Poly- and Perfluoroalkyl Substance (PFAS) Analysis in Environmental Matrices: An Overview of the Extraction and Chromatographic Detection Methods
Abstract
:1. Introduction
2. Literature Research
3. Toxicology and Risk Assessment of PFAS
4. Regulation
5. PFAS Analysis on Environmental Matrices
5.1. Surface Water, Underground Water, Wastewater
5.2. Soil and Sediments
5.3. Air and Dust
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Buser, A.M.; Cousins, I.T.; Demattio, S.; Drost, W.; Johansson, O.; Ohno, K.; Patlewicz, G.; Richard, A.M.; Walker, G.W.; et al. A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environ. Sci. Technol. 2021, 55, 15575–15578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, B.; Ma, S.; Zhang, Q. Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) from Water with Porous Organic Polymers. Chemosphere 2024, 346, 140600. [Google Scholar] [CrossRef] [PubMed]
- Rehnstam, S.; Czeschka, M.-B.; Ahrens, L. Suspect Screening and Total Oxidizable Precursor (TOP) Assay as Tools for Characterization of per- and Polyfluoroalkyl Substance (PFAS)-Contaminated Groundwater and Treated Landfill Leachate. Chemosphere 2023, 334, 138925. [Google Scholar] [CrossRef] [PubMed]
- Paige, T.; De Silva, T.; Buddhadasa, S.; Prasad, S.; Nugegoda, D.; Pettigrove, V. Background Concentrations and Spatial Distribution of PFAS in Surface Waters and Sediments of the Greater Melbourne Area, Australia. Chemosphere 2024, 349, 140791. [Google Scholar] [CrossRef] [PubMed]
- Podder, A.; Sadmani, A.H.M.A.; Reinhart, D.; Chang, N.-B.; Goel, R. Per and Poly-Fluoroalkyl Substances (PFAS) as a Contaminant of Emerging Concern in Surface Water: A Transboundary Review of Their Occurrences and Toxicity Effects. J. Hazard. Mater. 2021, 419, 126361. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, L.; Rakovic, J.; Ekdahl, S.; Kallenborn, R. Environmental Distribution of Per- and Polyfluoroalkyl Substances (PFAS) on Svalbard: Local Sources and Long-Range Transport to the Arctic. Chemosphere 2023, 345, 140463. [Google Scholar] [CrossRef] [PubMed]
- Miserli, K.; Athanasiou, V.; Boti, V.; Hela, D.; Konstantinou, I. Determination of PFAS in Wastewaters and Natural Waters by Solid Phase Extraction and UHPLC LTQ/Orbitrap MS for Assessing Occurrence and Removals. Case Stud. Chem. Environ. Eng. 2023, 8, 100505. [Google Scholar] [CrossRef]
- Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Scheringer, M.; Wang, Z. The High Persistence of PFAS Is Sufficient for Their Management as a Chemical Class. Environ. Sci. Process. Impacts 2020, 22, 2307–2312. [Google Scholar] [CrossRef]
- Wallis, D.J.; Kotlarz, N.; Knappe, D.R.U.; Collier, D.N.; Lea, C.S.; Reif, D.; McCord, J.; Strynar, M.; DeWitt, J.C.; Hoppin, J.A. Estimation of the Half-Lives of Recently Detected Per- and Polyfluorinated Alkyl Ethers in an Exposed Community. Environ. Sci. Technol. 2023, 57, 15348–15355. [Google Scholar] [CrossRef]
- Hoover, G.M.; Chislock, M.F.; Tornabene, B.J.; Guffey, S.C.; Choi, Y.J.; De Perre, C.; Hoverman, J.T.; Lee, L.S.; Sepúlveda, M.S. Uptake and Depuration of Four Per/Polyfluoroalkyl Substances (PFASS) in Northern Leopard Frog Rana Pipiens Tadpoles. Environ. Sci. Technol. Lett. 2017, 4, 399–403. [Google Scholar] [CrossRef]
- Langberg, H.A.; Breedveld, G.D.; Slinde, G.A.; Grønning, H.M.; Høisæter, Å.; Jartun, M.; Rundberget, T.; Jenssen, B.M.; Hale, S.E. Fluorinated Precursor Compounds in Sediments as a Source of Perfluorinated Alkyl Acids (PFAA) to Biota. Environ. Sci. Technol. 2020, 54, 13077–13089. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Niu, Z.; Zhang, Y. Occurrence of Legacy and Emerging Poly- and Perfluoroalkyl Substances in Water: A Case Study in Tianjin (China). Chemosphere 2022, 287, 132409. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lin, X.; Xing, Y.; Zhang, X.; Lee, H.K.; Huang, Z. Per- and Polyfluoroalkyl Substances in Personal Hygiene Products: The Implications for Human Exposure and Emission to the Environment. Environ. Sci. Technol. 2023, 57, 8484–8495. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhu, Y.; Xu, D.; Feng, X.; Yu, X.; Shan, G.; Zhu, L. Insights into the Competitive Mechanisms of Per- and Polyfluoroalkyl Substances Partition in Liver and Blood. Environ. Sci. Technol. 2022, 56, 6192–6200. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tang, B.; Nie, S.; Zhao, N.; He, L.; Cui, J.; Mao, W.; Jin, H. Distribution of Per- and Poly-Fluoroalkyl Substances and Their Precursors in Human Blood. J. Hazard. Mater. 2023, 441, 129908. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.F.; Xia, Q.; Peng, C.; Ng, J.C. Evaluation of the Individual and Combined Toxicity of Perfluoroalkyl Substances to Human Liver Cells Using Biomarkers of Oxidative Stress. Chemosphere 2021, 281, 130808. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.; Fischer, F.C.; Leth, P.M.; Grandjean, P. Occurrence of Major Perfluorinated Alkylate Substances in Human Blood and Target Organs. Environ. Sci. Technol. 2024, 58, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Guo, Y.; Chen, Y.; Hong, J.; Wu, J.; Hangbiao, J. Per-/Polyfluoroalkyl Substance Concentrations in Human Serum and Their Associations with Liver Cancer. Chemosphere 2022, 296, 134083. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, N.; Dai, C.; Xu, J.; Zhang, Y.; Xu, M.; Wang, F.; Li, Y.; Chen, D. Occurrence and Distribution of Per- and Polyfluoroalkyl Substances (PFASs) in Human Livers with Liver Cancer. Environ. Res. 2021, 202, 111775. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.F.; Peng, C.; Ng, J.C. Combined Effects and Toxicological Interactions of Perfluoroalkyl and Polyfluoroalkyl Substances Mixtures in Human Liver Cells (HepG2). Environ. Pollut. 2020, 263, 114182. [Google Scholar] [CrossRef]
- Amstutz, V.H.; Cengo, A.; Gehres, F.; Sijm, D.T.H.M.; Vrolijk, M.F. Investigating the Cytotoxicity of Per- and Polyfluoroalkyl Substances in HepG2 Cells: A Structure-Activity Relationship Approach. Toxicology 2022, 480, 153312. [Google Scholar] [CrossRef] [PubMed]
- Dragon, J.; Hoaglund, M.; Badireddy, A.R.; Nielsen, G.; Schlezinger, J.; Shukla, A. Perfluoroalkyl Substances (PFAS) Affect Inflammation in Lung Cells and Tissues. Int. J. Mol. Sci. 2023, 24, 8539. [Google Scholar] [CrossRef] [PubMed]
- Sørli, J.B.; Låg, M.; Ekeren, L.; Perez-Gil, J.; Haug, L.S.; Da Silva, E.; Matrod, M.N.; Gützkow, K.B.; Lindeman, B. Per- and Polyfluoroalkyl Substances (PFASs) Modify Lung Surfactant Function and pro-Inflammatory Responses in Human Bronchial Epithelial Cells. Toxicol. In Vitro 2020, 62, 104656. [Google Scholar] [CrossRef] [PubMed]
- Pye, E.S.; Wallace, S.E.; Marangoni, D.G.; Foo, A.C.Y. Albumin Proteins as Delivery Vehicles for PFAS Contaminants into Respiratory Membranes. ACS Omega 2023, 8, 44036–44043. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Roth, K.; Ding, J.; Kassotis, C.D.; Mor, G.; Petriello, M.C. Exposure to a Mixture of Per-and Polyfluoroalkyl Substances Modulates Pulmonary Expression of ACE2 and Circulating Hormones and Cytokines. Toxicol. Appl. Pharmacol. 2022, 456, 116284. [Google Scholar] [CrossRef] [PubMed]
- Impinen, A.; Nygaard, U.C.; Lødrup Carlsen, K.C.; Mowinckel, P.; Carlsen, K.H.; Haug, L.S.; Granum, B. Prenatal Exposure to Perfluoralkyl Substances (PFASs) Associated with Respiratory Tract Infections but Not Allergy- and Asthma-Related Health Outcomes in Childhood. Environ. Res. 2018, 160, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Phelps, D.W.; Palekar, A.I.; Conley, H.E.; Ferrero, G.; Driggers, J.H.; Linder, K.E.; Kullman, S.W.; Reif, D.M.; Sheats, M.K.; DeWitt, J.C.; et al. Legacy and Emerging Per- and Polyfluoroalkyl Substances Suppress the Neutrophil Respiratory Burst. J. Immunotoxicol. 2023, 20, 2176953. [Google Scholar] [CrossRef]
- Brumovský, M.; Bečanová, J.; Karásková, P.; Nizzetto, L. Retention Performance of Three Widely Used SPE Sorbents for the Extraction of Perfluoroalkyl Substances from Seawater. Chemosphere 2018, 193, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, J.; Yeung, L.W.Y.; Wei, S.; Dai, J. Analysis of Emerging Per- and Polyfluoroalkyl Substances: Progress and Current Issues. TrAC Trends Anal. Chem. 2020, 124, 115481. [Google Scholar] [CrossRef]
- Ghorbani Gorji, S.; Hawker, D.W.; Mackie, R.; Higgins, C.P.; Bowles, K.; Li, Y.; Kaserzon, S. Sorption Affinity and Mechanisms of Per-and Polyfluoroalkyl Substances (PFASs) with Commercial Sorbents: Implications for Passive Sampling. J. Hazard. Mater. 2023, 457, 131688. [Google Scholar] [CrossRef]
- Gonzalez De Vega, R.; Cameron, A.; Clases, D.; Dodgen, T.M.; Doble, P.A.; Bishop, D.P. Simultaneous Targeted and Non-Targeted Analysis of per- and Polyfluoroalkyl Substances in Environmental Samples by Liquid Chromatography-Ion Mobility-Quadrupole Time of Flight-Mass Spectrometry and Mass Defect Analysis. J. Chromatogr. A 2021, 1653, 462423. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Aro, R.; Wang, T.; Yeung, L.W.Y. Towards a Comprehensive Analytical Workflow for the Chemical Characterisation of Organofluorine in Consumer Products and Environmental Samples. TrAC Trends Anal. Chem. 2020, 123, 115423. [Google Scholar] [CrossRef]
- Johnson, M.S.; Buck, R.C.; Cousins, I.T.; Weis, C.P.; Fenton, S.E. Estimating Environmental Hazard and Risks from Exposure to Per- and Polyfluoroalkyl Substances (PFASs): Outcome of a SETAC Focused Topic Meeting. Environ. Toxicol. Chem. 2021, 40, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Harlow, S.D.; Randolph, J.F., Jr.; Loch-Caruso, R.; Park, S.K. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) and Their Effects on the Ovary. Hum. Reprod. Update 2020, 26, 724–752. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Peng, L.; Li, Y.; Li, Z.; Chen, D.; Wang, F.; Lin, N. Distribution of Per- and Polyfluoroalkyl Substances in Blood, Serum, and Urine of Patients with Liver Cancer and Associations with Liver Function Biomarkers. J. Environ. Sci. 2024, 139, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, J.; Pan, Y.; Dai, J.; Tang, J. Trophic Behaviors of PFOA and Its Alternatives Perfluoroalkyl Ether Carboxylic Acids (PFECAs) in a Coastal Food Web. J. Hazard. Mater. 2023, 452, 131353. [Google Scholar] [CrossRef] [PubMed]
- Poothong, S.; Papadopoulou, E.; Padilla-Sánchez, J.A.; Thomsen, C.; Haug, L.S. Multiple Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs): From External Exposure to Human Blood. Environ. Int. 2020, 134, 105244. [Google Scholar] [CrossRef] [PubMed]
- Poothong, S.; Thomsen, C.; Padilla-Sanchez, J.A.; Papadopoulou, E.; Haug, L.S. Distribution of Novel and Well-Known Poly- and Perfluoroalkyl Substances (PFASs) in Human Serum, Plasma, and Whole Blood. Environ. Sci. Technol. 2017, 51, 13388–13396. [Google Scholar] [CrossRef] [PubMed]
- Abraham, K.; El-Khatib, A.H.; Schwerdtle, T.; Monien, B.H. Perfluorobutanoic Acid (PFBA): No High-Level Accumulation in Human Lung and Kidney Tissue. Int. J. Hyg. Environ. Health 2021, 237, 113830. [Google Scholar] [CrossRef]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef]
- Cao, H.; Zhou, Z.; Hu, Z.; Wei, C.; Li, J.; Wang, L.; Liu, G.; Zhang, J.; Wang, Y.; Wang, T.; et al. Effect of Enterohepatic Circulation on the Accumulation of Per- and Polyfluoroalkyl Substances: Evidence from Experimental and Computational Studies. Environ. Sci. Technol. 2022, 56, 3214–3224. [Google Scholar] [CrossRef] [PubMed]
- Baumert, B.O.; Fischer, F.C.; Nielsen, F.; Grandjean, P.; Bartell, S.; Stratakis, N.; Walker, D.I.; Valvi, D.; Kohli, R.; Inge, T.; et al. Paired Liver:Plasma PFAS Concentration Ratios from Adolescents in the Teen-LABS Study and Derivation of Empirical and Mass Balance Models to Predict and Explain Liver PFAS Accumulation. Environ. Sci. Technol. 2023, 57, 14817–14826. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; Qadri, S.; Luukkonen, P.K.; Ragnarsdottir, O.; McGlinchey, A.; Jäntti, S.; Juuti, A.; Arola, J.; Schlezinger, J.J.; Webster, T.F.; et al. Exposure to Environmental Contaminants Is Associated with Altered Hepatic Lipid Metabolism in Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2022, 76, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Roth, K.; Yang, Z.; Agarwal, M.; Liu, W.; Peng, Z.; Long, Z.; Birbeck, J.; Westrick, J.; Liu, W.; Petriello, M.C. Exposure to a Mixture of Legacy, Alternative, and Replacement per- and Polyfluoroalkyl Substances (PFAS) Results in Sex-Dependent Modulation of Cholesterol Metabolism and Liver Injury. Environ. Int. 2021, 157, 106843. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Ling, X.; He, S.; Cui, H.; Yang, Z.; An, H.; Wang, L.; Zou, P.; Chen, Q.; Liu, J.; et al. PPARα/ACOX1 as a Novel Target for Hepatic Lipid Metabolism Disorders Induced by per- and Polyfluoroalkyl Substances: An Integrated Approach. Environ. Int. 2023, 178, 108138. [Google Scholar] [CrossRef] [PubMed]
- Fábelová, L.; Beneito, A.; Casas, M.; Colles, A.; Dalsager, L.; Den Hond, E.; Dereumeaux, C.; Ferguson, K.; Gilles, L.; Govarts, E.; et al. PFAS Levels and Exposure Determinants in Sensitive Population Groups. Chemosphere 2023, 313, 137530. [Google Scholar] [CrossRef] [PubMed]
- Blake, B.E.; Rickard, B.P.; Fenton, S.E. A High-Throughput Toxicity Screen of 42 Per- and Polyfluoroalkyl Substances (PFAS) and Functional Assessment of Migration and Gene Expression in Human Placental Trophoblast Cells. Front. Toxicol. 2022, 4, 881347. [Google Scholar] [CrossRef]
- Lu, Y.; Meng, L.; Ma, D.; Cao, H.; Liang, Y.; Liu, H.; Wang, Y.; Jiang, G. The Occurrence of PFAS in Human Placenta and Their Binding Abilities to Human Serum Albumin and Organic Anion Transporter 4. Environ. Pollut. 2021, 273, 116460. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Zhuang, T.; Liu, X.; Fu, J.; Zhang, J.; Fu, J.; Wang, L.; Zhang, A.; Liang, Y.; Song, M.; et al. Prenatal Exposure to Per- and Polyfluoroalkyl Substances (PFASs) and Association between the Placental Transfer Efficiencies and Dissociation Constant of Serum Proteins–PFAS Complexes. Environ. Sci. Technol. 2019, 53, 6529–6538. [Google Scholar] [CrossRef]
- Oh, J.; Schmidt, R.J.; Tancredi, D.; Calafat, A.M.; Roa, D.L.; Hertz-Picciotto, I.; Shin, H.-M. Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Cognitive Development in Infancy and Toddlerhood. Environ. Res. 2021, 196, 110939. [Google Scholar] [CrossRef]
- Luo, J.; Xiao, J.; Gao, Y.; Ramlau-Hansen, C.H.; Toft, G.; Li, J.; Obel, C.; Andersen, S.L.; Deziel, N.C.; Tseng, W.-L.; et al. Prenatal Exposure to Perfluoroalkyl Substances and Behavioral Difficulties in Childhood at 7 and 11 Years. Environ. Res. 2020, 191, 110111. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Guo, Y.; Zhou, Q.; Wang, Q.; Pan, S.; Xu, S.; Li, L. Perfluoroalkyl Substance Exposure Is Associated with Asthma and Innate Immune Cell Count in US Adolescents Stratified by Sex. Environ. Sci. Pollut. Res. 2023, 30, 52535–52548. [Google Scholar] [CrossRef] [PubMed]
- Ait Bamai, Y.; Goudarzi, H.; Araki, A.; Okada, E.; Kashino, I.; Miyashita, C.; Kishi, R. Effect of Prenatal Exposure to Per- and Polyfluoroalkyl Substances on Childhood Allergies and Common Infectious Diseases in Children up to Age 7 Years: The Hokkaido Study on Environment and Children’s Health. Environ. Int. 2020, 143, 105979. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, S.L.; Ramlau-Hansen, C.H.; Ernst, E.; Olsen, S.F.; Bonde, J.P.; Vested, A.; Halldorsson, T.I.; Becher, G.; Haug, L.S.; Toft, G. Long-Term Effects of Prenatal Exposure to Perfluoroalkyl Substances on Female Reproduction. Hum. Reprod. 2013, 28, 3337–3348. [Google Scholar] [CrossRef]
- Maxwell, D.L.; Oluwayiose, O.A.; Houle, E.; Roth, K.; Nowak, K.; Sawant, S.; Paskavitz, A.L.; Liu, W.; Gurdziel, K.; Petriello, M.C.; et al. Mixtures of Per- and Polyfluoroalkyl Substances (PFAS) Alter Sperm Methylation and Long-Term Reprogramming of Offspring Liver and Fat Transcriptome. Environ. Int. 2024, 186, 108577. [Google Scholar] [CrossRef]
- Solan, M.E.; Koperski, C.P.; Senthilkumar, S.; Lavado, R. Short-Chain per- and Polyfluoralkyl Substances (PFAS) Effects on Oxidative Stress Biomarkers in Human Liver, Kidney, Muscle, and Microglia Cell Lines. Environ. Res. 2023, 223, 115424. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, H.; Yu, L.; Yuan, J.; Qin, S.; Li, C.; Ge, R.-S.; Chen, H.; Ye, L. Effects of Gestational Exposure to Perfluorooctane Sulfonate on the Lung Development of Offspring Rats. Environ. Pollut. 2021, 272, 115535. [Google Scholar] [CrossRef]
- Kung, Y.-P.; Lin, C.-C.; Chen, M.-H.; Tsai, M.-S.; Hsieh, W.-S.; Chen, P.-C. Intrauterine Exposure to Per- and Polyfluoroalkyl Substances May Harm Children’s Lung Function Development. Environ. Res. 2021, 192, 110178. [Google Scholar] [CrossRef]
- Chen, R.; Hu, B.; Liu, Y.; Xu, J.; Yang, G.; Xu, D.; Chen, C. Beyond PM2.5: The Role of Ultrafine Particles on Adverse Health Effects of Air Pollution. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2016, 1860, 2844–2855. [Google Scholar] [CrossRef]
- Gustafsson, Å.; Wang, B.; Gerde, P.; Bergman, Å.; Yeung, L.W.Y. Bioavailability of Inhaled or Ingested PFOA Adsorbed to House Dust. Environ. Sci. Pollut. Res. 2022, 29, 78698–78710. [Google Scholar] [CrossRef]
- De La Torre, A.; Navarro, I.; Sanz, P.; Mártinez, M.D.L.Á. Occurrence and Human Exposure Assessment of Perfluorinated Substances in House Dust from Three European Countries. Sci. Total Environ. 2019, 685, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Van Der Veen, I.; Fiedler, H.; De Boer, J. Assessment of the Per- and Polyfluoroalkyl Substances Analysis under the Stockholm Convention—2018/2019. Chemosphere 2023, 313, 137549. [Google Scholar] [CrossRef] [PubMed]
- ECHA. PFASs Restriction Proposal from Five National Authorities (ECHA/NR/23/01). January 2023. Available online: https://echa.europa.eu/it/-/echa-publishes-pfas-restriction-proposal (accessed on 7 February 2023).
- EC (European Commission). EU Action Plan: “Toward Zero Pollution for Air, Water and Soil”; European Commission: Brussels, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021DC0400 (accessed on 12 May 2021).
- Barreca, S.; Busetto, M.; Vitelli, M.; Colzani, L.; Clerici, L.; Dellavedova, P. Online Solid-Phase Extraction LC-MS/MS: A Rapid and Valid Method for the Determination of Perfluorinated Compounds at Sub ng·L−1 Level in Natural Water. J. Chem. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Arjomandi, M. Filtration of Per- and Poly-Fluoroalkyl from Water and Recycling of Fluorine: A Thermochemical Equilibrium Analysis. Chem. Pap. 2019, 73, 1853–1862. [Google Scholar] [CrossRef]
- Garnett, J.; Halsall, C.; Vader, A.; Joerss, H.; Ebinghaus, R.; Leeson, A.; Wynn, P.M. High Concentrations of Perfluoroalkyl Acids in Arctic Seawater Driven by Early Thawing Sea Ice. Environ. Sci. Technol. 2021, 55, 11049–11059. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, T.E.; Talebi, M.; Minett, A.; Mills, S.; Doble, P.A.; Bishop, D.P. Micro Solid-Phase Extraction for the Analysis of per- and Polyfluoroalkyl Substances in Environmental Waters. J. Chromatogr. A 2019, 1604, 460495. [Google Scholar] [CrossRef]
- Mulabagal, V.; Liu, L.; Qi, J.; Wilson, C.; Hayworth, J.S. A Rapid UHPLC-MS/MS Method for Simultaneous Quantitation of 23 Perfluoroalkyl Substances (PFAS) in Estuarine Water. Talanta 2018, 190, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Sammut, G.; Sinagra, E.; Helmus, R.; De Voogt, P. Perfluoroalkyl Substances in the Maltese Environment—(I) Surface Water and Rain Water. Sci. Total Environ. 2017, 589, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Wang, Q.; Li, Z.G.; Huang, K.; Li, L.D.; Zhao, D.H. Determination of 23 Perfluorinated Alkylated Substances in Water and Suspended Particles by Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry. J. Environ. Sci. Health Part A 2018, 53, 1277–1283. [Google Scholar] [CrossRef]
- Szabo, D.; Coggan, T.L.; Robson, T.C.; Currell, M.; Clarke, B.O. Investigating Recycled Water Use as a Diffuse Source of Per- and Polyfluoroalkyl Substances (PFASs) to Groundwater in Melbourne, Australia. Sci. Total Environ. 2018, 644, 1409–1417. [Google Scholar] [CrossRef]
- Janda, J.; Nödler, K.; Brauch, H.-J.; Zwiener, C.; Lange, F.T. Robust Trace Analysis of Polar (C2-C8) Perfluorinated Carboxylic Acids by Liquid Chromatography-Tandem Mass Spectrometry: Method Development and Application to Surface Water, Groundwater and Drinking Water. Environ. Sci. Pollut. Res. 2019, 26, 7326–7336. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Song, B.; Zhong, H.; Ma, X.; Wang, Y.; Ma, D.; Lu, Y.; Gao, W.; Wang, Y.; Jiang, G. Legacy and Emerging Per- and Polyfluoroalkyl Substances (PFAS) in the Bohai Sea and Its Inflow Rivers. Environ. Int. 2021, 156, 106735. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Harada, K.H.; Zou, X.; Sun, C. Investigating Isomers/Enantiomers of Perfluorooctanoic Acid in River Water by Gas Chromatography–Mass Spectrometry with Chiral Derivatization. Chemosphere 2020, 238, 124617. [Google Scholar] [CrossRef] [PubMed]
- Campo, J.; Pérez, F.; Masiá, A.; Picó, Y.; Farré, M.; Barceló, D. Perfluoroalkyl Substance Contamination of the Llobre-gat River Ecosystem (Mediterranean Area, NE Spain). Sci. Total Environ. 2015, 503–504, 48–57. [Google Scholar] [CrossRef]
- Sammut, G.; Sinagra, E.; Sapiano, M.; Helmus, R.; De Voogt, P. Perfluoroalkyl Substances in the Maltese Environment—(II) Sediments, Soils and Groundwater. Sci. Total Environ. 2019, 682, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Qian, J.; Huang, S.; Li, Q.; Guo, L.; Zeng, J.; Zhang, W.; Cao, X.; Yang, J. Occurrence, Distribution, and Input Pathways of per- and Polyfluoroalkyl Substances in Soils near Different Sources in Shanghai. Environ. Pollut. 2022, 308, 119620. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Zheng, M.; Liang, Y.; Wang, Y.; Gao, W.; Wang, Y.; Jiang, G. Legacy and Emerging Per- and Polyfluoroalkyl Substances (PFAS) in Sediments from the East China Sea and the Yellow Sea: Occurrence, Source Apportionment and Environmental Risk Assessment. Chemosphere 2021, 282, 131042. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Hu, K.; Zhao, F.; Hu, J. Derivatization Method for Sensitive Determination of Fluorotelomer Alcohols in Sediment by Liquid Chromatography–Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2013, 1288, 48–53. [Google Scholar] [CrossRef]
- Simon, F.; Gehrenkemper, L.; Von Der Au, M.; Wittwer, P.; Roesch, P.; Pfeifer, J.; Cossmer, A.; Meermann, B. A Fast and Simple PFAS Extraction Method Utilizing HR–CS–GFMAS for Soil Samples. Chemosphere 2022, 295, 133922. [Google Scholar] [CrossRef]
- Gao, K.; Miao, X.; Fu, J.; Chen, Y.; Li, H.; Pan, W.; Fu, J.; Zhang, Q.; Zhang, A.; Jiang, G. Occurrence and Trophic Transfer of Per- and Polyfluoroalkyl Substances in an Antarctic Ecosystem. Environ. Pollut. 2020, 257, 113383. [Google Scholar] [CrossRef]
- Gao, Y.; Fu, J.; Meng, M.; Wang, Y.; Chen, B.; Jiang, G. Spatial Distribution and Fate of Perfluoroalkyl Substances in Sediments from the Pearl River Estuary, South China. Mar. Pollut. Bull. 2015, 96, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Miranda, D.A.; Benskin, J.P.; Awad, R.; Lepoint, G.; Leonel, J.; Hatje, V. Bioaccumulation of Per- and Polyfluoroalkyl Substances (PFASs) in a Tropical Estuarine Food Web. Sci. Total Environ. 2021, 754, 142146. [Google Scholar] [CrossRef]
- Sznajder-Katarzyńska, K.; Surma, M.; Wiczkowski, W.; Cieślik, E. The Perfluoroalkyl Substance (PFAS) Contamination Level in Milk and Milk Products in Poland. Int. Dairy J. 2019, 96, 73–84. [Google Scholar] [CrossRef]
- Dimzon, I.K.; Westerveld, J.; Gremmel, C.; Frömel, T.; Knepper, T.P.; De Voogt, P. Sampling and Simultaneous Determination of Volatile Per- and Polyfluoroalkyl Substances in Wastewater Treatment Plant Air and Water. Anal. Bioanal. Chem. 2017, 409, 1395–1404. [Google Scholar] [CrossRef]
- Padilla-Sánchez, J.A.; Haug, L.S. A Fast and Sensitive Method for the Simultaneous Analysis of a Wide Range of Per- and Polyfluoroalkyl Substances in Indoor Dust Using on-Line Solid Phase Extraction-Ultrahigh Performance Liquid Chromatography-Time-of-Flight-Mass Spectrometry. J. Chromatogr. A 2016, 1445, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Ao, J.; Yuan, T.; Xia, H.; Ma, Y.; Shen, Z.; Shi, R.; Tian, Y.; Zhang, J.; Ding, W.; Gao, L.; et al. Characteristic and Human Exposure Risk Assessment of Per- and Polyfluoroalkyl Substances: A Study Based on Indoor Dust and Drinking Water in China. Environ. Pollut. 2019, 254, 112873. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Z.; Mi, W.; Möller, A.; Wolschke, H.; Ebinghaus, R. Neutral Poly/Per-Fluoroalkyl Substances in Air from the Atlantic to the Southern Ocean and in Antarctic Snow. Environ. Sci. Technol. 2015, 49, 7770–7775. [Google Scholar] [CrossRef]
- Camoiras González, P.; Sadia, M.; Baabish, A.; Sobhanei, S.; Fiedler, H. Air Monitoring with Passive Samplers for Perfluoroalkane Substances in Developing Countries (2017–2019). Chemosphere 2021, 282, 131069. [Google Scholar] [CrossRef] [PubMed]
- Groffen, T.; Bervoets, L.; Jeong, Y.; Willems, T.; Eens, M.; Prinsen, E. A Rapid Method for the Detection and Quantification of Legacy and Emerging Per- and Polyfluoroalkyl Substances (PFAS) in Bird Feathers Using UPLC-MS/MS. J. Chromatogr. B 2021, 1172, 122653. [Google Scholar] [CrossRef]
- Ötles, S.; Kartal, C. Solid-Phase Extraction (SPE): Principles and Applications in Food Samples. Acta Sci. Pol. Technol. Aliment. 2016, 15, 5–15. [Google Scholar] [CrossRef]
- Dhiman, S.; Ansari, N.G. A Review on Extraction, Analytical and Rapid Detection Techniques of Per/Poly Fluoro Alkyl Substances in Different Matrices. Microchem. J. 2024, 196, 109667. [Google Scholar] [CrossRef]
Matrix | Extraction and Pretreatment | Analysis | Recoveries | LOD | LOQ | Ref. |
---|---|---|---|---|---|---|
Surface and underground water | Oasis WAX cartridge SPE online | High pressure liquid chromatography–mass spectrometry (HPLC-MS) | 80–120 | N/A | 0.2–5 | [65] |
Seawater | Oasis WAX cartridges SPE | Ultra-high performance liquid chromatography (UHPLC-MS) | Above 50 except PFBA in seawater (<10) | 0.001–0.331 | N/A | [67] |
Surface water | μSPE cartridge | UHPLC-MS | 86–111 | 0.29–6.6 | N/A | [68] |
Estuarine water | Waters Oasis PRiME HLB cartridges SPE | Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) | 78.5–112.6 | 0.48–1.68 a | 1.7–5.4 a | [69] |
Surface water and rainwater | Waters Oasis HLB cartridges SPE | Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) | 72–98 | 0.02–0.03 | 0.04–0.06 | [70] |
Surface water | WAX SPE cartridges | LC-MS/MS | 68.5–118 | 0.5–10 | 2–20 | [71] |
Groundwater | Oasis WAX cartridges SPE | LC-MS/MS | 73–137 | 0.03–0.06 | 0.03–1.27 | [72] |
Surface water and groundwater | Oasis WAX cartridges SPE | LC-MS/MS | 83–107 | 0.1–5.5 | 0.6–26 | [73] |
Seawater | Oasis® cartridge SPE and Envi-CarbTM cartridge | LC-MS/MS | 63.2–112.9 | 0.01–0.08 | 0.03–0.24 | [74] |
Surface water | Derivatization using (S)-1-PhEtCl | GC-MS | 92 | 0.050–0.15 | N/A | [75] |
Surface water | Strata-X cartridge SPE | Liquid chromatography triple quadrupole mass spectrometer (LC-QqQ-MS) | 44–100 | N/A | 0.01–2.00 | [76] |
Groundwater | Water Oasis HLB Plus Short cartridges SPE | UPLC-MS/MS | 70–130 | 0.02–0.03 | 0.04–0.06 | [77] |
Matrix | Extraction and Pretreatment | Analysis | Recoveries | LOD | LOQ | Ref. |
---|---|---|---|---|---|---|
Sea and river sediment and soil | Oasis® cartridge SPE and ENVI-CarbTM cartridge | LC-MS/MS | 78.9–120 | 0.002–0.042 c | 0.006–0.1 b | [74] |
Sediment | Extraction with acetic acid (AcOH) and MeOH; cleaning up by Strata-X cartridge SPE | LC-QqQ-MS | 44–100 | N/A | 0.04–8.00 | [76] |
Soils | Water Oasis HLB Plus Short cartridges SPE | UPLC-MS/MS | 70–130 | 0.02–0.50 | 0.04–0.60 | [77] |
Soils | Oasis WAX cartridges, MeOH as solvent | LC-MS | 52–167 | 0.100–400 c | 0.01–0.30 b | [78] |
Marine sediments | ENVI-Carb cartridges SPE, MeOH as solvent | LC-MS | 96–127.1 | 0.002–0.018 | 0.004–0.054 | [79] |
Marine sediment | Derivatization dansyl chloride (DNS) in ACN under catalysis of 4-(dimethylamino)-pyridine (DMAP) and WAX and silica cartridges clean-up | Liquid chromatography–electronspray ionization–mass spectrometry (LC-ESI-MS) combined with CID-MS/MS | 67–83 | 0.006–0.016 | 0.017–0.060 | [80] |
Soils | LLE using acidified MeOH | HR-CS-GFMAS | 79–117 | 3.43 | 10.30 | [81] |
Sediment | MeOH-based extraction, Oasis WAX SPE cartridges | High performance liquid chromatography–electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) | 86.7–113 | 0.013–0.089 a | N/A | [82] |
Sediment | Pre-treatment with Oasis-HLB SPE and MeOH solvent | HPLC-ESI(-)-MS/MS | 72–101.9 | N/A | 0.01–0.08 b | [83] |
Sediment | ACN and MeOH as the extraction solvent | UPLC-MS/MS | 80–115 | 0.02–1.11 a | N/A | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannone, A.; Carriera, F.; Di Fiore, C.; Avino, P. Poly- and Perfluoroalkyl Substance (PFAS) Analysis in Environmental Matrices: An Overview of the Extraction and Chromatographic Detection Methods. Analytica 2024, 5, 187-202. https://doi.org/10.3390/analytica5020012
Iannone A, Carriera F, Di Fiore C, Avino P. Poly- and Perfluoroalkyl Substance (PFAS) Analysis in Environmental Matrices: An Overview of the Extraction and Chromatographic Detection Methods. Analytica. 2024; 5(2):187-202. https://doi.org/10.3390/analytica5020012
Chicago/Turabian StyleIannone, Alessia, Fabiana Carriera, Cristina Di Fiore, and Pasquale Avino. 2024. "Poly- and Perfluoroalkyl Substance (PFAS) Analysis in Environmental Matrices: An Overview of the Extraction and Chromatographic Detection Methods" Analytica 5, no. 2: 187-202. https://doi.org/10.3390/analytica5020012
APA StyleIannone, A., Carriera, F., Di Fiore, C., & Avino, P. (2024). Poly- and Perfluoroalkyl Substance (PFAS) Analysis in Environmental Matrices: An Overview of the Extraction and Chromatographic Detection Methods. Analytica, 5(2), 187-202. https://doi.org/10.3390/analytica5020012