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Abstract: Non-Newtonian fluid flow in a single fracture is a 3D nonlinear phenomenon that is often 
averaged across the fracture aperture and described as 2D. To capture key interactions between 
fluid rheology and spatial heterogeneity, we adopted a simplified geometric model to describe 
aperture variability, consisting of adjacent one-dimensional channels with constant aperture, each 
drawn from assigned aperture distribution. The flow rate was then derived under the lubrication 
approximation for the two limiting cases of an external pressure gradient that was 
parallel/perpendicular to the channels; these two arrangements provided an upper/lower bound to 
fracture conductance. Fluid rheology was described via the Prandtl–Eyring shear-thinning model. 
Novel closed-form results for flow rate and hydraulic aperture were derived and are discussed; 
different combinations of parameters describing the fluid rheology and variability of the aperture 
field were considered. In general, flow rate depends, in a nonlinear fashion, on the dimensionless 
pressure gradient and distribution parameters. 
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1. Introduction 

Non-Newtonian fluid flow in fractured media is of interest in many environmental applications, 
such as hydraulic fracturing, drilling operations, enhanced oil recovery, and subsurface 
contamination and remediation. The basic building block in fractured-medium modeling is a 
thorough understanding of flow and transport in a single fracture [1]. A key concept in single-fracture 
flow and transport is the fracture aperture, defined by the space between fracture walls. Due to the 
heterogeneity of these surfaces, the fracture aperture is spatially variable [2,3]. Flow modeling at the 
single-fracture scale leads to the determination of flow rate under a given pressure gradient as a 
function of parameters describing the variability of the aperture field or of the confining walls. A 
hydraulic aperture can then be derived from the flow rate [4] as the aperture of a smooth-walled 
conduit that would produce the same flow rate under a given pressure gradient as the real rough-
walled fracture. 

When fluid behavior is non-Newtonian, the effects of spatial variability are compounded with 
the influence of rheology, producing striking results such as pronounced channeling effects [5]. 
Different constitutive equations were used to represent non-Newtonian behavior in fracture flow 
[5,6]. A comprehensive comparison of results for different constitutive equations is still lacking, but 
the impact of fluid rheology is likely to be significant.  

Detailed 2D or 3D flow modeling of non-Newtonian flow in single fractures needs to be 
numerically tackled, with considerable computational effort given flow nonlinearity. Not 
surprisingly, some authors pursued a simpler approach with the aim of providing order-of-
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magnitude estimates and reference benchmarks for fracture conductivity. Basically, this approach 
considers a simplified, extremely anisotropic fracture geometry, with an aperture variable along one 
direction, and constant aperture channels along the other. The arbitrary orientation of the external 
pressure gradient with respect to the channels gives rise to two limit cases: (i) parallel arrangement, 
which provides an upper bound to the conductivity; and (ii) serial arrangement, which provides a 
lower bound. Flow in an isotropic aperture field is then addressed considering the fracture as a 
random mixture of elements in which the fluid flows either transversal or parallel to the aperture 
variation. The hydraulic aperture is derived by a suitable averaging procedure [7]. 

The present paper follows this avenue of research exploring the impact of a classical, two-
parameter shear-thinning constitutive equation, the Prandtl–Eyring model [8], which overcomes the 
unrealistic behavior of the power-law model, having infinite apparent viscosity for zero shear rate. 
Section 2 derives the flow rate under an assigned external pressure gradient for flow of a Prandtl–
Eyring fluid in a parallel-plate fracture. Section 3 presents the adopted simplified geometry, derives 
general expressions of the flow rate for flow parallel or perpendicular to constant aperture channels, 
and proposes a method to evaluate the hydraulic aperture for the 2D case. Section 4 introduces a 
specific probability-distribution function for the aperture, the gamma distribution, and illustrates 
corresponding results for flow rate and hydraulic aperture.  

2. Prandtl–Eyring Fluid Flow in Constant-Aperture Fracture  

We considered the flow of a non-Newtonian Prandtl–Eyring fluid between two smooth parallel 
plates separated by a distance b (fracture aperture); the co-ordinate system is shown in Figure 1. 
Uniform pressure gradient 𝑃 = −𝑑𝑃 𝑑𝑥⁄  was applied in the 𝑥  direction, where 𝑃 = 𝑝 + 𝜌𝑔𝑧 
includes gravity effects, 𝑝  is pressure, 𝑔  gravity, and 𝜌  fluid density. Assuming flow in the 𝑥 
direction, velocity 𝑣  is solely a function of 𝑧. Momentum balance yields linear shear-stress profile 

 = 𝑃 ⌊𝑧⌋. (1)

A Prandtl–Eyring fluid is rheologically described in simple shear flow by [8] 𝜏 = 𝐴 𝑠𝑖𝑛ℎ − 1𝐵 𝑑𝑣𝑑𝑧 , (2)

where 𝜏  is shear stress, 𝑑𝑣 𝑑𝑧⁄ = 𝛾 shear rate, and parameters 𝐴, 𝐵 describe the fluid. Figure 2 
shows apparent viscosity 𝜂(𝛾), defined by relationship 𝜏 = 𝜂(𝛾)𝛾, as a function of shear rate 𝛾 for 
realistic parameter values.  

 

Figure 1. Parallel-plate model. (a) Model representation; (b) cross-sectional velocity profile. 

Substituting Equation (2) in Equation (1), and integrating with the no-slip condition at wall 𝑣 (∓ 𝑏 2⁄ ) = 0, gives the velocity profile between 𝑧 = − 𝑏 2⁄  and 𝑧 = + 𝑏 2⁄  as  
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𝑣 (𝑧) = 𝐴𝐵𝑃 𝑐𝑜𝑠ℎ 𝑃 𝑏2𝐴 − 𝑐𝑜𝑠ℎ 𝑃 |𝑧|2𝐴 . (3)

 

Figure 2. Prandlt–Eyring fluid rheology: shear-stress–shear-rate relationship. Rheologic parameters 
from [7]: A = 0.00452 Pa and B = 0.0301 s−1. 

Total flow rate 𝑄  through the fracture for width 𝑊 in the y direction perpendicular to the 
pressure gradient was derived integrating Equation (2); the result was  𝑄 = 𝐴𝐵𝑊𝑃 𝑏 𝑐𝑜𝑠ℎ 𝑃 𝑏2𝐴 − 2𝐴𝑃 𝑠𝑖𝑛ℎ 𝑃 𝑏2𝐴 ; 𝑞 = 𝑄𝑊 ; 𝑉 = 𝑞𝑏 ,  (4) 

where 𝑞  is the flow rate per unit width, and 𝑉  the average velocity.  
If the aperture varies, as in real rock fractures, a flow law of the type of Equation (4) is valid, 

replacing constant aperture 𝑏  with hydraulic aperture 𝑏 , accounting for the aperture variation 
[7,9].  

3. Flow in Variable-Aperture Channels  

Flow and transport simulations in variable-aperture fractures typically consider aperture 𝑏(𝑥, 𝑦) 

to vary as a two-dimensional, spatially homogeneous, and correlated random field with probability 
density function 𝑓(𝑏) and assigned statistics. Fracture dimensions were assumed to be much larger 
than the integral scale of the aperture autocovariance function; then, under ergodicity, spatial and 
ensemble averages were interchangeable, and a single realization could be examined [4]. This 
approach was adopted by [10,11] to study the flow of power-law and truncated-power-law fluids in 
simplified aperture fields, where the aperture varied only along one spatial co-ordinate, and the 
external pressure gradient, hence the flow, was either transverse or parallel to the aperture variability; 
such an idealized fracture of dimensions 𝐿 and 𝑊 is shown in Figure 3.  

 
Figure 3. Conceptual-model representation. (a) Parallel and (b) serial arrangement. 
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3.1. Channels in Parallel 

Consider flow along direction 𝑥 parallel to constant-aperture channels, and driven by external 
pressure gradient 𝑃 . To obtain the volumetric flux, a procedure similar to that adopted in [12] was 
used. The fracture was discretized into N neighboring parallel channels, each having equal width 𝑊 = 𝑊 𝑁⁄ , length 𝐿 , and constant aperture 𝑏 . Assuming that the shear between neighboring 
channels and the drag against the connecting walls could be neglected, the flow rate in each channel 
of the constant aperture along 𝑥 is given by Equation (4), with 𝑏  in place of 𝑏 and 𝑊  in place of 𝑊. Hence, summing over all channels, total flow rate in the fracture was  

𝑄 = 𝑄 = 𝐴𝐵𝑊𝑃 1𝑁 𝑏 𝑐𝑜𝑠ℎ 𝑃 𝑏2𝐴 − 2𝐴𝑃 𝑠𝑖𝑛ℎ 𝑃 𝑏2𝐴 . (5)

Taking the limit as 𝑁 → ∞, the width of each channel tended to zero and the discrete aperture 
variation to a continuous one; then, under ergodicity, Equation (5), for the flow rate per unit width, 
gives expression 

𝑞 = 𝑄𝑊 = 𝐴𝐵𝑃 𝑏 𝑐𝑜𝑠ℎ 𝑃 𝑏2𝐴 𝑓(𝑏)𝑑𝑏 − 2𝐴𝑃 𝑠𝑖𝑛ℎ 𝑃 𝑏2𝐴 𝑓(𝑏)𝑑𝑏 , (6)

where 𝑓(𝑏) is the probability-distribution function of aperture field 𝑏, defined between 0 and ∞. 
Finally, hydraulic aperture 𝑏  may be numerically derived upon equating 𝑞  from Equation (6) 
with Equation (4), written with 𝑏  in place of 𝑏. 

3.2. Channels in Series 

Consider flow along direction 𝑦 parallel to constant-aperture channels, and driven by external 
pressure gradient 𝑃 . The fracture, having length 𝑊 and width 𝐿, was discretized into N cells in 
series of equal length 𝑊 = 𝑊 𝑁⁄ , each of width 𝐿 and constant aperture 𝑏 . As volumetric flux 𝑄  
through each cell was the same, so was the flow rate per unit width in each cell, i.e., 𝑞 = 𝑞 = 𝑄 𝐿⁄ . 
Total pressure loss along the fracture in the 𝑦 direction, ∆𝑃, equaled the sum of pressure losses in 
each cell, ∆𝑃 , i.e., ∆P = ∑ ∆P , neglecting pressure losses due to the succession of constrictions and 
enlargements. This, in turn, yielded external mean pressure gradient 𝑃  as P = ∑ P , 𝑤here the 
pressure gradient in each cell of constant aperture 𝑏  was given by 𝑃 = 𝑃 𝑞 , 𝑏 , 𝐴, 𝐵 , obtained 
by deriving the pressure gradient as a function of flow rate from Equation (4), written replacing 
subscript 𝑥 with 𝑦 and 𝑏 with 𝑏 . Taking the limit as 𝑁 → ∞, the length of each cell tended to 
zero, and the discrete aperture variation to a continuous one; then, under ergodicity, the previous 
relationship gives, for the mean pressure gradient in the 𝑦 direction, 

𝑃 = 𝑃 𝑞 , 𝑏, 𝐴, 𝐵 𝑓(𝑏)𝑑𝑏. (7)

The integration of Equation (7) gives the flow rate as 𝑞 = 𝑞 𝑃 , 𝐴, 𝐵, 𝑓(𝑏) . Lastly, hydraulic 
aperture 𝑏  was derived upon equating 𝑞  thus derived with Equation (4), written with subscript 𝑦 in place of 𝑥 and with 𝑏  in place of 𝑏.  

3.3. Flow in 2D Isotropic Aperture Field 

Non-Newtonian flow in a fracture characterized by an isotropic, two-dimensional aperture 
variation is highly complex [6], and the hydraulic aperture can only be obtained by means of 
numerical simulations. However, it can be argued [12] that the scheme with channels in parallel is an 
upper bound to the hydraulic aperture for the general 2D case, while the scheme with channels in 
series provides a lower bound, in analogy to hydraulic conductivity [13]. If the fracture is seen as a 
random mixture of elements where the fluid flows either transversal or parallel to aperture variation, 
flow can be approximated by a suitable average of these flows; ergodicity ensures that boundary 
effects are negligible [4]. Hydraulic-aperture values derived for the two schemes significantly 
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differed; hence, following the procedure adopted by, e.g., [4,7,9–12], an estimate of the hydraulic 
aperture was derived as the geometric mean of the hydraulic apertures for the parallel and serial 
arrangement as 𝑏 = 𝑏 𝑏 . 
4. Estimate of Hydraulic Aperture 

4.1. Aperture-Probability Distribution 

Gamma distribution of shape parameter 𝑑  and scale parameter 𝑏 , entailing non-negative 
apertures, was adopted to quantify the previous general expressions, consistently with earlier work 
[11]. Its probability-density function, expected value, variance, and skewness are given by 𝑓(𝑏) = 1𝛤(𝑑) 𝑏𝑏 𝑒 ⁄ ; 〈𝑏〉 = 𝑑𝑏 ; 𝜎 = 𝑑𝑏 = 〈𝑏〉𝑑 , 𝛾 = 2√𝑑, (8) 

where Γ(∙) is the gamma function.  
Gamma distribution is illustrated in Figure 4; for 𝑑 = 1, it reduced to exponential distribution, 

with maximal skewness; as 𝑑 → ∞, gamma distribution tended to normal distribution with the same 
mean and variance, and zero skewness.  

 

Figure 4. Gamma distribution pdf for different values of rate parameter 𝑑, assuming mean fracture 
aperture 〈𝑏〉 = 1 mm. 

4.2. Channels in Parallel 

Inserting the Equation (8) in Equation (6) after integration [14] (p. 403), some algebraic 
manipulations, and exploiting the properties of the gamma function, gives the result  𝑞 = 𝐴𝐵〈𝑏〉𝑃 𝑞 ;  𝑞 = 12𝛺 (𝑑 + 1)𝑢 − 1(1 − 𝑢) + (𝑑 + 1)𝑢 + 1(1 + 𝑢) , (9)

where 𝛺 = 𝑃 〈𝑏〉2𝐴 = 𝜏𝐴 ;  𝑢 = 𝛺𝑑 ;  𝑢 < 1. (10)

Equation (10) established that the ratio between shear stress 𝜏  at the wall of a parallel plate 
fracture of aperture 〈𝑏〉 and shear stress 𝐴 describing the fluid cannot exceed shape parameter 𝑑 of 
the distribution. Figure 5 shows the dimensionless flow rate per unit width 𝑞  as a function of Ω 
for different values of 𝑑 . As Ω → 0 ,  the flowrate tended to −∞ ; such negative values are not 
realistic. On the other hand, for Ω → 𝑑, the flowrate tended to infinity, and curves showed a vertical 
asymptote of equation Ω = 𝑑. For low values of Ω, the curves tended to overlap regardless of the 
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value of 𝑑. Flow rate strongly depended on the dimensionless pressure gradient and the distribution 
parameters. 

 

Figure 5. Dimensionless flowrate per unit width 𝑞  versus dimensionless pressure gradient Ω for 
different values of distribution parameter 𝑑. 

The hydraulic aperture for parallel arrangement 𝑏  was obtained by solving the following 
implicit equation in unknown 𝑟 :  𝑟 𝑐𝑜𝑠ℎ(𝑟 𝛺) − 1𝛺 𝑠𝑖𝑛ℎ(𝑟 𝛺) = 12𝛺 (𝑑 + 1)𝑢 − 1(1 − 𝑢) + (𝑑 + 1)𝑢 + 1(1 + 𝑢) ; 𝑟 = 𝑏〈𝑏〉 . (11)

Figure 6 illustrates ratio 𝑟  defined by Equation (11) as a function of Ω for different values of 𝑑. Ratio 𝑟  strongly increased with Ω, more so for lower values of 𝑑, i.e., more skewed distribution. 
The curves showed a vertical asymptote when dimensionless pressure gradient Ω approached 𝑑. 
For low values of Ω, the curves were almost horizontal.  

 
Figure 6. Ratio 𝑟 = 𝑏 〈𝑏〉⁄  versus dimensionless pressure gradient Ω for different values of the 
distribution parameter d. 
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