0 Stearic acid | 3.37 ± 0.15 a | 3.66 ± 0.10 ab | 3.39 ± 0.13 ab | 3.72 ± 0.14 b | 3.43 ± 0.09 a | 3.40 ± 0.08 a | 3.68 ± 0.05 b | 3.93 ± 0.10 c |
C18:1 Oleic acid | 37.70 ± 0.14 a | 36.86 ± 0.10 b | 37.40 ± 0.16 a | 36.94 ± 0.15 b | 36.78 ± 0.16 a | 38.44 ± 0.17 b | 36.83 ± 0.12 a | 39.72 ± 0.13 c |
C18:2 Olinoleic acid | 50.45 ± 0.22 a | 50.65 ± 0.15 a | 50.33 ± 0.18 a | 49.86 ± 0.12 b | 49.99 ± 0.11 a | 48.40 ± 0.16 b | 48.99 ± 0.15 c | 46.72 ± 0.13 d |
C18:3 Linolenic acid | 0.28 ± 0.01 a | 0.32 ± 0.03 a | 0.31 ± 0.02 a | 0.33 ± 0.03 a | 0.32 ± 0.02 a | 0.27 ± 0.04 a | 0.31 ± 0.03 a | 0.30 ± 0.01 a |
C20:0 Arachidic acid | 0.22 ± 0.02 a | 0.23 ± 0.02 a | 0.21 ± 0.01 ab | 0.17 ± 0.01 b | 0.21 ± 0.01 a | 0.30 ± 0.01 b | 0.22 ± 0.01 a | 0.23 ± 0.01 a |
C22:0 Docosanoic acid | 1.02 ± 0.01 a | 0.97 ± 0.04 a | 0.89 ± 0.01 b | 1.03 ± 0.02 a | 0.97 ± 0.06 a | 0.76 ± 0.07 a | 0.88 ± 0.11 a | 0.96 ± 0.12 a |
MUFA | 37.90 ± 0.16 a | 37.00 ± 0.11 b | 37.52 ± 0.219 ac | 37.45 ± 0.18 c | 36.97 ± 0.19 a | 38.56 ± 0.22 b | 36.97 ± 0.19 a | 39.85 ± 0.17 c |
PUFA | 50.73 ± 0.23 a | 50.97 ± 0.18 a | 50.64 ± 0.20 ab | 50.19 ± 0.15 b | 50.31 ± 0.13 a | 48.67 ± 0.20 b | 49.30 ± 0.18 c | 47.02 ± 0.14 d |
UFA | 88.63 ± 0.20 a | 87.97 ± 0.15 bc | 88.16 ± 0.20 b | 87.64 ± 0.17 c | 87.28 ± 0.16 a | 87.23 ± 0.21 a | 86.27 ± 0.19 b | 86.87 ± 0.16 a |
SFA | 12.22 ± 0.25 a | 12.27 ± 0.26 a | 11.90 ± 0.27 a | 12.49 ± 0.29 a | 11.47 ± 0.27 a | 11.57 ± 0.26 ab | 12.31 ± 0.27 b | 13.24 ± 0.38 c |
COX | 5.64 ± 0.14 a | 5.66 ± 0.17 a | 5.63 ± 0.32 a | 5.58 ± 0.16 a | 5.59 ± 0.23 a | 5.43 ± 0.57 a | 5.48 ± 0.60 a | 5.28 ± 0.35 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nid Ahmed, M.; Gagour, J.; Asbbane, A.; Hallouch, O.; Atrach, L.; Giuffrè, A.M.; Majourhat, K.; Gharby, S. Advances in the Use of Four Synthetic Antioxidants as Food Additives for Enhancing the Oxidative Stability of Refined Sunflower Oil (Helianthus annuus L.). Analytica 2024, 5, 273-294. https://doi.org/10.3390/analytica5020018
Nid Ahmed M, Gagour J, Asbbane A, Hallouch O, Atrach L, Giuffrè AM, Majourhat K, Gharby S. Advances in the Use of Four Synthetic Antioxidants as Food Additives for Enhancing the Oxidative Stability of Refined Sunflower Oil (Helianthus annuus L.). Analytica. 2024; 5(2):273-294. https://doi.org/10.3390/analytica5020018
Chicago/Turabian StyleNid Ahmed, Moussa, Jamila Gagour, Abderrahim Asbbane, Otmane Hallouch, Lahoucine Atrach, Angelo Maria Giuffrè, Khalid Majourhat, and Said Gharby. 2024. "Advances in the Use of Four Synthetic Antioxidants as Food Additives for Enhancing the Oxidative Stability of Refined Sunflower Oil (Helianthus annuus L.)" Analytica 5, no. 2: 273-294. https://doi.org/10.3390/analytica5020018
APA StyleNid Ahmed, M., Gagour, J., Asbbane, A., Hallouch, O., Atrach, L., Giuffrè, A. M., Majourhat, K., & Gharby, S. (2024). Advances in the Use of Four Synthetic Antioxidants as Food Additives for Enhancing the Oxidative Stability of Refined Sunflower Oil (Helianthus annuus L.). Analytica, 5(2), 273-294. https://doi.org/10.3390/analytica5020018