Surface and Groundwater Quality in South African Area—Analysis of the Most Critical Pollutants for Drinking Purposes †
Abstract
:1. Introduction
2. The Area under Study
2.1. Investigations Included in This Overview—Collected Parameters
2.2. National Standards for Potable Use in South Africa and Mozambique
3. Results
3.1. Surface Water Quality and Observed Variability of Concentrations
3.2. Groundwater Quality and Observed Variability of Concentrations of Selected Parameters
4. Discussion and Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
RSA | Republic of South Africa |
MZ | Mozambique |
References
- WHO. Progress on Drinking Water, Sanitation and Hygiene. 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/258617/9789241512893-eng.pdf?sequence=1 (accessed on 31 October 2019).
- STATS SA. Statistics South Africa. Statistical Release P0302. Mid-Year Population Estimates for 2019. Available online: http://www.statssa.gov.za/publications/P0302/P03022019.pdf (accessed on 31 October 2019).
- STATS SA. Statistics South Africa. Statistical Release P0318. General Household Survey for 2018. Available online: http://www.statssa.gov.za/publications/P0318/P03182018.pdf (accessed on 31 October 2019).
- INE. Istituto Nacional de Estatistica. Censo 2017, IV Recenseamento Geral da População e Habitação (RGPH). 2017. Available online: http://www.ine.gov.mz/operacoes-estatisticas/censos/censo-2007/censo-2017/divulgacao-de-resultados-preliminares-do-iv-rgph-2017.pdf/view (accessed on 31 October 2019). (In Portuguese)
- FAO. Food and Agriculture Organization of the United Nations. AQUASTAT Report 2016. Country Profile—Mozambique. Available online: http://www.fao.org/3/i9805en/I9805EN.pdf (accessed on 31 October 2019).
- WHO/UNICEF. World Health Organization/United Nations Children’s Fund. JMP Global Database. 2017. Available online: https://washdata.org/data/household#!/ (accessed on 31 October 2019).
- RSA. Republic of South Africa. GNR.509 of 8 June 2001: Regulations Relating to Compulsory National Standards and Measures to Conserve Water. Regulation Gazette 7079, Government Gazette 22355. Available online: https://cer.org.za/wp-content/uploads/2011/10/Regulations-relating-to-compulsory-national-standards-and-measures-to-conserve-water.pdf (accessed on 31 October 2019).
- UNDP. United Nations Development Programme. Human Development Report 2006. Beyond Scarcity: Power, Poverty and the Global Water Crisis. Available online: http://hdr.undp.org/sites/default/files/reports/267/hdr06-complete.pdf (accessed on 31 October 2019).
- Esterhuizen, L.; Fossey, A.; Potgieter, E. Groundwater quality on dairy farms in central south africa. Water SA 2015, 41, 194–198. [Google Scholar] [CrossRef]
- DM 180/2004. Diploma Ministerial n. 180/2004. Boletim da Republica de Mocambique I (Serie, No. 37). Regulamento Sobre a Qualidade da Agua para o Consumo Humano. Available online: http://extwprlegs1.fao.org/docs/pdf/moz65565.pdf (accessed on 31 October 2019).
- SANS 241-2015. South Africa National Standard 2015. Drinking Wate; Part 1: Microbiological, Physical, Aesthetic and Chemical Determinands; Part 2: Application of SANS 241-1. Available online: https://www.mwa.co.th/download/prd01/iDW_standard/South_African_Water_Standard_SANS_241-2015.pdf (accessed on 31 October 2019).
- Akinsoji, O.; Fatoki, O.S.; Ximba, B.J.; Opeolu, B.O.; Olatunji, O.S. Assessment of arsenic levels in Guguletu and Langa rivers in Cape Town, South Africa. Int. J. Phys. Sci. 2013, 8, 1334–1340. [Google Scholar]
- Edokpayi, J.N.; Odiyo, J.O.; Olasoji, S.O. Assessment of heavy metal contamination of Dzindi River, in Limpopo Province, South Africa. Int. J. Nat. Sci. Res. 2014, 2, 185–194. [Google Scholar]
- Edokpayi, J.N.; Odiyo, J.O.; Msagati, T.A.M.; Potgieter, N. Temporal variations in physico-chemical and microbiological characteristics of Mvudi river, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 4128–4140. [Google Scholar] [CrossRef] [PubMed]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Assessment of trace metals contamination of surface water and sediment: A case study of Mvudi river, South Africa. Sustainability 2016, 8, 135. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe district, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 387. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Evaluation of temporary seasonal variation of heavy metals and their potential ecological risk in Nzhelele river, South Africa. Open Chem. 2017, 15, 272–282. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Awofolu, R. Levels of cd, hg and zn in some surface waters from the Eastern Cape province, South Africa. Water SA 2003, 29, 375–380. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Muyima, N.Y.O.; Lujiza, N. Situation analysis of water quality in the Umtata river catchment. Water SA 2001, 27, 467–473. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Lujiza, N.; Ogunfowokan, A.O. Trace metal pollution in Umtata river. Water SA 2002, 28, 183–189. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Awofolu, O.R.; Genthe, B. Cadmium in the Umtata river and the associated health impact of on rural communities who are primary users of water from the river. Water SA 2004, 30, 507–513. [Google Scholar] [CrossRef]
- Jackson, V.A.; Paulse, A.N.; Van Stormbroek, T.; Odendaal, J.P.; Khan, W. Investigation into metal contamination of the Berg river, Western Cape, South Africa. Water SA 2007, 33, 175–182. [Google Scholar] [CrossRef]
- Jackson, V.A.; Paulse, A.N.; Odendaal, J.P.; Khan, W. Investigation into the metal contamination of the plankenburg and diep rivers, Western Cape, South Africa. Water SA 2009, 35, 289–300. [Google Scholar] [CrossRef]
- Lin, J.; Biyela, P.T.; Puckree, T.; Bezuidenhout, C.C. A study of the water quality of the Mhlathuze river, KwaZulu-natal (RSA): Microbial and physico-chemical factors. Water SA 2004, 30, 17–22. [Google Scholar] [CrossRef]
- Nekhavhambe, T.J.; van Ree, T.; Fatoki, O.S. Determination and distribution of polycyclic aromatic hydrocarbons in rivers, surface runoff, and sediments in and around Thohoyandou, Limpopo province, South Africa. Water SA 2014, 40, 415–424. [Google Scholar] [CrossRef]
- Barbieri, M.; Ricolfi, L.; Vitale, S.; Muteto, P.V.; Nigro, A.; Sappa, G. Assessment of groundwater quality in the buffer zone of Limpopo national park, Gaza province, Southern Mozambique. Environ. Sci. Pollut. Res. 2019, 26, 62–77. [Google Scholar] [CrossRef]
- Verlicchi, P.; Aviles Sacoto, E.C.; Zanni, G. Zootechnical Farm Wastewaters in Ecuador: A Treatment Proposal and Cost-benefit Analysis. Water 2019, 11, 779. [Google Scholar] [CrossRef]
- Abia, A.L.K.; Ubomba-Jaswa, E.; Momba, M.N.B. Impact of seasonal variation on escherichia coli concentrations in the riverbed sediments in the Apies River, South Africa. Sci. Total Environ. 2015, 537, 462–469. [Google Scholar] [CrossRef]
- Bezuidenhout, C.C.; Mthembu, N.; Puckree, T.; Lin, J. Microbiological evaluation of the Mhlathuze river, KwaZulu-natal (RSA). Water SA 2002, 28, 281–286. [Google Scholar] [CrossRef]
- Obi, C.L.; Potgieter, N.; Bessong, P.O.; Matsaung, G. Assessment of the microbial quality of river water sources in rural Venda communities in South Africa. Water SA 2002, 28, 287–292. [Google Scholar] [CrossRef]
- Sibanda, T.; Chigor, V.N.; Okoh, A.I. Seasonal and spatio-temporal distribution of faecal-indicator bacteria in Tyume river in the Eastern Cape province, South Africa. Environ. Monit. Assess. 2013, 185, 6579–6659. [Google Scholar] [CrossRef] [PubMed]
- Abiye, T.A.; Leshomo, J.T. Groundwater flow and radioactivity in Namaqualand, South Africa. Environ. Earth Sci. 2013, 70, 281–293. [Google Scholar] [CrossRef]
- Abiye, T.; Leshomo, J. Metal enrichment in the groundwater of the arid environment in South Africa. Environ. Earth Sci. 2014, 72, 4587–4598. [Google Scholar] [CrossRef]
- Abiye, T.; Bybee, G.; Leshomo, J. Fluoride concentrations in the arid Namaqualand and the Waterberg groundwater, South Africa: Understanding the controls of mobilization through hydrogeochemical and environmental isotopic approaches. Groundw. Sustain. Dev. 2018, 6, 112–120. [Google Scholar] [CrossRef]
- Abiye, T.A.; Bhattacharya, P. Arsenic concentration in groundwater: Archetypal study from South Africa. Groundw. Sustain. Dev. 2019, 9. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Enitan, A.M.; Mutileni, N.; Odiyo, J.O. Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe district, Limpopo province, South Africa. Chem. Cent. J. 2018, 12. [Google Scholar] [CrossRef]
- .Odiyo, J.O.; Makungo, R. Fluoride concentrations in groundwater and impact on human health in Siloam Village, Limpopo province, South Africa. Water SA 2012, 38, 731–736. [Google Scholar] [CrossRef]
- Odiyo, J.O.; Makungo, R. Chemical and microbial quality of groundwater in Siloam village, implications to human health and sources of contamination. Int. J. Environ. Res. Public Health 2018, 15, 317. [Google Scholar] [CrossRef]
- Van Wyk, N.; Coetzee, H. The distribution of uranium in groundwater in the Bushmanland and Namaqualand areas, Northern Cape province, South Africa. In Uranium, Mining and Hydrogeology Paper; Merkel, B.J., Hasche-Berger, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 639–644. ISBN 978-3-540-87745-5. [Google Scholar]
Contaminant | Unit | Si_Mozambique (DM-180/2004 [10]) | Si_South Africa (SANS-241-1:2015 [11]) |
---|---|---|---|
Aluminium | µg/L | 200 | ≤300 |
Ammonia | µg/L | 1500 | ≤1500 |
Arsenic | µg/L | 10 | ≤10 |
Barium | µg/L | 700 | ≤700 |
Boron | µg/L | 300 | ≤2400 |
Cadmium | µg/L | 3 | ≤3 |
Calcium | mg/L | 50 | |
Chloride | mg/L | 250 | ≤300 |
Chlorine | µg/L | 200–500 (residual) | ≤5000 (free) |
Chromium (total) | µg/L | 50 | ≤50 |
Conductivity | mS/m | 5–200 | ≤170 (25 °C) |
Copper | µg/L | 1000 | ≤2000 |
Fluoride | µg/L | 1500 | ≤1500 |
Iron | µg/L | 300 (total) | ≤2000 (chronic health) ≤300 (aesthetic) |
Lead | µg/L | 10 | ≤10 |
Magnesium | mg/L | 50 | |
Manganese | µg/L | 100 | ≤400 (chronic health) ≤100 (aesthetic) |
Mercury | µg/L | 1 | ≤6 |
Molybdenum | µg/L | 70 | |
Nickel | µg/L | 20 | ≤70 |
Nitrate | mg N/L | 50 | ≤11 |
Nitrate+Nitrite | mg N/L | ≤1 | |
Nitrite | µg N/L | 3000 | ≤900 |
pH (25 °C) | 6.5–8.5 | 5–9.7 | |
Phosphorus | µg/L | 100 | |
PAHs total | µg/L | 0.1 | |
Sodium | mg/L | 200 | ≤200 |
Sulphate | mg/L | 250 | ≤500 (acute health) ≤250 (aesthetic) |
Total dissolved solids | mg/L | 1000 | ≤1200 (aesthetic) |
Turbidity | NTU | 5 | ≤1 (operation)≤5 (aesthetic) |
Uranium | µg/L | ≤30 | |
Zinc | µg/L | 3000 | ≤5000 |
Escherichia coli (E.coli) | n/100 mL | Not detected | |
Fecal coliforms | n/100 mL | 0-10 or absent | Not detected |
Heterotrophic plate count (HPC) | n/1 mL | ≤1000 | |
Total coliforms | n/100 mL | Absent | ≤10 |
Group | Variability Range-Standards Criteria | Pollution Level |
---|---|---|
1 | Maximum measured concentrations of the pollutant ci,max < standard Si | ☺ |
2 | 75th percentile < Si ≤ 100th percentile of the collected values of concentrations | 😐 |
3 | 50th percentile < Si ≤ 75th percentile of the collected values of concentrations | 😐😐 |
4 | 25th percentile < Si ≤ 50th percentile of the collected values of concentrations | ☹ |
5 | Si ≤ 25° percentile of the collected values of concentrations | ☹☹ |
6 | Minimum measured concentrations ci,min > Si | ☹☹☹ |
Group | South Africa | Mozambique | Pollution Level |
---|---|---|---|
ci,max < Si | Arsenic, zinc, ammonium, chloride, fluoride, nitrate, sulphate, TDS | Ammonium, nitrite, nitrate | 😊 |
75th perc. < Si ≤ 100th perc. | Copper, manganese, nitrite | Calcium, magnesium, sodium, sulphate | 😐 |
50th perc. < Si ≤ 75° perc. | Mercury | -- | 😐😐 |
25th perc. < Si ≤ 50° perc. | Cadmium, chromium, lead, manganese | -- | ☹ |
Si ≤ 25th perc. | Aluminium, iron | -- | ☹☹ |
ci,min > Si | Nickel | Boron, chlorine | ☹☹☹ |
Comparison not possible | Phosphate, phosphorus, total nitrogen, PAHs | Fluorine, potassium, bicarbonate, chlorite |
Group | South Africa | Mozambique | Pollution Level |
---|---|---|---|
ci,max < Si | Barium, cadmium, copper, zinc | Nitrite, ammonium | ☺ |
75th perc. < Si ≤ 100° perc. | Boron, iron, manganese, chloride, sulphate | Sulphate | 😐 |
50th perc. < Si ≤ 75th perc. | Nickel, fluoride, TDS | Nitrate | 😐😐 |
25th perc. < Si ≤ 50th perc. | Chromium, uranium | Magnesium | ☹ |
Si ≤ 25th perc. | Sodium, nitrate | Calcium | ☹☹ |
ci,min > Si | Arsenic, lead, chlorine | Boron, sodium, chlorine | ☹☹☹ |
Comparison not possible | Bromine, calcium, lithium, magnesium, molybdenum, potassium, rubidium, silver, strontium, vanadium, bicarbonate, fluorine, phosphate | Potassium bicarbonate, chlorite, fluorine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verlicchi, P.; Grillini, V. Surface and Groundwater Quality in South African Area—Analysis of the Most Critical Pollutants for Drinking Purposes. Proceedings 2020, 48, 3. https://doi.org/10.3390/ECWS-4-06430
Verlicchi P, Grillini V. Surface and Groundwater Quality in South African Area—Analysis of the Most Critical Pollutants for Drinking Purposes. Proceedings. 2020; 48(1):3. https://doi.org/10.3390/ECWS-4-06430
Chicago/Turabian StyleVerlicchi, Paola, and Vittoria Grillini. 2020. "Surface and Groundwater Quality in South African Area—Analysis of the Most Critical Pollutants for Drinking Purposes" Proceedings 48, no. 1: 3. https://doi.org/10.3390/ECWS-4-06430
APA StyleVerlicchi, P., & Grillini, V. (2020). Surface and Groundwater Quality in South African Area—Analysis of the Most Critical Pollutants for Drinking Purposes. Proceedings, 48(1), 3. https://doi.org/10.3390/ECWS-4-06430