Previous Issue
Volume 48, IS4SI 2019
proceedings-logo

Journal Browser

Journal Browser

Table of Contents

Proceedings, 2020, ECWS-4

The 4th International Electronic Conference on Water Sciences

online | 13–29 November 2019

Volume Editors: Prof. Dr. Marco Franchini and Prof. Dr. Bruno Brunone


  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) This issue of Proceedings is collection of papers presented at the 4th International Electronic [...] Read more.
Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessProceedings
A Step by Step Investigation of Cr(III) Recovery from Tannery Waste
Proceedings 2020, 48(1), 1; https://doi.org/10.3390/ECWS-4-06436 - 12 Nov 2019
Viewed by 53
Abstract
The effluent of tanneries is a hazardous waste and a combination of physical-chemical and biological techniques is required for its treatment. As a result of the previous processes, a sludge with high chromium content is produced. So, the aim of this study is [...] Read more.
The effluent of tanneries is a hazardous waste and a combination of physical-chemical and biological techniques is required for its treatment. As a result of the previous processes, a sludge with high chromium content is produced. So, the aim of this study is the hydrometallurgical recovery of chromium in the context of a circular economy. According to chemical characterization, the only form of metal that existed in the sludge was the trivalent, while its content was up to 14.8% w/w. Among the examined acids, the highest efficiency in Cr(III) leaching was achieved by the H2SO4 (93%), due to the formation of the soluble CrSO4+. Regarding the step of precipitation, no significant varions were observed between the two alkaline medias that were tested, namely NaOH and Ca(OH)2. Full article
Open AccessProceedings
Checking Procedure of the Trieste (Italy) Subsea Pipeline by Transient Tests. Preliminary Results
Proceedings 2020, 48(1), 2; https://doi.org/10.3390/ECWS-4-06453 - 12 Nov 2019
Viewed by 45
Abstract
The subsea transmission main (TM) of Trieste, Italy, plays a crucial role in the water supply system managed by AcegasApsAmga SpA (Hera Group). With the aim of implementing a systematic inspection procedure (at present divers are used for periodic surveys) AcegasApsAmga SpA decided [...] Read more.
The subsea transmission main (TM) of Trieste, Italy, plays a crucial role in the water supply system managed by AcegasApsAmga SpA (Hera Group). With the aim of implementing a systematic inspection procedure (at present divers are used for periodic surveys) AcegasApsAmga SpA decided to proceed with Transient Test-Based Techniques (TTBTs). In this paper, the results of preliminary transient tests generated by means of the existing devices (the first option to be considered within TTBTs) are discussed and possible alternatives are highlighted. Full article
Open AccessProceedings
Surface and Groundwater Quality in South African Area—Analysis of the Most Critical Pollutants for Drinking Purposes
Proceedings 2020, 48(1), 3; https://doi.org/10.3390/ECWS-4-06430 - 12 Nov 2019
Viewed by 25
Abstract
According to a recent report by World Health Organization, the countries which still have limited access to water for drinking purposes are mainly those in the Sub-Saharan region. (Potential) water sources for drinking needs may contain different contaminants. In this context, the current [...] Read more.
According to a recent report by World Health Organization, the countries which still have limited access to water for drinking purposes are mainly those in the Sub-Saharan region. (Potential) water sources for drinking needs may contain different contaminants. In this context, the current study consists in an overview of the quality of surface water and groundwater in the Republic of South Africa (RSA) and Mozambique (MZ) and provides the variability ranges of the concentrations of the main pollutants in the two countries. Chemical and physical characteristics and concentrations of macropollutants, inorganic compounds (metals) and selected microorganisms were collected for surface water and groundwater and compared with the standards for drinking water set in the two countries. It was found that in surface water, microorganisms were always at very high concentrations. In addition, nickel (in RSA) and boron and chlorine (in MZ) were the most critical compounds. It emerged that in groundwater, arsenic, lead and chlorine (in RSA) and boron, sodium and chlorine (in MZ) were the main critical pollutants. Adequate treatments in the construction of new drinking water plants in rural areas should be selected on the basis of these most critical compounds and their observed variability over time. Full article
Open AccessProceedings
PI Tuning of a Multivariable Activated Sludge Process with Nitrification and Denitrification with Multi-Objective Optimization
Proceedings 2020, 48(1), 4; https://doi.org/10.3390/ECWS-4-06434 - 13 May 2020
Viewed by 121
Abstract
Wastewater treatment plants (WWTPs) are responsible for attenuating the environmental impact that waste in effluent discharged to receiving waters has. As a consequence of this, new techniques for an effective control are valuable, not just for minimising this impact, but also for minimising [...] Read more.
Wastewater treatment plants (WWTPs) are responsible for attenuating the environmental impact that waste in effluent discharged to receiving waters has. As a consequence of this, new techniques for an effective control are valuable, not just for minimising this impact, but also for minimising operational costs by using energy efficiently. Such kinds of problems, with several objectives to fulfil (and usually in conflict), are termed as multi-objective problems. Within this context, multi-objective optimisation techniques have been shown to be a valuable tool in the control engineering field to tune different kinds of controller for complex systems. To accomplish this, a simultaneous optimisation approach is carried out, in order to approximate a set of Pareto-optimal solutions. Such solutions differ in the level of trade-off exhibited in two (or more) conflicting objectives. The multi-objective approach for controller tuning in one-input/one-output processes is well documented in the literature. Nevertheless, that is not the case of multivariable control. This fact is mainly due to the quantity of design objectives required to evaluate the multi-objective performance of several outputs. In this work, we elaborate a proposal to handle multi-objective problems for multivariable processes. Performance evaluation is performed (via simulation) in a multivariable benchmark for the PI control of an activated sludge process with nitrification and denitrification. Full article
Open AccessProceedings
Assessing the Performance of SuDS in the Mitigation of Urban Flooding: The Industrial Area of Sesto Ulteriano (MI)
Proceedings 2020, 48(1), 5; https://doi.org/10.3390/ECWS-4-06449 - 12 Nov 2019
Viewed by 99
Abstract
Recent development dynamics of urban centers forced administrations to deal more frequently with problems linked to the inability of traditional sewer systems to manage rainwater in a sustainable and effective manner. Currently, several laws require compliance with the quantitative and qualitative stormwater limits [...] Read more.
Recent development dynamics of urban centers forced administrations to deal more frequently with problems linked to the inability of traditional sewer systems to manage rainwater in a sustainable and effective manner. Currently, several laws require compliance with the quantitative and qualitative stormwater limits to be discharged into watercourses but, in parallel with a “regulatory” approach, integrated strategies are increasingly being developed. A fundamental role is carried out by Sustainable Drainage Systems (SuDS), whose basic principle is the management of rainwater at the source, through the implementation of prevention, mitigation and treatment strategies. This study, starting from a project proposal made by different Italian firms and funded by PoliS-Lombardia, aims to assess the benefits deriving from the widespread application of SuDS in the Sesto Ulteriano industrial area, through a comparison between a scenario that represents the current configuration of the drainage network, and an ideal scenario where SuDS are taken into consideration. SWMM5 software was used, in order to simulate the behavior of the drainage network in contexts without and with SuDS, after the construction of the synthetic rainfall data sets. Although only event scale simulations have been conducted so far, the encouraging results suggest that these systems really contribute can to mitigating the effects of flooding in urban areas. Full article
Open AccessProceedings
Flood and Flash Flood Hazard Mapping Using the Frequency Ratio, Multilayer Perceptron and Their Hybrid Ensemble
Proceedings 2020, 48(1), 6; https://doi.org/10.3390/ECWS-4-06429 - 12 Nov 2019
Viewed by 28
Abstract
The importance of identifying the areas vulnerable for both floods and flash-floods is an important component of risk management. The assessment of vulnerable areas is a major challenge in the scientific world. Adaptation and mitigation have generally been treated as two separate issues, [...] Read more.
The importance of identifying the areas vulnerable for both floods and flash-floods is an important component of risk management. The assessment of vulnerable areas is a major challenge in the scientific world. Adaptation and mitigation have generally been treated as two separate issues, both in public politics and in practice, in which mitigation is seen as the attenuation of the cause, and studies of adaption look into dealing with the consequences of climate change. Studies on the impact of climate change on flood risk are mostly conducted at the river basin or regional scale. Remote sensing and GIS technologies, together with the latest modelling techniques, can contribute to our ability to predict and manage floods. Various methods are commonly used to map flood sensitivity. Recent methods such as multicriteria evaluation, decision tree analysis (DT), fuzzy theory, weight of samples (WoE), artificial neural networks (ANN), frequency ratio (FR) and logistic regression (LR) approaches have been widely used by many researchers. Full article
Open AccessProceedings
Green Infrastructures in Stormwater Control and Treatment Strategies
Proceedings 2020, 48(1), 7; https://doi.org/10.3390/ECWS-4-06526 - 12 Nov 2019
Viewed by 31
Abstract
Green infrastructures can provide multiple benefits and play an important role in cities’ resilience to extreme stormwater events caused by climate change. Additionally, these techniques can contribute to the protection of transport infrastructures, averting major environmental and economical adversities. Stormwater can be treated [...] Read more.
Green infrastructures can provide multiple benefits and play an important role in cities’ resilience to extreme stormwater events caused by climate change. Additionally, these techniques can contribute to the protection of transport infrastructures, averting major environmental and economical adversities. Stormwater can be treated through several processes, some processes being more effective than others for specific contaminants. A review of some of the most commonly used green infrastructures (GI) for stormwater management in urban environments was carried out, with emphasis on their efficiency in reducing peak flow rates, runoff volumes and the following pollutants: total suspended solids, heavy metals, total phosphorus and total nitrogen. The GI studied were green roofs, bioretention systems, filter strips, vegetated swales and trenches. In addition to the advantages in the urban water cycle, benefits of amenity and ecosystem services of these GI have also been identified. The discussion of the results and the comparative analysis of GI performance were carried out taking advantage of a table that summarizes the range of percentages of GI efficiency obtained in various studies for the different functions. Full article
Open AccessProceedings
A Comparison between Conceptual and Physically Based Models in Predicting the Hydrological Behavior of Green Roofs
Proceedings 2020, 48(1), 8; https://doi.org/10.3390/ECWS-4-06450 - 12 Nov 2019
Viewed by 30
Abstract
The evolving climate conditions contribute to increase flooding risk in urban areas. Green roofs are effective tools for controlling and managing stormwater runoff. With the aim to prevent these damaging events, an accurate modelling of the response of green roofs to storm events [...] Read more.
The evolving climate conditions contribute to increase flooding risk in urban areas. Green roofs are effective tools for controlling and managing stormwater runoff. With the aim to prevent these damaging events, an accurate modelling of the response of green roofs to storm events becomes essential. The goal of this research is to compare the accuracy of two hydrological models in predicting the behavior of two green roof test beds in terms of runoff production. The test beds are located in the campus of University of Salerno, in a typical Mediterranean climate and they differ in the composition of the drainage layer. The selected models are the Storm Water management model (SWMM) model and the Nash model. They have been calibrated against hourly data of 25 rainfall-runoff events observed at the experimental site and compared using a number of goodness of fit indexes. The Nash cascade model aims to be a very simple but effective approach. No substantial differences were observed in the behavior of the two green roof plots, though they differ in their design characteristics. Finally, the existence of a relationship between the errors and the rainfall characteristics has been found. Full article
Open AccessProceedings
Quantifying the Log Reduction of Pathogenic Microorganisms by Constructed Wetlands: A Review
Proceedings 2020, 48(1), 9; https://doi.org/10.3390/ECWS-4-06433 - 12 Nov 2019
Viewed by 30
Abstract
Over the last 30 years, constructed wetlands (CWs) have been used as an alternative, cost-efficient way of treating wastewater, often in combination with conventional wastewater technologies. When CWs are attached at the end of conventional wastewater treatment plants, they treat the effluent and [...] Read more.
Over the last 30 years, constructed wetlands (CWs) have been used as an alternative, cost-efficient way of treating wastewater, often in combination with conventional wastewater technologies. When CWs are attached at the end of conventional wastewater treatment plants, they treat the effluent and thus provide a polishing step. However, recent studies have shown that when CWs are used as the main wastewater treatment method for the agricultural reuse of effluents, they perform poorly on meeting the accepted limit of microbial contamination. Moreover, CWs are increasingly used within the scope of the circular economy and water reuse applications. Therefore, there is a need for a comprehensive exploration of the performance of CWs on pathogen removal. This paper explores relevant case studies regarding pathogen removal from constructed wetlands to create a comprehensive dataset that provides a complete overview of CWs performance under various conditions. After a systematic literature review, a total of 48 case studies were qualified for both qualitative and quantitative analyses. From the dataset, the general performance, optimal conditions, and knowledge gaps were identified. The review confirmed that constructed wetlands (as a standalone treatment) cannot meet the accepted limits of pathogen removal. However, they can be a credible choice for wastewater polishing when they are combined with conventional wastewater treatment systems. Regarding the most common indicators that were recorded, the removal of Escherichia coli ranged between 0.01–5.6 log; the removal of total and fecal coliforms was 0.2–5.32 log and 0.07–6.08 log, respectively; while the removal of fecal streptococci was 0.2–5.2 log. The great variability of pathogen removal indicates that the complexity of CWs makes it difficult to draw robust conclusions regarding their removal efficiency. Potential correlations were identified between influent and effluent concentrations, as well as between log removal and hydraulic characteristics. Additionally, no correlations between pathogen removal and temperature/climatic zones were found since average pathogen removal per country showed high variation throughout the various climatic zones. The dataset can be used as a benchmark of CWs’ performance as a barrier against the spreading of pathogens in the environment. The knowledge gaps identified in this review can provide direction for further research. Finally, a potential meta-analysis of the dataset using statistical analysis can pave the way for a better understanding of the design and operational parameters of CWs in order to fine-tune and quantify the factors that influence the performance of these systems. Full article
Open AccessProceedings
Adsorption of Model Dyes on Recycled Silica Gel
Proceedings 2020, 48(1), 10; https://doi.org/10.3390/ECWS-4-06439 - 12 Nov 2019
Viewed by 24
Abstract
Silica gel was used as an adsorbent for dyes in aqueous solutions. Afterwards, the silica gel with the adsorbed dye was heated to 600 °C, at which the dye combusted, leaving behind clean silica gel. This silica gel can be reused in the [...] Read more.
Silica gel was used as an adsorbent for dyes in aqueous solutions. Afterwards, the silica gel with the adsorbed dye was heated to 600 °C, at which the dye combusted, leaving behind clean silica gel. This silica gel can be reused in the adsorption process. The operation leaves behind little waste products. It is an optimal procedure for educational and other research laboratories which are working with biological stains, food colorants and some non-commercial dyes. Full article
Open AccessProceedings
Infiltration-Exfiltration System for Stormwater Control: A Full Scale Test
Proceedings 2020, 48(1), 11; https://doi.org/10.3390/ECWS-4-06452 - 12 Nov 2019
Viewed by 25
Abstract
The current approach to stormwater management should focus on dealing with water on its source. The Sustainable Urban Drainage Systems (SuDS) promotes runoff peak flow and volume attenuation, load removal while providing amenites and biodiversities but can be difficult to apply in developed [...] Read more.
The current approach to stormwater management should focus on dealing with water on its source. The Sustainable Urban Drainage Systems (SuDS) promotes runoff peak flow and volume attenuation, load removal while providing amenites and biodiversities but can be difficult to apply in developed urban centers. An infiltration-exfiltration system (IES) placed on road gutters can function on receiving runoff from roads and directing them to the sewers system reducing peak flow and volume. This research follows up a full-scale test of an IES installed in São Paulo, Brazil. The IES has 49 × 1880 m dimension and a cross-section of 49 × 30 cm with a pervious concrete surface layer. The pervious concrete showed mechanical results acceptable for a low vehicular traffic and infiltration rate that allows water infiltration. Rainfall-runoff modeling showed that the proposed IES had a low effect on runoff peak flow and volume attenuation. A deeper gravel layers depth and outlet flow restrictor would improve performance. The proposed IES function on avoid ponding, promoting water treatment, and reducing inlet maintenance. Full article
Open AccessProceedings
Performance of Heterogeneous Catalytic Ozonation with Minerals in Degradation of p-Chlorobenzoic Acid (p-CBA) from Aqueous Solutions
Proceedings 2020, 48(1), 12; https://doi.org/10.3390/ECWS-4-06432 - 12 Nov 2019
Viewed by 32
Abstract
Water pollution is a critical environmental issue nowadays. One major problem is the pollution of freshwaters by pollutants of low concentrations (ng/L–μg/L), known as micropollutants. The most promising techniques for micropollutants degradation are Advanced Oxidation Processes (AOPs). Heterogeneous catalytic ozonation is among them, [...] Read more.
Water pollution is a critical environmental issue nowadays. One major problem is the pollution of freshwaters by pollutants of low concentrations (ng/L–μg/L), known as micropollutants. The most promising techniques for micropollutants degradation are Advanced Oxidation Processes (AOPs). Heterogeneous catalytic ozonation is among them, and recent studies have shown that it can be an efficient water treatment technique. The aim of this study is to evaluate the catalytic activity of five minerals (anatase, dolomite, kaolin, talc and zeolite) on the ozonation of small concentrations of p-CBA at pH 7 by batch mode experiments. p-CBA was employed as a model compound for evaluation of single and catalytic ozonation performance, because it cannot be efficiently removed by direct ozonation (kO3 < 0.15 M−1s−1), while it has high reactivity with hydroxyl radicals (k·OH = 5×109 M−1s−1). It was found that all applied solid materials can be characterized as catalysts, except kaolin, theuse of which presented almost the same performance with single ozonation. The best results were obtained by zeolite and dolomite (>99.4%) within 15 min reaction/oxidation time. These materials were neutrally (PZC = 6.8) and positively (PZC = 8.9) charged, respectively, during the oxidation process (pH 7), favoring the contact of micropollutant and ozone with the catalysts’ surface. On the other hand, the addition of anatase and talc in the ozonation system resulted in 97.5% and 98.5% p-CBA degradation, respectively, due to their slightly negative surface charge throughout the reaction. Conclusively, the experimental results indicated that the performance of heterogeneous catalytic ozonation is strongly depending on the surface charge of the solid materials (catalysts). Full article
Open AccessProceedings
Off-Line Data Validation for Water Network Modeling Studies
Proceedings 2020, 48(1), 13; https://doi.org/10.3390/ECWS-4-06442 - 12 Nov 2019
Viewed by 130
Abstract
The success of the analysis and design of a Water Network (WN) is strongly dependent on the veracity of the data and a priori knowledge used in the model calibration of the network. This fact motivates this paper in which an off-line approach [...] Read more.
The success of the analysis and design of a Water Network (WN) is strongly dependent on the veracity of the data and a priori knowledge used in the model calibration of the network. This fact motivates this paper in which an off-line approach to verify datasets acquired from WN is proposed. This approach allows the data separation of abnormal and normal events without requiring high expertise for a large raw database. The core of the approach is an unsupervised classification tool that does not require the features of the different events to be identified. The proposal is applied to datasets acquired from a Mexican water management utility located in the center part of Mexico. The datasets are pre-processed to be synchronized since they were recorded and sent with different and irregular sampling times to a web platform. The pressures and flow-rate conforming the datasets correspond to the dates between 25 June 2019 @ 00:00 and 25 September 2019 @ 00:00. The District Metered Area (DMA) is formed by 90 nodes and 78 pipes, and it provides service to approximately 2000 consumers. The raw data identified as generated by abnormal events are validated with the reports of the DMA managers. The abnormal events identified are communication problems, sensor failures, and draining of the network reservoir. Full article
Open AccessProceedings
Evaluation of RapidEye-3 Satellite Data for Assessing Water Turbidity of Lake Borabey
Proceedings 2020, 48(1), 14; https://doi.org/10.3390/ECWS-4-06424 - 12 Nov 2019
Viewed by 24
Abstract
In water resources management, remote sensing data and techniques are essential in watershed characterization and monitoring, especially when no data are available. Water quality is usually assessed through in-situ measurements that require high cost and time. Water quality parameters help in decision making [...] Read more.
In water resources management, remote sensing data and techniques are essential in watershed characterization and monitoring, especially when no data are available. Water quality is usually assessed through in-situ measurements that require high cost and time. Water quality parameters help in decision making regarding the further use of water-based on its quality. Turbidity is an important water quality parameter and an indicator of water pollution. In the past few decades, remote sensing has been widely used in water quality research. In this study, we compare turbidity parameters retrieved from a high-resolution image with in-situ measurements collected from Borabey Lake, Turkey. Here, the use of RapidEye-3 images (5 m-resolution) allows for detailed assessment of spatio-temporal evaluation of turbidity, through the normalized difference turbidity index (NDTI). The turbidity results were then compared with data from 21 in-situ measurements collected in the same period. The actual water turbidity measurements showed high correlation with the estimated NDTI mean values with an R2 of 0.84. The research findings support the use of remote sensing data of RadipEye-3 to estimate water quality parameters in small water areas. For future studies, we recommend investigating different water quality parameters using high-resolution remote sensing data. Full article
Open AccessProceedings
Water Leak Detection by Termographic Image Analysis, In Laboratory Tests
Proceedings 2020, 48(1), 15; https://doi.org/10.3390/ECWS-4-06440 - 15 May 2020
Viewed by 153
Abstract
One of the most undesirable failures is water loss due to leaks in the supplying system; there are mainly two types of water losses: the visible and the non-visible. Within the non-visible we have those that are detectable by acoustic methods and those [...] Read more.
One of the most undesirable failures is water loss due to leaks in the supplying system; there are mainly two types of water losses: the visible and the non-visible. Within the non-visible we have those that are detectable by acoustic methods and those that are not. Here we decide to study new techniques for leak detection, since non-visible leaks are more difficult to find (detect). This is the aim of this paper. In a previous stage we have been studying the possibility of obtaining thermographic images to develop visualization techniques on pipes as an option for leak detection. Analyzing this possibility, with previous studies we have established conditions for taking images for later analysis, which has confirmed the benefits of the use of thermography as a tool. Here we present a case study where images were taken in a controlled atmosphere in a laboratory, using a physical model that contained a buried pipe with a simulated loss of water. During the entire duration of the test, images were taken at a certain interval of time and afterwards the images were analyzed. The results show the benefits and limitations of the technique, which should continue to be studied since thermal imaging cameras and computers to process the images are becoming more powerful and accessible by the day. Full article
Open AccessProceedings
Prediction of Phytoplankton Biomass in Small Rivers of Central Spain by Data Mining Method of Partial Least-Squares Regression
Proceedings 2020, 48(1), 16; https://doi.org/10.3390/ECWS-4-06427 - 12 Nov 2019
Viewed by 30
Abstract
The Water Framework Directive (WFD, EC, 2000) states that the “good” ecological status of natural water bodies must be based on their chemical, hydromorphological and biological features, especially under drastic conditions of floods or droughts. Phytoplankton is considered a good environmental bioindicator (WFD) [...] Read more.
The Water Framework Directive (WFD, EC, 2000) states that the “good” ecological status of natural water bodies must be based on their chemical, hydromorphological and biological features, especially under drastic conditions of floods or droughts. Phytoplankton is considered a good environmental bioindicator (WFD) and climate change has a strong impact on phytoplankton communities and water quality. The development of robust techniques to predict and control phytoplankton growth is still in progress. The aim of this study is to analyze the impact of the different stressors associated with the change in phytoplanktonic communities in small rivers in the center of the Iberian Peninsula (Southwestern Europe). A statistical study on the identification of the essential limiting variables in the phytoplankton growth and its seasonal variation by climate change was carried out. In this study, a new method based on the partial least-squares (PLS) regression technique has been used to predict the concentration of phytoplankton and cyanophytes from 22 variables usually monitored in rivers. The predictive models have shown a good agreement between training and test data sets in rivers and seasons (dry and wet). The phytoplankton in dry periods showed greatest similarities, these dry periods being the most important factor in the phytoplankton proliferation Full article
Open AccessProceedings
CuFe2O4@CuO: A Magnetic Composite Synthesized by Ultrasound Irradiation and Degradation of Methylene Blue on Its Surface in the Presence of Sunlight
Proceedings 2020, 48(1), 17; https://doi.org/10.3390/ECWS-4-06438 - 12 Nov 2019
Viewed by 25
Abstract
Spinel ferrite MFe2O4 (M = Cu, Ca, Mg, Ni, etc.) nanoparticles and their composites are a new promising materialbecause they have shown great interest in the field of sensing, optoelectronics, catalysis, and solar cells due to their unique physical and [...] Read more.
Spinel ferrite MFe2O4 (M = Cu, Ca, Mg, Ni, etc.) nanoparticles and their composites are a new promising materialbecause they have shown great interest in the field of sensing, optoelectronics, catalysis, and solar cells due to their unique physical and chemical properties that differ from their bulk structures. Today, lots of CuFe2O4 nanomaterials have been synthesized by different methods, such as hydrothermal route and sol-gel combustion methods. Nevertheless, there are hardly any results about photocatalytic activity. For this reason, we tried to increase optical properties by preparing a composite of CuFe2O4 nanomaterials with other oxides. In this paper, a CuFe2O4@CuO magnetic composite was synthesized via an ultrasound method. The samples prepared were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), diffuse reflectance spectrpscopy (DRS), field emission scanning electron microscopy (FESEM) images, vibrating sample magnetometer (VSM), and elemental analysis (energy-dispersive X-ray (EDX)). The catalytic activity of as-synthesized CuFe2O4@CuO was evaluated using the degradation of methylene blue. Furthermore, a possible reaction mechanism was discussed. Finally, the catalyst was used for effective degradation of methylene blue (MB) in its solution, which indicated a potential for practical applications in water pollutant removal and environmental remediation. Full article
Open AccessProceedings
Emergent Properties of Water Resources and Associated Watershed Systems
Proceedings 2020, 48(1), 18; https://doi.org/10.3390/ECWS-4-06417 - 12 Nov 2019
Viewed by 39
Abstract
A challenge to managing water resources is characterizing the heterogeneity created by the interactions among hydrological, ecological and anthropological processes. An option applied to other scientific disciplines includes identifying and analyzing emergent phenomena in complex systems, whose components self-organize into novel structures or [...] Read more.
A challenge to managing water resources is characterizing the heterogeneity created by the interactions among hydrological, ecological and anthropological processes. An option applied to other scientific disciplines includes identifying and analyzing emergent phenomena in complex systems, whose components self-organize into novel structures or processes via their collective interactions with each other and the environment. A new level of organization and complexity emerges that cannot be predicted from or attributed to the components alone. Predictions based on the functionally emergent properties of watershed systems (top-down) differ from predictions based on reductionist models (bottom-up). This presentation reviews the ways in which emergent properties may be applied to water resources and associated systems. Full article
Open AccessProceedings
Preliminary Design and Development of a Coupled Water Resources Resiliency Model of the St. Johns River Watershed Florida, USA
Proceedings 2020, 48(1), 19; https://doi.org/10.3390/ECWS-4-06428 - 12 Nov 2019
Viewed by 53
Abstract
The St. Johns River watershed, located in Florida, USA, is the focus of planning efforts to improve the resiliency and management of water resources infrastructure from current and future flood threats. These threats are driven by intense urbanization of the basin combined with [...] Read more.
The St. Johns River watershed, located in Florida, USA, is the focus of planning efforts to improve the resiliency and management of water resources infrastructure from current and future flood threats. These threats are driven by intense urbanization of the basin combined with increased frequency and intensity of coastal storms, made worse by sea level rise. Research efforts have begun to develop a comprehensive system of coupled numerical simulation models of the entire watershed in order to assess the current and long-term risks from flood inundation. This study provides a discussion of the system-wide model design and preliminary development. The study first outlines the project area and various numerical models to be coupled together. Then, the study discusses preliminary model development efforts and challenges. This initial study revealed the overall complexity and size of the undertaking. Overall, the study’s primary conclusion is that while an integrated system of coupled models is feasible and potentially very useful for long-term planning, the computational challenges for such an undertaking are extensive. Full article
Previous Issue
Back to TopTop