- Editorial
High Precision X-Ray Measurements
- Alessandro Scordo
Since their discovery in 1895, the detection of X-rays has had a strong impact and various applications in several fields of science and human life [...]
2019 June - 26 articles
Since their discovery in 1895, the detection of X-rays has had a strong impact and various applications in several fields of science and human life [...]
An account is given of the main steps that led the research group in Rome, to which the author belongs, to the formulation of the charge-density-wave scenario for high-
Atomic force microscopy (AFM) in spectroscopy mode receives a lot of attention because of its potential in distinguishing between healthy and cancer tissues. However, the AFM translational process in clinical practice is hindered by the fact that it...
The article presents the results of an experimental study of the transport of charge carriers through semiconductor PANI-polystyrene/ ferroelectric PVDF-TrFE interface. Current-voltage characteristics of the structure under study have a typical form...
It is very important to elucidate the mechanism of superconductivity for achieving room temperature superconductivity. In the first half of this paper, we give a brief review on mechanisms of superconductivity in many-electron systems. We believe tha...
In this work, we investigated the local colloidal structure of ferrofluid, in the presence of the external magnetic field. The nanoparticles studied here are of the core-shell type, with the core formed by manganese ferrite and maghemite shell, and w...
The phenomenon of superconductivity occurs in the phase space of three principal parameters: temperature T, magnetic field B, and current density j. The critical temperature
We discuss metallic 1T-MoS2 as an anode material for sodium-ion batteries (SIBs). In situ Raman is used to investigate the stability of metallic MoS2 during the charging and discharging processes. Parallel first-principles computations are used to ga...
We used an electronic phase separation approach to interpret the scaling between the low-temperature superfluid density average
In this review article we consider theoretically and give experimental support to the models of the Fermi-Bose mixtures and the BCS-BEC (Bardeen Cooper Schrieffer–Bose Einstein) crossover compared with the strong-coupling approach, which can se...
In this editorial, a brief background of the surface plasmon resonance (SPR) principle is discussed, followed by several aspects of magneto-optic SPR (MOSPR) and sensing schemes from the viewpoint of fundamental studies and potential technological ap...
Surface plasmon resonance (SPR) biosensors based on transition metal dichalcogenides (TMDC) materials have shown improved performance in terms of sensitivity, detection accuracy (DA), and quality factor (QF) over conventional biosensors. In this pape...
We consider quantum extensions of classical hydrodynamic lattice gas models. We find that the existence of local conserved quantities strongly constrains such extensions. We find the only extensions that retain local conserved quantities correspond t...
Recent work done on the time reversal symmetry (TRS) breaking superconductors is reviewed in this paper. The special attention is paid to Sr
We discuss a few possibilities of high-
Electrostatic interaction energy W between two point charges in a three-layer plane system was calculated on the basis of the Green’s function method in the classical model of constant dielectric permittivities for all media involved. A regular...
The VIP-2 experiment aims to perform high precision tests of the Pauli Exclusion Principle for electrons. The method consists in circulating a continuous current in a copper strip, searching for the X radiation emission due to a prohibited transition...
This article presents the kaonic atom studies performed at the INFN National Laboratory of Frascati (Laboratori Nazionali di Frascati dell’INFN, LNF-INFN) since the opening of this field of research at the DA
Consideration is given to thermodynamical properties of a three-dimensional Bose-condensate of translation-invariant bipolarons (TI-bipolarons) in magnetic field. The critical temperature of transition, critical magnetic fields, energy, heat capacity...
Structural changes of MoO3 thin films deposited on thick copper substrates upon annealing at different temperatures were investigated via ex situ X-Ray Absorption Spectroscopy (XAS). From the analysis of the X-ray Absorption Near-Edge Structure (XANE...
A particular family of Discrete Time Quantum Walks (DTQWs) simulating fermion propagation in 2D curved space-time is revisited. Usual continuous covariant derivatives and spin-connections are generalized into discrete covariant derivatives along the...
Based on the numerical solution of the Quantum Lattice Boltzmann Method in curved space, we predicted the onset of a quantized alternating current on curved graphene sheets. This numerical prediction was verified analytically via a set of semi-classi...
Bragg spectroscopy, one of the best established experimental techniques for high energy resolution X-ray measurements, has always been limited to the measurement of photons produced from well collimated (tens of microns) or point-like sources; recent...
Magnesium diboride gained significant interest in the materials science community after the discovery of its superconductivity, with an unusually high critical temperature of 39 K. Many aspects of the electronic properties and superconductivity of bu...
ScMN2-type (M = V, Nb, Ta) phases are layered materials that have been experimentally reported for M = Ta and Nb, but they have up to now not been much studied. However, based on the properties of binary ScN and its alloys, it is reasonable to expect...
Observing the light passing through a thin layer of ferrofluid, we can see the occurrence of interesting effects, both in the formation patterns within the ferrofluid layer and in the dispersion of light outside that layer. This leads us to ask what...