Prediction of Phytoplankton Biomass in Small Rivers of Central Spain by Data Mining Method of Partial Least-Squares Regression †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. PLS Regression Method
3. Results
4. Discussion
5. Conclusions
References
- Feio, M.J.; Aguiar, F.C.; Almeida, S.; Ferreira, J.; Ferreira, M.; Elias, C.; Serra, S.; Buffagni, A.S.; Cambra, J.; Chauvin, C.; et al. Least Disturbed Condition for European Mediterranean rivers. Sci. Total Environ. 2014, 476, 745–756. [Google Scholar] [CrossRef]
- Reynolds, C. Ecological pattern and ecosystem theory. Ecol. Model. 2002, 158, 181–200. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology. In Lake and River Ecosystems, 3rd ed.; Academic Press: Cambridge, MA, USA, 2001; p. 1006. [Google Scholar]
- Brett, M.T.; Goldman, C.R. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. USA 1996, 93, 7723–7726. [Google Scholar] [CrossRef] [PubMed]
- Carney, R.L.; Seymour, J.; Westhorpe, D.; Mitrovic, S.M. And Lotic bacterioplankton and phytoplankton community changes under dissolved organic-carbon amendment: evidence for competition for nutrients. Mar. Freshw. Res. 2016, 67, 1362. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef]
- Humborg, C.; Ittekkot, V.; Cociasu, A.; Bodungen, B.V. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 1997, 386, 385–388. [Google Scholar] [CrossRef]
- Hutchinson, G.E. The Paradox of the Plankton. Am. Nat. 1961, 95, 137–145. [Google Scholar] [CrossRef]
- Sand-Jensen, K.; Borum, J. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat. Bot. 1991, 41, 137–175. [Google Scholar] [CrossRef]
- Béchet, Q.; Shilton, A.; Guieysse, B. Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol. Adv. 2013, 31, 1648–1663. [Google Scholar] [CrossRef] [PubMed]
- Vis, C.; Hudon, C.; Carignan, R.; Gagnon, P. Spatial Analysis of Production by Macrophytes, Phytoplankton and Epiphyton in a Large River System under Different Water-Level Conditions. Ecosystems 2007, 10, 293–310. [Google Scholar] [CrossRef]
- Briner, S.; Elkin, C.; Huber, R. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. J. Environ. Manag. 2013, 129, 414–422. [Google Scholar] [CrossRef]
- Sanchez, E.; Gallardo, C.; Gaertner, M.; Arribas, A.; Castro, M. Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob. Planet. Chang. 2004, 44, 163–180. [Google Scholar] [CrossRef]
- Barbancho, A.C.; Morán-Tejeda, E.; Luengo-Ugidos, M. Ángel; Llorente-Pinto, J.M. Water resources and environmental change in a Mediterranean environment: The south-west sector of the Duero river basin (Spain). J. Hydrol. 2008, 351, 126–138. [Google Scholar] [CrossRef]
- Mimikou, M.; Baltas, E.; Varanou, E.; Pantazis, K. Regional impacts of climate change on water resources quantity and quality indicators. J. Hydrol. 2000, 234, 95–109. [Google Scholar] [CrossRef]
- Cidu, R.; Biddau, R. Transport of trace elements under different seasonal conditions: Effects on the quality of river water in a Mediterranean area. Appl. Geochem. 2007, 22, 2777–2794. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Prieto, J.C.G.; Cachaza, J.M.; Pérez-Galende, P.; Roig, M.G. Impact of drought on the ecological and chemical status of surface water and on the content of arsenic and fluoride pollutants of groundwater in the province of Salamanca (Western Spain). Chem. Ecol. 2012, 28, 545–560. [Google Scholar] [CrossRef]
- Barceló, J.; Sabater, S. Water quality and assessment under scarcity: Prospects and challenges in Mediterranean watersheds. J. Hydrol. 2010, 383, 1–4. [Google Scholar] [CrossRef]
- Han, H.; Allan, J.D.; Scavia, D. Influence of Climate and Human Activities on the Relationship between Watershed Nitrogen Input and River Export. Environ. Sci. Technol. 2009, 43, 1916–1922. [Google Scholar] [CrossRef]
- Karaouzas, I.; Smeti, E.; Vourka, A.; Vardakas, L.; Mentzafou, A.; Tornés, E.; Sabater, S.; Muñoz, I.; Skoulikidis, N.; Kalogianni, E. Assessing the ecological effects of water stress and pollution in a temporary river—Implications for water management. Sci. Total Environ. 2018, 618, 1591–1604. [Google Scholar] [CrossRef] [PubMed]
- Skoulikidis, N.T.; Sabater, S.; Datry, T.; Morais, M.M.; Buffagni, A.S.; Dörflinger, G.; Zogaris, S.; Sánchez-Montoya, M.D.M.; Bonada, N.; Kalogianni, E.; et al. Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Sci. Total Environ. 2017, 577, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Webster, I.T.; Sherman, B.S.; Bormans, M.; Jones, G. Management strategies for cyanobacterial blooms in an impounded lowland river. Regul. Rivers: Res. Manag. 2000, 16, 513–525. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L. Partial Least Squares Methods: Partial Least Squares Correlation and Partial Least Square Regression. In Advanced Structural Safety Studies; Springer Science and Business Media LLC.: Berlin/Heidelberg, Germany, 2012; Volume 930, pp. 549–579. [Google Scholar]
- Wold, H. Soft Modelling by Latent Variables: The Non-Linear Iterative Partial Least Squares (NIPALS) Approach. J. Appl. Probab. 1975, 12, 117–142. [Google Scholar] [CrossRef]
- Palomino, D.; Carrascal, L.M. Habitat associations of a raptor community in a mosaic landscape of Central Spain under urban development. Landsc. Urban Plan. 2007, 83, 268–274. [Google Scholar] [CrossRef]
- Potapova, M.; Charles, D.; Ponader, K.C.; Winter, D.M. Quantifying species indicator values for trophic diatom indices: A comparison of approaches. Hydrobiol. 2004, 517, 25–41. [Google Scholar] [CrossRef]
- Finsinger, W.; Heiri, O.; Valsecchi, V.; Tinner, W.; Lotter, A.F. Modern pollen assemblages as climate indicators in southern Europe. Glob. Ecol. Biogeogr. 2007, 16, 567–582. [Google Scholar] [CrossRef]
- AENOR. Calidad del Agua, Asociación Española de Normalización y Certificación, Madrid; AENOR: Madrid, Spain, 2005. [Google Scholar]
- APHA; AWWA; WPCF. Métodos Normalizados Para el Análisis de Aguas Potables y Residuales, 17th ed.; Diaz de Santos: Madrid, Spain, 1992. [Google Scholar]
- Catherine, A.; Escoffier, N.; Belhocine, A.; Nasri, A.; Hamlaoui, S.; Yéprémian, C.; Bernard, C.; Troussellier, M. On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Res. 2012, 46, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Bardsley, W.G. SIMFIT Statistical Package; Manchester University: Manchester, UK, 2017. [Google Scholar]
- Wold, S. PLS for Multivariate Linear Modeling QSAR: Chemometric Methods in Molecular Design. In Methods and Principles in Medicinal Chemistry; van de Waterbeemd, H., Ed.; Verlag-Chemie: Weinheim, Germany, 1994. [Google Scholar]
Phytoplankton | Cyanobacteria | |||||
---|---|---|---|---|---|---|
Sampling Points | Y Real (μg/L) | Y Predicted (μg/L) | Relative Error (%) | Y Real (μg/L) | Y Predicted (μg/L) | Relative Error (%) |
Irueña | 13.57 | 13.47 | 0.69 | 1.73 | 2.36 | 36.84 |
Sanjuanejo | 18.03 | 15.90 | 11.81 | 6.73 | 6.10 | 9.38 |
C. Rodrigo | 16.31 | 12.03 | 26.27 | 5.79 | 2.95 | 48.99 |
Ivanrey | 11.48 | 10.40 | 9.40 | 2.31 | 2.73 | 18.19 |
Siega Verde | 14.83 | 12.78 | 13.80 | 2.14 | 3.39 | 58.08 |
Fregeneda | 15.5 | 11.49 | 25.86 | 3.76 | 1.11 | 70.41 |
Average | 14.64 | 40.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Prieto, J.C.; Muñoz, F.J.B.; Roig, M.G.; Proal-Najera, J.B. Prediction of Phytoplankton Biomass in Small Rivers of Central Spain by Data Mining Method of Partial Least-Squares Regression. Proceedings 2020, 48, 16. https://doi.org/10.3390/ECWS-4-06427
García-Prieto JC, Muñoz FJB, Roig MG, Proal-Najera JB. Prediction of Phytoplankton Biomass in Small Rivers of Central Spain by Data Mining Method of Partial Least-Squares Regression. Proceedings. 2020; 48(1):16. https://doi.org/10.3390/ECWS-4-06427
Chicago/Turabian StyleGarcía-Prieto, Juan Carlos, Francisco Javier Burguillo Muñoz, Manuel G. Roig, and José Bernardo Proal-Najera. 2020. "Prediction of Phytoplankton Biomass in Small Rivers of Central Spain by Data Mining Method of Partial Least-Squares Regression" Proceedings 48, no. 1: 16. https://doi.org/10.3390/ECWS-4-06427
APA StyleGarcía-Prieto, J. C., Muñoz, F. J. B., Roig, M. G., & Proal-Najera, J. B. (2020). Prediction of Phytoplankton Biomass in Small Rivers of Central Spain by Data Mining Method of Partial Least-Squares Regression. Proceedings, 48(1), 16. https://doi.org/10.3390/ECWS-4-06427