A Comparison between Conceptual and Physically Based Models in Predicting the Hydrological Behavior of Green Roofs †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Datasets
2.3. SWMM and NASH Model
2.4. Model Evaluation
3. Results and Discussion
4. Conclusions
References
- Califano, F.; Mobilia, M.; Longobardi, A. Heavy Rainfall Temporal Characterization in the Peri-Urban Solofrana River Basin, Southern Italy. Procedia Eng. 2015, 119, 1129–1138. [Google Scholar] [CrossRef]
- Mobilia, M.; Califano, F.; Longobardi, A. Analysis of Rainfall Events driving MDHEs Occurred in the Solofrana River Basin, Southern Italy. Procedia Eng. 2015, 119, 1139–1146. [Google Scholar] [CrossRef]
- Longobardi, A.; Diodato, N.; Mobilia, M. Historical storminess and hydro-geological hazard temporal evolution in the solofrana river basin—Southern Italy. Water 2016, 8, 398. [Google Scholar] [CrossRef]
- Lee, J.Y.; Moon, H.J.; Kim, T.I.; Kim, H.W.; Han, M.Y. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system. Environ. Pollut. 2013, 181, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Akter, T.; Quevauviller, P.; Eisenreich, S.J.; Vaes, G. Impacts of climate and land use changes on flood risk management for the Schijn River, Belgium. Environ. Sci. Policy 2018, 89, 163–175. [Google Scholar] [CrossRef]
- Sartor, J.; Mobilia, M.; Longobardi, A. Results and findings from 15 years of sustainable urban storm water management. Int. J. Saf. Secur. Eng. 2018, 8, 505–514. [Google Scholar] [CrossRef]
- Roehr, D.; Kong, Y. Runoff reduction effects of green roofs in Vancouver, BC, Kelowna, BC, and Shanghai, PR China. Can. Water Resour. J. 2010, 35, 53–68. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.G. Compared performance of a conceptual and a mechanistic hydrologic models of a green roof. Hydrol. Process. 2012, 26, 73–84. [Google Scholar] [CrossRef]
- Carson, T.; Keeley, M.; Marasco, D.E.; McGillis, W.; Culligan, P. Assessing methods for predicting green roof rainfall capture: A comparison between full-scale observations and four hydrologic models. Urban Water J. 2017, 14, 589–603. [Google Scholar] [CrossRef]
- Mobilia, M.; Longobardi, A.; Sartor, J. Including a-priori assessment of actual evapotranspiration for green roof daily scale hydrological modelling. Water 2017, 9, 72. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M.; Stojkov, I. A long-term hydrological modelling of an extensive green roof by means of SWMM. Ecol. Eng. 2016, 95, 876–887. [Google Scholar] [CrossRef]
- Peng, Z.; Stovin, V. Independent validation of the SWMM green roof module. J. Hydrol. Eng. 2017, 22, 04017037. [Google Scholar] [CrossRef]
- Nash, J.E. The form of the instantaneous unit hydrograph. Int. Assoc. Sci. Hydrol. 1957, 3, 114–121. [Google Scholar]
- Krasnogorskaya, N.; Longobardi, A.; Mobilia, M.; Khasanova, L.F.; Shchelchkova, A.I. Hydrological Modeling of Green Roofs Runoff by Nash Cascade Model. Open Civ. Eng. J. 2019, 13, 163–171. [Google Scholar] [CrossRef]
- Mobilia, M.; Longobardi, A. Event Scale Modeling of Experimental Green Roofs Runoff in a Mediterranean Environment. In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability; Springer: Cham, Switzerland, 2020; pp. 153–156. [Google Scholar]
- Mobilia, M.; Longobardi, A. Smart Stormwater Management in Urban Areas by Roofs Greening. In Proceedings of the International Conference on Computational Science and Its Applications, Trieste, Italy, 3–6 July 2017; Springer: Cham, Switzerland, 2017; pp. 455–463. [Google Scholar]
- Mobilia, M.; D’Ambrosio, R.; Longobardi, A. Climate, soil moisture and drainage layer properties impact on green roofs in a Mediterranean environment. In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability; Springer: Cham, Switzerland, 2020; pp. 169–171. [Google Scholar]
Date | 25/07/2017 | 07/09/2017 | 07/11/2017 | 10/01/2018 | 11/01/2018 | 12/01/2018 | 16/01/2018 | 17/01/2018 | 17/01/2018 |
d (min) | 420 | 540 | 360 | 540 | 960 | 300 | 900 | 180 | 60 |
C (mm) | 2.8 | 4.6 | 15.2 | 30.2 | 20.1 | 5.3 | 15.5 | 1.3 | 3.6 |
I (mm/h) | 2.0 | 2.3 | 9.4 | 10.2 | 9.4 | 2.0 | 2.8 | 1.0 | 3.6 |
RCGR1 (%) | 82.4 | 68.9 | 36.8 | 45.2 | 22.4 | 85.4 | 6.6 | 77.5 | 77.6 |
RCGR2 (%) | 84.0 | 68.9 | 2.9 | 49.0 | 25.0 | 88.0 | 14.4 | 77.2 | 83.4 |
Date | 01/02/2018 | 03/02/2018 | 07/02/2018 | 13/02/2018 | 14/02/2018 | 18/02/2018 | 20/02/2018 | 02/03/2018 | 03/03/2018 |
d (min) | 300 | 1200 | 840 | 60 | 240 | 1800 | 1080 | 240 | 720 |
C (mm) | 3.3 | 12.4 | 11.2 | 0.8 | 4.8 | 11.2 | 11.4 | 3.3 | 11.4 |
I (mm/h) | 1.5 | 3.8 | 4.8 | 0.8 | 2.5 | 1.3 | 2.3 | 1.8 | 2.3 |
RCGR1 (%) | 80.5 | 36.6 | 7.0 | 84.3 | 81.4 | 82.5 | 18.9 | 38.2 | 17.7 |
RCGR2 (%) | 74.4 | 42.0 | 5.6 | 90.3 | 76.7 | 77.6 | 29.4 | 40.0 | 39.1 |
Date | 09/04/2018 | 17/04/2018 | 03/05/2018 | 04/05/2018 | 23/05/2018 | 05/10/2018 | 07/11/2018 | ||
d (min) | 180 | 360 | 180 | 300 | 300 | 240 | 360 | ||
C (mm) | 6.1 | 5.8 | 7.1 | 1.3 | 13.0 | 2.8 | 16.0 | ||
I (mm/h) | 3.6 | 5.3 | 4.8 | 0.5 | 4.8 | 1.3 | 6.4 | ||
RCGR1 (%) | 80.3 | 82.7 | 78.1 | 96.2 | 11.4 | 84.8 | 25.2 | ||
RCGR2 (%) | 80.2 | 79.9 | 73.9 | 78.6 | 40.5 | 76.0 | 20.0 |
Event | SWMM-GR1 | SWMM-GR2 | NASH-GR1 | NASH-GR2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NSE (-) | RMSE (mm) | MAE (mm) | NSE (-) | RMSE (mm) | MAE (mm) | NSE (-) | RMSE (mm) | MAE (mm) | NSE (-) | RMSE (mm) | MAE (mm) | |
25/07/2017 | 0.80 | 0.04 | 0.03 | 0.87 | 0.03 | 0.02 | 0.93 | 0.03 | 0.02 | 0.94 | 0.03 | 0.02 |
07/09/2017 | 0.78 | 0.13 | 0.07 | 0.74 | 0.15 | 0.08 | 0.58 | 0.22 | 0.13 | 0.65 | 0.21 | 0.12 |
07/11/2017 | 0.95 | 0.89 | 0.78 | 0.94 | 1.07 | 0.85 | 0.95 | 0.71 | 0.47 | 0.81 | 1.76 | 1.07 |
10/01/2018 | 0.86 | 1.14 | 0.72 | 0.87 | 1.01 | 0.68 | 0.78 | 1.84 | 1.07 | 0.75 | 1.71 | 1.04 |
11/01/2018 | 0.89 | 0.56 | 0.43 | 0.82 | 0.60 | 0.41 | 0.93 | 0.48 | 0.32 | 0.56 | 1.04 | 0.59 |
12/01/2018 | 0.04 | 0.09 | 0.07 | 0.35 | 0.06 | 0.05 | 0.83 | 0.04 | 0.02 | 0.28 | 0.06 | 0.05 |
16/01/2018 | 0.35 | 0.86 | 0.48 | 0.67 | 0.47 | 0.35 | 0.49 | 0.76 | 0.35 | 0.71 | 0.43 | 0.28 |
17/01/2018 | 0.54 | 0.03 | 0.02 | 0.25 | 0.03 | 0.03 | 0.81 | 0.02 | 0.01 | 0.82 | 0.01 | 0.01 |
17/01/2018 | 0.85 | 0.17 | 0.12 | 0.78 | 0.09 | 0.07 | 0.77 | 0.13 | 0.10 | 0.96 | 0.03 | 0.02 |
01/02/2018 | 0.51 | 0.11 | 0.11 | 0.47 | 0.08 | 0.06 | 0.74 | 0.06 | 0.04 | 0.81 | 0.04 | 0.03 |
03/02/2018 | 0.90 | 0.20 | 0.14 | 0.90 | 0.19 | 0.13 | 0.82 | 0.26 | 0.18 | 0.78 | 0.28 | 0.19 |
07/02/2018 | 0.93 | 0.25 | 0.21 | 0.73 | 0.42 | 0.29 | 0.94 | 0.24 | 0.15 | 0.89 | 0.26 | 0.19 |
13/02/2018 | 0.92 | 0.01 | 0.00 | 0.96 | 0.01 | 0.00 | 0.99 | 0.00 | 0.00 | -0.12 | 0.03 | 0.02 |
14/02/2018 | 0.88 | 0.06 | 0.05 | 0.91 | 0.05 | 0.03 | 0.87 | 0.04 | 0.01 | 0.91 | 0.04 | 0.02 |
18/02/2018 | -0.23 | 0.08 | 0.05 | -0.31 | 0.09 | 0.06 | 0.77 | 0.03 | 0.02 | 0.85 | 0.03 | 0.02 |
20/02/2018 | 0.58 | 0.34 | 0.22 | -0.16 | 0.42 | 0.29 | 0.91 | 0.18 | 0.11 | 0.87 | 0.17 | 0.11 |
02/03/2018 | 0.56 | 0.17 | 0.10 | 0.73 | 0.08 | 0.06 | 0.62 | 0.13 | 0.06 | 0.59 | 0.11 | 0.05 |
03/03/2018 | 0.76 | 0.35 | 0.22 | 0.83 | 0.20 | 0.09 | 0.80 | 0.35 | 0.25 | 0.70 | 0.30 | 0.20 |
09/04/2018 | 0.54 | 0.19 | 0.14 | 0.73 | 0.20 | 0.17 | 0.84 | 0.26 | 0.21 | 0.83 | 0.28 | 0.23 |
17/04/2018 | 0.85 | 0.13 | 0.08 | 0.99 | 0.03 | 0.02 | 1.00 | 0.02 | 0.02 | 0.96 | 0.07 | 0.04 |
03/05/2018 | 0.93 | 0.11 | 0.07 | 0.66 | 0.24 | 0.13 | 0.96 | 0.08 | 0.05 | 0.95 | 0.09 | 0.07 |
04/05/2018 | -0.05 | 0.01 | 0.01 | -0.21 | 0.03 | 0.02 | 0.18 | 0.01 | 0.00 | 0.09 | 0.025 | 0.019 |
23/05/2018 | 0.91 | 0.49 | 0.42 | 0.83 | 0.52 | 0.37 | 0.12 | 1.54 | 1.00 | 0.38 | 0.91 | 0.63 |
05/10/2018 | 0.22 | 0.06 | 0.04 | 0.35 | 0.09 | 0.05 | 0.83 | 0.05 | 0.03 | 0.75 | 0.10 | 0.07 |
07/11/2018 | 0.68 | 1.16 | 0.85 | 0.47 | 1.64 | 1.17 | 0.61 | 2.19 | 1.33 | 0.65 | 2.19 | 1.25 |
MEAN | 0.64 | 0.30 | 0.22 | 0.61 | 0.31 | 0.22 | 0.76 | 0.39 | 0.24 | 0.69 | 0.41 | 0.25 |
Dependent Variable | Independent Variable | p-Value (SWMM-GR1) | p-Value (SWMM-GR2) | p-Value (NASH-GR1) | p-Value (NASH-GR2) |
---|---|---|---|---|---|
RMSE | d | 9.0 × 10−3 | 1.6 × 10−1 | 3.0 × 10−4 | 1.2 × 10−2 |
C | 3.5 × 10−5 | 2.2 × 10−2 | 4.2 × 10−6 | 2.0 × 10−3 | |
I | 4.6 × 10−1 | 5.3 × 10−1 | 4.3 × 10−2 | 8.3 × 10−1 | |
MAE | d | 4.4 × 10−2 | 2.0 × 10−1 | 2.3 × 10−4 | 1.4 × 10−3 |
C | 1.6 × 10−3 | 4.5 × 10−2 | 3.8 × 10−6 | 7.2 × 10−5 | |
I | 6.6 × 10−1 | 4.1 × 10−1 | 6.7 × 10−2 | 8.5 × 10−1 |
Publisher†s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobilia, M.; Longobardi, A. A Comparison between Conceptual and Physically Based Models in Predicting the Hydrological Behavior of Green Roofs. Proceedings 2020, 48, 8. https://doi.org/10.3390/ECWS-4-06450
Mobilia M, Longobardi A. A Comparison between Conceptual and Physically Based Models in Predicting the Hydrological Behavior of Green Roofs. Proceedings. 2020; 48(1):8. https://doi.org/10.3390/ECWS-4-06450
Chicago/Turabian StyleMobilia, Mirka, and Antonia Longobardi. 2020. "A Comparison between Conceptual and Physically Based Models in Predicting the Hydrological Behavior of Green Roofs" Proceedings 48, no. 1: 8. https://doi.org/10.3390/ECWS-4-06450
APA StyleMobilia, M., & Longobardi, A. (2020). A Comparison between Conceptual and Physically Based Models in Predicting the Hydrological Behavior of Green Roofs. Proceedings, 48(1), 8. https://doi.org/10.3390/ECWS-4-06450