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Abstract: Consideration is given to thermodynamical properties of a three-dimensional Bose-condensate
of translation-invariant bipolarons (TI-bipolarons) in magnetic field. The critical temperature of
transition, critical magnetic fields, energy, heat capacity and the transition heat of TI-bipolaron gas are
calculated. Such values as maximum magnetic field, London penetration depth and their temperature
dependencies are calculated. The results obtained are used to explain experiments on high-temperature
superconductors.
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1. Introduction

Before the discovery of high-temperature superconductivity (HTSC) Bardeen-Cooper-Schrieffer
theory [1] (BCS) played the role of fundamental microscopic theory of superconductivity with, in fact,
no alternative. The discovery of HTSC revealed some problems which arose while trying to describe
various properties of high-temperature superconductors within BCS. This gave birth to a great
number of alternative theories aimed at resolving the problems. Review of various HTSC theories is
presented in numerous papers. The current state-of-the-art can be found in [2–13]. All the approaches,
are however, based on the same proposition the phenomenon of bosonization of Fermi-particles,
or Cooper effect. This proposition straightforwardly leads to the conclusion that the phenomenon of
superconductivity is related to the phenomenon of Bose-Einstein condensation (BEC). Presently the
idea that superconductivity is based on BEC is generally recognized.

A great obstacle to the development of the theory which should be based on BEC was a statement
made in BCS (see comment in [1], p. 1177 and [14]) about incompatibility of their theory with BEC.

Some evidence that this viewpoint is erroneous was first obtained in paper [15] whose authors,
while studying the properties of high-density exciton gas, demonstrated an analogy between BCS
theory and BEC. The results of [15] provided the basis for developing the idea of crossover passing on
from the BCS theory which is appropriate for the limit of weak electron-phonon interaction (EPI) to
BEC which is suitable for the limit of strong EPI [16–22]. It was believed that additional evidence in
favor of this approach is Eliashberg theory of strong coupling [23]. According to [24], in the limit of
infinitely strong EPI this theory leads to the regime of local pairs, though greatly different from the
regime of BEC [25].

The attempts to develop a theory of crossover between BCS and BEC ran, however,
into insurmountable obstacles. Thus, for example, an idea was put forward, to construct a theory
with the use of T-matrix transition where T-matrix of the initial Fermion system would transform into
T-matrix of Boson system as the force of EPI would increase [26–31]. The approach, however, turned
out to be unfeasible even in the case of greatly diluted systems. Actually, the point is that when the
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system consists of only two fermions it is impossible to construct a one-boson state of them. In the EPI
theory this problem is known as that of a bipolaron.

The reason the crossover theory failed can be the following: The BCS theory, as the bipolaron
theory, proceeds from Froehlich Hamiltonian. For this Hamiltonian, an important theorem of
analyticity of the polaron and bipolaron energy on EPI constant is proved [32]. In the BCS theory a very
important approximation is, however, made. Namely the actual matrix element of the interaction in
Froehlich Hamiltonian is replaced by a model quantity a matrix element truncated near Fermi surface.
This procedure is by no means fair. As is shown in [33], in the bipolaron theory it leads to ghost effects
existence of a local energy level separated by a gap from the quasicontinuous spectrum (Cooper effect).
This solution is isolated and does not possess the property of analyticity on coupling constant. In the
BCS theory just this solution provides the basis for constructing the superconductivity theory.

As a result, the theory constructed and its analytic continuation (Eliashberg theory) greatly falsify
the reality, in particular, they make impossible development of the superconductivity theory on
the basis of BEC. Replacement of the actual matrix element by the model one enables one to make
analytical calculations completely. Thus, substitution of local interaction for actual one in BCS enabled
the authors of [34] to derive Ginzburg-Landau (GL) phenomenological model which is also a local
model. Actually, the power of this approach can hardly be overestimated since it has enabled one to
get a lot of statements consistent with the experiment.

This paper is an attempt to develop a HTSC theory on the basis of BEC of translation-invariant
bipolarons (TI-bipolarons) [33,35–38], free of approximations made in [1].

If we proceed from the fact that the superconducting mechanism is based on Cooper pairing,
then in the case of a strong Froehlich electron-phonon interaction this leads to translation-invariant
bipolaron theory of HTSC [39,40]. In distinction from bipolarons with broken symmetry, TI-bipolaron
is delocalized in space and polarization potential well is lacking (zero polarization charge). The energy
of TI-bipolarons is lower than the energy of bipolarons with broken symmetry, so they are more stable
than bipolarons with broken symmetry.

We recall the main results of the theory of TI-polarons and bipolarons obtained in [33,35–38].
Notice that consideration of just electron-phonon interaction is not essential for the theory and can
be generalized to any type of interaction, for example the interaction of electrons with the spin
subsystem [41].

In what follows, we will deal only with the main points of the theory important for the HTSC
theory. The main result of papers [33,35–38] is the construction of delocalized polaron and bipolaron
states in the limit of strong electron-phonon interaction. The theory of TI-bipolarons is based on
the theory of TI-polarons [42] and retains the validity of basic statements proved for TI-polarons.
The chief of them is the theorem of analytic properties of the ground state of a TI-polaron (accordingly
TI-bipolaron) depending on the constant of electron-phonon interaction α. The main implication of
this statement is the absence of a critical value of the EPI constant αc below which the bipolaron
state becomes impossible since it decays into independent polaron states. In other words, if there
exists a value of αc at which the TI-state becomes energetically disadvantageous with respect to its
decay into individual polarons, then nothing occurs at this point but for α < αc the state becomes
metastable. For this reason we can expect that for α < αc the normal phase occurs rather than the
superconducting one.

Another important property of TI-bipolarons is the possibility of changing the correlation length
over the whole range of [0, ∞] variation depending on the Hamiltonian parameters [36,38]. Hence,
it can be both much larger (as is the case in metals) and much less than the characteristic size between
the electrons in an electron gas (as happens with ceramics).

An outstandingly important property of TI-polarons and bipolarons is the availability of an
energy gap between their ground and excited states (Section 3).

The above-indicated characteristics can be used to develop a microscopic HTSC theory on the
basis of TI-bipolarons.
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The paper is arranged as follows. In Section 2 we take Pekar-Froehlich Hamiltonian for a
bipolaron as an initial Hamiltonian. The results of three canonical transformations, such as Heisenberg
transformation, Lee-Low-Pines transformation and that of Bogolyubov-Tyablikov are briefly outlined.
Equations determining the TI-bipolaron spectrum are derived. In Section 3 we analyze solutions of the
equations for the TI-bipolaron spectrum. It is shown that the spectrum has a gap separating the ground
state of a TI-bipolaron from its excited states which form a quasicontinuous spectrum. The concept of
an ideal gas of TI-bipolarons is substantiated.

With the use of the spectrum obtained, in Section 4 we reproduce thermodynamic characteristics
of an ideal gas of TI-bipolarons in the absence of a magnetic field, considered earlier in [39,40].

In Section 5 we deal with the case when the external magnetic field differs from zero. It is shown
that the current state in the system under discussion is caused by the existence of a constant quantity
the total momentum of the electron-phonon system in the magnetic field. Comparison of the value of
the total momentum with that obtained within phenomenological approach enables us to determine
the London penetration depth which is a very important characteristic. The results of the initial
isotropic model are generalized to anisotropic case.

In Section 6 we investigate thermodynamic characteristics of an ideal TI-bipolaron gas in the
presence of a magnetic field. It is shown that the availability of an energy gap in the TI-bipolaron
spectrum makes possible their Bose-condensation in a magnetic field. A notion of a maximum value
of the magnetic field intensity for which homogeneous Bose-condensation is possible is introduced.
The temperature dependence of the value of the critical magnetic field and the dependence of the
critical temperature on the magnetic field are found. It is shown that the phase transition of an ideal
TI-bipolaron gas can be either of the 1-st kind or of infinite kind, depending on the magnetic field
value. The theory is generalized to the case of anisotropic superconductor. This generalization enables
us to compare the results obtained with experimental data (Section 7).

In Section 8 we consider scaling relations in superconductors. Alexandrov’s formula and Homes’s
law are derived.

In Section 9 the results obtained are summed up.

2. Pekar-Froehlich Hamiltonian. Canonical Transformations

Following [33,35–37], in describing bipolarons we will proceed from Pekar-Froehlich Hamiltonian
with non zero magnetic field:

H =
1

2m∗
(

p̂1 −
e
c
~A1

)2
+

1
2m∗

(
p̂2 −

e
c
~A2

)2
+ ∑

k
h̄ω0(k)a+k ak + (1)

∑
k

(
Vkei~k~r1 ak + Vkei~k~r2 ak + H.c.

)
+ U (|~r1 −~r2|) ,

U (|~r1 −~r2|) =
e2

ε∞ |~r1 −~r2|
,

where p̂1,~r1, p̂2,~r2 are momenta and coordinates of the first and second electrons, respectively; a+k ,
ak are operators of the creation and annihilation of the field quanta with energy h̄ω0(k); m∗ is the
electron effective mass; the quantity U describes Coulomb repulsion between the electrons; Vk is the
function of the wave vector k. We write (1) in general form. For a special case of ion crystals which is
typical for HTSC we consider the Pekar-Froehlich Hamiltonian in the form:

Vk =
e
k

√
2πh̄ω0

ε̃V
=

h̄ω0

ku1/2

(
4πα

V

)1/2
, u =

(
2m∗ω0

h̄

)1/2
, α =

1
2

e2u
h̄ω0ε̃

, (2)

ε̃−1 = ε−1
∞ − ε−1

0 ,
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where e is the electron charge; ε∞ and ε0 are high-frequency and static dielectric permittivities; α is the
constant of electron-phonon interaction; V is the system’s volume, ω0 is the optical phonon frequency.

The axis z is chosen along the direction of the magnetic field induction ~B and use is made of
symmetrical gauge:

~Aj =
1
2
~B×~rj,

for j = 1.2 . For the bipolaron singlet state discussed below, the contribution of the spin term is equal
to zero.

In the system of the center of mass Hamiltonian (1) takes the form:

H =
1

2Me

(
p̂R −

2e
c
~AR

)2
+

1
2µe

(
p̂r −

e
2c

~Ar

)2
+ ∑

k
h̄ω0(k)a+k ak + (3)

∑
k

2Vkcos
~k~r
2

(
akei~k~R + H.c.

)
+ U(|~r|),

~R = (~r1 +~r2)/2, ~r =~r1 −~r2, Me = 2m∗, µe = m∗/2,

~Ar =
1
2

B(−y, x, 0), ~AR =
1
2

B(−Y, X, 0),

p̂R = p̂1 + p̂2 = −ih̄∇~R, p̂r = ( p̂1 − p̂2)/2 = −ih̄∇r,

where x, y, and X, Y are components of vectors~r, ~R respectively.
Let us subject Hamiltonian H to Heisenberg canonical transformation [43,44]:

S1 = exp i

(
~G−∑

k

~ka+k ak

)
~R. (4)

~G = ~̂PR +
2e
c
~AR, ~̂PR = ~̂pR + ∑

k
h̄~ka+k ak, (5)

where ~G is the quantity commuting with the Hamiltonian, thereby being a constant, i.e., c-number,
~̂PR is the total momentum.

Action of S1 on the field operator yields:

S−1
1 akS1 = ake−i~k~R, S−1

1 a+k S1 = a+k e−i~k~R. (6)

Accordingly, the transformed Hamiltonian H̃ = S−1
1 HS1 takes on the form:

H̃ =
1

2Me

(
~G−∑

k
h̄~ka+k ak −

2e
c
~AR

)2

+
1

2µe

(
~̂pr −

e
2c

~Ar

)2
+ ∑

k
h̄ω0(k)a+k ak + (7)

∑
k

2Vkcos
~k~r
2
(
ak + a+k

)
+ U(|~r|).

In what follows we will believe:
~G = 0. (8)

The physical meaning of (8) is the absence of the total momentum (current) in the bulk of
superconductor. This fact follows from the Meissner effect which states that the current in the volume
of superconductor needs to be zero. We use this fact in Section 5 to obtain the value of London
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penetration depth λ. We will seek the solution of the stationary Schroedinger equation corresponding
to Hamiltonian (7) in the form:

ΨH(r, R, {ak}) = φ(R)ΨH=0(r, R, {ak}) (9)

φ(R) = exp

(
−i

2e
h̄c

∫ ~R

0
~AR′d~R′

)
ΨH=0(r, R, {ak}) = ψ(r)Θ(R, {ak}),

where ΨH=0(r, R, {ak}) is bipolaron wave function in the absence of magnetic field. The explicit form
of functions ψ(r) and Θ(R, {ak}) is given in [35,38].

Averaging of H̃ over the wave function φ(R) and ψ(r) yields:

¯̃H =
1

2Me

(
∑
k

h̄~ka+k ak

)2

+ ∑
k

h̄ω̃ka+k ak + ∑
k

V̄k
(
ak + a+k

)
+ T̄ + Ū + Π̄, (10)

where:

T̄ =
1

2µe

〈
ψ
∣∣∣( p̂r −

e
2c

~Ar)
2
∣∣∣ψ
〉

, Ū = 〈ψ |U(r)|ψ〉 , V̄k = 2Vk

〈
ψ

∣∣∣∣∣cos
~k~r
2

∣∣∣∣∣ψ

〉
, (11)

Π̄ =
2e2

Mec2

〈
φ
∣∣∣A2

R

∣∣∣ φ
〉

, h̄ω̃k = h̄ω0(k) +
2h̄e
Mec

〈
φ
∣∣∣~k~AR

∣∣∣ φ
〉

.

In what follows in this section we will assume h̄ = 1, ω0(k) = ω0 = 1, Me = 1. Equation (10)
suggests that the bipolaron Hamiltonian differs from the polaron one in that in the latter the quantity
Vk is replaced by V̄k and T̄, Ū, Π̄ are added to the polaron Hamiltonian.

With the use of Lee-Low-Pines canonical transformation [45]

S2 = exp

{
∑
k

fk(a+k − ak)

}
,

where fk are variational parameters with the sense of the distance by which the field oscillators are
displaced from their equilibrium positions:

S−1
2 akS2 = ak + fk, S−1

2 a+k S2 = a+k + fk,

for Hamiltonian ˜̃H:

˜̃H = S−1
2 H̄S2, (12)

˜̃H = H0 + H1,

we get:

H0 = 2 ∑
k

V̄k fk + ∑
k

f 2
k ω̃k +

1
2

(
∑
k

~k f 2
k

)2

+H0 + T̄ + Ū + Π̄,

H0 = ∑
k

ωka+k ak +
1
2 ∑

k,k′
~k~k′ fk fk′(akak′ + a+k a+k′ + a+k ak′ + a+k′ ak), (13)

where:

ωk = ω̃k +
k2

2
+~k ∑

k′
~k′ f 2

k′ . (14)
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Hamiltonian H1 contains terms linear, threefold and fourfold in the creation and annihilation
operators. Its explicit form is given in [38,42].

Then, as is shown in [38,42], the use of Bogolyubov-Tyablikov canonical transformation [46] for
passing on from operators a+k , ak to new operators α+k , αk:

ak = ∑
k′

M1kk′αk′ + ∑
k′

M∗2kk′α
+
k′

a+k = ∑
k′

M∗1kk′α
+
k′ + ∑

k′
M2kk′αk′ , (15)

(in whichH0 is a diagonal operator) makes mathematical expectation of H1 equal to zero in the absence
of magnetic field (see Appendix). The contribution of H1 to the spectrum of transformed Hamiltonian
when magnetic field is non-zero is discussed in Section 3.

In the new operators α+k , αk Hamiltonian (13) takes on the form

˜̃̃H = Ebp + ∑
k

νkα+k αk,

Ebp = ∆Er + 2 ∑
k

V̄k fk + ∑
k

ω̃k f 2
k + T̄ + Ū + Π̄, (16)

where ∆Er is the so-called recoil energy. The general expression for ∆Er = ∆Er { fk} was obtained
in [42]. Actually, calculation of the ground state energy Ebp for the case of Froehlich Hamiltonian was
performed in [38,42] by minimization of (16) in fk and in Ψ in the absence of a magnetic field.

Notice that in the theory of a polaron with broken symmetry a diagonalized electron-phonon
Hamiltonian has the form of (16) [47]. This Hamiltonian can be treated as a Hamiltonian of a polaron
and a system of its associated renormalized real phonons or as a Hamiltonian whose quasiparticle
excitations spectrum is determined by (16) [48]. In the latter case excited states of a polaron are
Fermi quasiparticles.

In the case of a bipolaron the situation is qualitatively different since a bipolaron is a boson
quasiparticle whose spectrum is determined by (16). Obviously, a gas of such quasiparticles can
experience Bose-Einstein condensation (BEC). Treatment of (16) as a bipolaron and its associated
renormalized phonons does not prevent their BEC since maintenance of the number of particles
required in this case takes place automatically due to commutation of the total number of renormalized
phonons with Hamiltonian (16).

Renormalized frequencies νk involved in (16), according to [38,42,49] are determined by the
equation for s:

1 =
2
3 ∑

k

k2 f 2
k ωk

s−ω2
k

, (17)

solutions of which yield the spectrum of s =
{

ν2
k
}

values. This equation has a general form and can be
applied for arbitrary dependence of Vk and ωk on k.

3. Energy Spectrum of a TI-Bipolaron

Hamiltonian (16) is conveniently presented in the form:

˜̃̃H = ∑
n=0,1,2,...

Enα+n αn, (18)

En =

{
Ebp, n = 0;

νn = Ebp + ωkn , n 6= 0;
(19)
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where in the case of a three-dimensional ionic crystal~kn is a vector with the components:

kni = ±
2π(ni − 1)

Nai

, ni = 1, 2, ...,
Nai

2
+ 1, i = x, y, z,

Nai is the number of atoms along the i-th crystallographic axis.
Let us prove the validity of the expression for the spectrum (18), (19). Since operators α+n , αn obey

Bose commutation relations:

[
αn, α+n′

]
= αnα+n′ − α+n′αn = δn,n′ ,

they can be considered to be operators of creation and annihilation of TI-bipolarons. The energy
spectrum of TI-bipolarons, according to (17), is determined by the equation:

F(s) = 1, (20)

where:

F(s) =
2
3∑

n

k2
n f 2

kn
ω2

kn

s−ω2
kn

.

It is convenient to solve Equation (20) graphically (Figure 1).

Figure 1. Graphical solution of Equation (20).

Figure 1 suggests that the frequencies νkn lie between the frequencies ωkn and ωkn+1 . Hence,
the spectrum νkn as well as the spectrum ωkn are quasicontinuous: νkn − ωkn = O(N−1) which just
proves the validity of (18) and (19).

It follows that the spectrum of a TI-bipolaron has a gap between the ground state Ebp and the
quasicontinuous spectrum, equal to ω0.

In the absence of an external magnetic field, functions fk involved in expression for ωk (14) are
independent of the direction of the wave vector~k. When an external magnetic field is applied, fk cannot
be considered to be an isotropic quantity, accordingly, we cannot put the last term in equation (14) for
ωk equal to zero. Besides, the angular dependence involved in the spectrum ωk in the magnetic field
is also contained in the term ω̃k involved in the quantity ωk. Since in the isotropic system discussed
there is only one preferred direction determined by vector ~B, for ωk from (14) we will get:
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ωkn = ω0 +
h̄k2

n
2Me

+
η

Me

(
~B~kn

)
, (21)

where η is a scalar quantity. Notice that the contribution of H1 to spectrum (21) will lead to the
dependence of η from |~k| and (~k~B). For weak magnetic field in longitudinal limit (when Froehlich
Hamiltonian is valid) we will neglect such dependence and consider η as a constant value.

For a magnetic field directed along the axis z, expression (21) can be written as:

ωkn = ω0 +
h̄2

2Me

(
kzn + k0

z

)2
+

h̄2

2Me

(
k2

xn + k2
yn

)2
− η2B2

2h̄2Me
. (22)

Note that formula (22) can be generalized to the anisotropic case when in the directions kx and ky:
Mex = Mey = M||, and in the direction kz: Mez = M⊥(Section 5). Formula (22) in this case takes on
the form:

ωkn = ω0 +
h̄2

2M⊥

(
kzn + k0

z

)2
+

h̄2

2M||

(
k2

xn + k2
yn

)
− η2B2

2h̄2M⊥
, (22 ′)

if the magnetic field is directed along the axis z and:

ωkn = ω0 +
h̄2

2M⊥
k2

zn +
h̄2

2M||

(
kxn + k0

xn

)2
+

h̄2

2M||
k2

yn −
η2B2

2h̄2M||
, (22 ′′)

if the magnetic field is directed along the axis x.
Below we will consider the case of low concentration of TI-bipolarons in a crystal. Then they can

adequately be considered to be an ideal Bose gas, whose properties are determined by Hamiltonian (18).

4. Statistical Thermodynamics of Low-Density TI Bipolarons without Magnetic Field

Let us consider an ideal Bose-gas of TI-bipolarons which represents a system of N particles
occurring in some volume V. Let us write N0 for the number of particles in the lower one-particle state
and N′ for the number of particles in higher states. Then:

N = ∑
n=0,1,2,...

m̄n = ∑
n

1
e(En−µ)/T − 1

, (23)

or:
N = N0 + N′, N0 =

1

e(Ebp−µ)/T − 1
, N′ = ∑

n 6=0

1
e(En−µ)/T − 1

. (24)

In expression N′ (24) we will perform integration over quasicontinuous spectrum (instead of
summation) (18), (19) and (22) and assume µ = Ebp. As a result, from (23) and (24) we get an equation
for determining the critical temperature of Bose-condensation Tc:

Cbp = fω̃H

(
T̃c
)

, (25)

fω̃H

(
T̃c
)
= T̃3/2

c F3/2
(
ω̃H/T̃c

)
, F3/2(α) =

2√
π

∫ ∞

0

x1/2dx
ex+α − 1

,

Cbp =

(
n2/32πh̄2

Meω∗

)3/2

, ω̃H =
ω0 − η2H2/2Me

ω∗
, T̃c =

Tc

ω∗
,

where n = N/V. In this section we will deal with the case when the magnetic field is lacking: H = 0.
Figure 2 shows a graphical solution of Equation (25) for the values of parameters Me = 2m∗ = 2m0,
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where m0 is the mass of a free electron in vacuum, ω∗ = 5 meV (≈58 K), n = 1021 cm−3 and the values:
ω̃1 = 0.2; ω̃2 = 1; ω̃3 = 2; ω̃4 = 10; ω̃5 = 15; ω̃6 = 20; ω̃H = ω̃ = ω0/ω∗.

Figure 2. Solutions of Equation (25) with Cbp = 331.35 and ω̃i = {0.2; 1; 2; 10; 15; 20}, which correspond
to T̃ci : T̃c1 = 27.3; T̃c2 = 30; T̃c3 = 32.1; T̃c4 = 41.9; T̃c5 = 46.2; T̃c6 = 50.

It is seen from Figure 2 that the critical temperature grows with increasing phonon frequency ω0.
It is also evident from Figure 2 that an increase in the concentration of TI-bipolarons n will lead to an
increase in the critical temperature, while a gain in the electron mass m∗ to its decrease. For ω̃ = 0 the
results go over into the limit of ideal Bose-gas (IBG). In particular, (25) for ω̃ = 0, yields the expression
for the critical temperature of IBG:

Tc = 3.31h̄2n2/3/Me. (26)

It should be stressed, however, that (26) involves Me = 2m∗, rather than the bipolaron mass.
This resolves the problem of the low temperature of condensation which arises both in the small radius
polaron theory and in the large radius polaron theory in which expression (26) involves the bipolaron
mass [50–57]. Another important result is that the critical temperature Tc for the parameter values
considerably exceeds the gap energy ω0. Such values as energy, free energy, heat capacity and the
transition heat of TI-bipolaron gas were calculated for the case H = 0 in [39,40].

5. Current States of a TI-Bipolaron Gas

As is known, the absence of a magnetic field inside a superconductor is caused by the existence of
surface currents compensating this field. Thus, from condition (8) it follows that:

~PR = −2e
c
~AR, (27)

i.e., in a superconductor there is a persistent current~j:

~j = 2en0~PR/M∗e = −4e2n0

M∗e c
~AR, (28)

(where M∗e is bipolaron effective mass), providing Meissner effect, where n0 is a concentration of
superconducting charge carriers: n0 = N0/V. Comparing (28) with the well-known phenomenological
expression for the surface current~jS [58]:

~jS = − c
4πλ2

~A, (29)
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and putting ~A = ~AR, with the use of (28), (29) and equality~j =~jS we will get a well-known expression
for London penetration depth λ:

λ =

(
M∗e c2

16πe2n0

)1/2

, (30)

The equality of ’microscopic’ expression for current (28) to its ’macroscopic’ value cannot be exact.
Accordingly, the equality ~A = ~AR is also approximate since ~AR represents a vector-potential at the
point where the center of mass of two electrons occurs, while in London theory ~A is a vector-potential
at the point where a particle resides. For this reason, these two quantities should better be considered
proportional. In this case the expression for the penetration depth has the form:

λ = const
(

M∗e c2

16πe2n0

)1/2

, (30′)

where the constant multiplier in (30′) (of the order of unity) should be determined from a comparison
with the experiment.

Expression (27) was obtained in the case of isotropic effective mass of charge carriers. However,
actually, it has a more general character and does not change when anisotropy of effective masses is
taken into account. Thus, for example in layered HTSC materials kinetic energy of charge carriers in
Hamiltonian (1) should be replaced by the expression:

Ta =
1

2m∗||

(
P̂1|| −

e
c
~A1

)2
+

1
2m∗||

(
P̂2|| −

e
c
~A2

)2
+

1
2m∗⊥

(
P̂1⊥ −

e
c
~A1z

)2
+

1
2m∗⊥

(
P̂2⊥ −

e
c
~A1z

)2
,

where P̂1,2||, ~A1,2|| are operators of the momentum and vector-potential in the planes of layers (ab
planes); P̂1,2⊥, ~A1,2⊥ are relevant quantities in the direction perpendicular to the planes (along c-axis);
m∗||, m∗⊥ are effective masses in the planes and in the perpendicular direction.

As a result of transformation:

x̃ = x, ỹ = y, z̃ = γz (31)

Ãx̃ = Ax, Ãỹ = Ay, Ãz̃ = γ−1 Az,
ˆ̃Px̃ = P̂x, ˆ̃Pỹ = Py, P̃z̃ = γ−1Pz,

where γ2 = m∗⊥/m∗||, γ is the anisotropy parameter kinetic energy T̃a appears to be isotropic. It follows

that: ˆ̃PR + (2e/c) ~̃AR̃ = 0. Then (31) suggests that relation (27) appears to be valid in the anisotropic
case too. It follows that:

~PR|| = −
2e
c
~AR||, ~PR⊥ = −2e

c
~AR⊥,

~j|| = 2en0PR||/M∗e||, ~j⊥ = 2en0~PR⊥/M∗e⊥.

The magnetic field directed perpendicular to the plane of layers will induce currents running in
the plane of layers. Having penetrated into a sample, such a field will decrease along the plane of
layers. Let us write λ|| for the London penetration depth of the magnetic field perpendicular to the
plane of layers (H⊥) and λ⊥ for that of the magnetic field parallel to the plane of layers (H||).
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This suggests expressions for London depths of the magnetic field penetration into a sample:

λ⊥ =

(
M∗e⊥c2

16πe2n0

)1/2

, λ|| =

(
M∗e||c

2

16πe2n0

)1/2

. (32)

For λ|| and λ⊥, designations λab and λc are also used. From (32) it follows that:

λ⊥
λ||

=

(
M∗e⊥
M∗e||

)1/2

= γ∗. (33)

From (32) it also follows that the London penetration depth depends on temperature:

λ2(0)/λ2(T) = n0(T)/n0(0). (34)

In particular, for ω = 0, with the use of (26) we get: λ(T) = λ(0)
(

1− (T/TC)
3/2
)−1/2

.
Comparison of the dependence obtained with those derived within other approaches is given in
Section 7.

It is generally accepted that the Bose system became superconducting due to the inter-particle
interaction. The existence of a gap in TI-bipolaron spectrum can drive their condensation and the
Landau superfluidity condition:

v < h̄ω0/P . (35)

(where P is the momentum of bipolaron condensate) can be fulfilled even for noninteracting particles.
From condition (35) it follows the expression for maximum value of current density jmax = envmax:

jmax = en0

√
h̄ω0

M∗e

It should be noted that all the aforesaid refers to local electrodynamics. Accordingly, expressions
obtained for λ are valid only on condition that λ >> ξ , where ξ is a correlation length determining
the characteristic size of the pair, i.e., the characteristic scale of changes of the wave function ψ(r)
in (9). This condition is usually fulfilled in HTSC materials. In ordinary superconductors the
inverse inequality is valid. Nonlocal generalization of superconductor electrodynamics was made by
Pippard [59]. Within this approach relation between~jS and ~A in expression (29) can be written as:

~jS =
∫

Q̂(z− r′)~A(r′)d~r′,

where Q is a certain operator whose radius of action is usually believed to be equal to ξ. In the limit of
ξ >> λ this leads to an increase in the absolute value of the length of the magnetic field penetration
into a superconductor which becomes equal to (λ2ξ)1/3 [58].

6. Thermodynamic Properties of a TI-Bipolaron Gas in a Magnetic Field

To start with, let us notice that expression for ω̃H (25) suggests that for ω0 = 0 Bose-condensation
appears to be impossible if H 6= 0. For an ordinary ideal charged Bose-gas, this conclusion was first
made in [60]. In view of the fact that in the spectrum of TI-bipolarons there is a gap between the
ground state of a TI-bipolaron gas and the excited one (Section 3), this conclusion becomes invalid for
ω0 6= 0.

Expression ω̃H (25) suggests that there is a maximum value of the magnetic field Hmax equal to:

H2
max =

2ω0h̄2Me

η2 . (36)
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As follows from (14), the value η consists from two parts: η = η′ + η′′. The value η′ is determined
by the integral entering into the expression for ω̃k (11). For this reason η′ depends on the form of
sample surface. The value η′′ is determined by the sum entering into the expression for ωk (14) and
weakly depends on surface form. This leads to the conclusion that the value η can be changed by
changing sample surface and thus changing Hmax. For H > Hmax a homogeneous superconducting
state is impossible. With the use of (36), ω̃H (25) will be written as:

ω̃H = ω̃
(

1− H2/H2
max

)
. (37)

For a given temperature T, let us write Hcr(T) for the value of the magnetic field at which the
superconductivity disappears. According to (37), this value of the field corresponds to ω̃Hcr :

ω̃Hcr(T) = ω̃
(

1− H2
cr(T)/H2

max

)
. (38)

The temperature dependence of the quantity ω̃Hcr (T) can be found from Equation (25):

Cbp = T̃3/2F3/2
(
ω̃Hcr(T̃)/T̃

)
.

It has the form given in Figure 2 if we replace ω̃ by ω̃Hcr and T̃c by T̃.
Using (38) and the temperature dependence given in Figure 2 we can find the temperature

dependence of Hcr(T̃):
H2

cr(T̃)
H2

max
= 1−ωHcr(T̃)/ω̃. (39)

For T̃ ≤ T̃ci, these dependencies are given in Figure 3.

Figure 3. Temperature dependencies H2
cr,i/H2

max,I on the intervals [0; Tc,i] for the values of parameters
ω̃i, given in Figure 2.

As is seen from Figure 3, Hcr(T̃) reaches its maximum at a finite temperature of T̃c(ω̃ = 0) ≤
T̃c(ω0i). Figure 3 suggests that at temperature below T̃c(ω̃ = 0) = 25.2 a further decrease of the
temperature no longer changes the value of the critical field Hcr(T̃) irrespective of the gap value ω̃.
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Let us also introduce the notion of a transition temperature Tc(H) in the magnetic field H. Figure 4
illustrates the dependencies Tc(H) resulting from Figure 3 and determined by the relations:

Cbp = T̃3/2F3/2
(
ω̃H,i/T̃C,i(H)

)
, ω̃H,i = ω̃H=0,i

[
1− H2/H2

max,i

]
.

Figure 4. Dependencies of the critical transition temperature T̃H,i on the magnetic field H for the values
of parameters ω̃i given in Figure 2.

Figure 4 suggests that the critical transition temperature T̃c(H) changes stepwise as the magnetic
field reaches the value Hmax,i.

To solve the problem of the type of the phase transition in a magnetic field let us proceed from the
well-known expression which relates free energies in superconducting and normal states:

FS +
H2

8π
= FN , (40)

where FS and FN are free energies of the unit volume of superconducting and normal states, respectively:

FS =
N
V

Ebp(H = 0)− 2
3

∆E(ωH=0)
N
V

,

FN =
N
V

Ebp(H)− 2
3

∆E(ωH)
N
V

,

where ∆E = E− Ebp, E = ω∗Ẽ, where Ẽ is determined by formula (29) in [39]. Differentiating (40) with
respect to temperature and taking into account that S = −∂F/∂T, we express the heat of transition
q as:

q = T(SN − SS) = −T∂(FN − FS)/∂T = −T
Hcr

4π

∂Hcr

∂T
, (41)

Accordingly the difference of entropies SS − SN will be written as:
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SS − SN =
Hcr

4π

(
∂Hcr

∂T

)
=

H2
max

8πω∗
(S̃S − S̃N). (42)

Figure 5 shows the temperature dependence of the difference of entropies (42) for various values
of critical temperatures (ω̃i) given in Figure 2. These dependencies may seem strange in, at least,
two respects:

1. In BCS and Ginzburg-Landau theory at the most critical point Tc the difference of entropies
becomes zero in accordance with Rutgers formula. In Figure 5 entropy is a monotonous function
T̃ which does not vanish for T = Tc.

2. Second, in absolute terms, the difference |S̃S − S̃N |, when approaching the limit point T̃c = 25.2,
which corresponds to the value ω̃ = 0, as it can be seemed should decrease rather than increase
vanishing at ω̃ = 0.

As for the second point, this is really the case for |SS − SN |, since the value of the maximum field
Hmax and, accordingly, the multiplier H2

max/8π relating the quantities SS − SN and S̃S − S̃N becomes
zero for ω̃ = 0.

As for the first point, as will be shown below, Rutgers formula appears inapplicable for
Bose-condensate of TI-bipolarons.

Figure 5. Temperature dependencies for the difference of entropies of superconducting and normal
states for the values of parameters ω̃i given in Figures 3 and 4.

Table 1 lists the values of the quantity S̃S − S̃N for critical temperatures corresponding to different
values of ω̃Hcr,i .

The results obtained suggest some fundamental conclusions:

1. The curve of the dependence Hcr(T) (Figure 3) for T = 0 has a zero derivative, accordingly
dHcr(T)/dT = 0 for T = 0. This result is consistent with Nernst theorem which implies that
entropy determined by (41) is equal to zero for T = 0.

2. According to Figure 3, Hcr(T) is a curve monotonously drooping with increasing T for
T > Tc(ω̃ = 0), and a constant value for T ≤ Tc(ω̃ = 0). Hence ∂Hcr(T)/∂T < 0 for
T > Tc(ω̃ = 0). Therefore on the temperature interval [Tc(ω̃ = 0), Tc(ω̃)] SS < SN and on
the interval [0, Tc(ω̃ = 0)] SS = SN .
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This suggests some important conclusions:

1. Transition on the interval [0, Tc(ω̃ = 0)] occurs without absorption or release of latent heat since in
this case SS = SN . Experimentally it will be seen as a phase transition of the second kind. Actually,
in the region [0, Tc(ω̃ = 0)], a phase transition into a superconducting state is a phase transition
of infinite kind, since in this region, according to (40) and Figure 3, any-order derivatives of the
difference of free energies FS − FN , become zero.

2. Passing in a magnetic field from a superconducting state to a normal one on the interval
[Tc(ω̃ = 0), Tc(ω̃)], which corresponds to SS < SN , occurs with absorption of latent heat. On the
contrary, passing from a normal state to a superconducting one takes place with release of latent
heat. The phase transition on the interval [0, Tc(ω̃ = 0)] is not attended by absorption or release
of the latent heat being the phase transition of infinite kind.

With regard to the fact that the specific heat capacity of a substance is determined by the formula
C = T(∂S/∂T), the difference of specific heat capacities of superconducting and normal states,
according to (42) will be written as:

CS − CN =
T

4π

[(
∂Hcr

∂T

)2
+ Hcr

∂2Hcr

∂T2

]
. (43)

This relation is usually used to get the well-known Rutgers formula. To do this one assumes the
critical field in (43) to be Hcr(Tc) = 0 for T = Tc and leaves in the brackets on the right-hand side of
(43) only the first term:

(CS − CN)R =
Tc

4π

(
∂Hcr

∂T

)2

Tc

.

It is easily seen, however, that at the point T = Tc the quantity ωHcr determined by Figure 2, for all
the values of the temperature, has a finite derivative with respect to T and, therefore, according to (39),
an infinite derivative ∂Hcr/∂T for T = Tc. Hence, the second term in the brackets (43) reduces to −∞,
leaving this bracket a finite value. As a result, a proper expression for the difference of heat capacities
of the considered model of Bose-gas should be determined by the formula:

CS − CN =
T

8π

∂2

∂T2 H2
cr(T) =

H2
max

8πω∗
(C̃S − C̃N), (44)

C̃S − C̃N = T̃
∂2

∂T̃2

(
H2

cr(T̃)/H2
max

)
.

Table 1 lists the values of quantity C̃S − C̃N for the values of critical temperatures corresponding
to various values of ω̃Hcr,i . Notice that according to results obtained the capacity jump (44) has its
maximum value at zero magnetic field and decreases as the magnetic field increases being equal zero
at H = Hcr in full accordance with the experimental data [39]. Comparison of the jumps in the heat
capacity presented in [39] with expression (44) enables us co calculate the value of Hmax. The values of
Hmax obtained by this means for various values of ω̃i are given in Table 1. These values unambiguously
determine the values of constants η in formulae (22 ′), (22 ′′).
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Table 1. The values of Hmax entropy differences S̃S − S̃N and heat capacities C̃S − C̃V in superconducting
and normal states determined by relations (42) and (44) are presented for transition temperatures T̃Ci ,
for the same values of ω̃Hcr,i as in Figure 2.

i ω̃Hcr,i T̃Ci S̃S − S̃N C̃S − C̃V Hmax × 10−3, Oe

0 0 25.2 0 0 0
1 0.2 27.3 −0.94 −11.54 2.27
2 1 30 −0.4 −2.18 7.8
3 2 32.1 −0.27 −1.05 13.3
4 10 41.9 −0.1 −0.19 47.1
5 15 46.2 −0.08 −0.12 64.9
6 20 50 −0.07 −0.09 81.5

It follows from what has been said that Ginzburg-Landau temperature expansion for a critical
field near the critical temperature Tc is not applicable for Bose-condensate of TI-bipolarons. Since the
temperature dependence Hcr(T) determines the temperature dependencies of all thermodynamic
quantities, this conclusion is valid for all such values. As was pointed out in the Introduction,
this conclusion follows from the fact that BCS theory, in view of its nonanalyticity on coupling constant,
on no condition passes on to the theory of bipolaron condensate.

Above we dealt with an isotropic case. In the anisotropic case formulae (22 ′), (22 ′′) yield:

H2
max = H2

max ⊥ =
2ω0M⊥ h̄2

η2 , ~B||~c, (45)

i.e., in the case when the magnetic field is directed perpendicular to the plane of layers and:

H2
max = H2

max || =
2ω0M|| h̄

2

η2 , ~B⊥~c, (46)

in the case when the magnetic field lies in the plane of layers. From (45) and (46) it follows that:

H2
max ⊥

H2
max ||

=

√
M⊥
M||

= γ. (47)

With the use of (39), (46), (47), the critical field Hcr(T̃) (in the directions perpendicular and parallel
to the plane of layers) will be:

Hcr ||,⊥(T̃) = Hmax ||,⊥

√
1− ω̃Hcr (T̃)/ω̃. (48)

From (48) it follows that the relations Hcr ||(T̃)/Hcr ⊥(T̃) are independent of temperature.
The dependencies obtained are compared with experimental data in Section 7.

7. Comparison with the Experiment

By way of example let us consider HTSC YBa2Cu3O7 with the temperature of transition 90÷ 93
K, volume of the unit cell 0.1734× 10−21 cm3, concentration of holes n ∼= 1021 cm−3. According to
estimates [61], Fermi energy is equal to: εF = 0.37 eV. Concentration of TI-bipolarons in YBa2Cu3O7 is
found from equation (24):

nbp

n
Cbp = fω̃(T̃c), (49)

with T̃c = 1.6.
Among experiments with the use of an external magnetic field, of importance are experiments

concerned with measurements of London penetration depth λ. In YBa2Cu3O7 for λ for T = 0
the authors of [62] obtained λab = 150÷ 300 nm, λc = 800 nm. The same order of magnitude of
these quantities is given in a lot of papers [63–66]. The authors of [65] (see also references therein)
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demonstrate that anisotropy of lengths λa and λb in cuprate planes can be 30% depending on the type
of the crystal structure. If we take the value λa = 150 nm and λc = 800 nm obtained on most papers,
then, according to (33) the anisotropy parameter will be γ ≈ 30, which is the value usually used for for
YBa2Cu3O7 crystals.

The temperature dependence λ2(0)/λ2(T) was studied in many papers (see [66] and
references therein).

Figure 6 shows a comparison of various curves for λ2(0)/λ2(T). In paper [66] it is shown that in
high quality crystals of YBa2Cu3O7 the temperature dependence λ2(0)/λ2(T) is well approximated
by a simple dependence 1− t2, t = T/Tc.

Figure 7 demonstrates a comparison of the experimental dependence λ2(0)/λ2(T) [66] with the
theoretical one:

λ2(0)
λ2(T)

= 1−
(

T
Tc

)3/2 F3/2(ω/T)
F3/2(ω/Tc)

, (50)

which follows from (34), (25). Hence there is a good agreement between experimental and theoretical
dependencies (50).

Figure 6. Penetration depth of the magnetic field found with the use of BCS theory (a-local approximation,
b -nonlocal approximation); on empirical law λ−2 1− (T/Tc)4 (c) [67]; in YBa2Cu3O7 (d ) [66].

Figure 7. Comparison of the theoretical dependence λ2(0)/λ2(T̃) (solid line) obtained in the present
article with the experimental one [66] (dotted line).
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The theory developed enables us to compare the temperature dependence of the value of the
critical magnetic field in YBa2Cu3O7 with experimental data [68]. Since the theory constructed
in Section 6 describes a homogeneous state of a TI-bipolaron gas, then the critical field under
consideration corresponds to a homogeneous Meissner phase. In paper [68] this field is denoted
by Hc1 which is related to denotations of Section 6 as: Hc1 = Hcr, Hc1|| = Hcr⊥, Hc1⊥ = Hcr||. To make
a comparison with the experiment we use parameter values obtained earlier for YBa2Cu3O7: ω̃ = 1.5,
ω̃c = 1.6. Figure 8 shows a comparison of experimental dependencies Hc1⊥(T) and Hc1||(T) [68]
with theoretical dependencies (48), where for Hmax ||,⊥(T), we took the following experimental values:
Hmax || = 240, Hmax ⊥ = 816. The results presented in Figure 8 confirm the conclusion (Section 6) that
relations Hcr⊥(T)/Hcr||(T) are independent of temperature.

Relations (33), (45), (46) yield:

(γ∗)2 =
M∗⊥
M∗||

∝
λ2
⊥

λ2
||

;
H2

max ⊥
H2

max ||
= γ2 = 11.6. (51)

The assessment of anisotropy parameters γ2 = 11.6 determined by relations (51) differs from the
value (γ∗)2 = 30 used above. This difference is probably caused by difference in anisotropy of polaron
effective mass M∗||,⊥ and electron band mass m∗||,⊥.

Figure 8. Comparison of calculated (solid line) and experimental values of Hc1 (squares, circles,
rhombs [68]) for the cases ||~c and ⊥~c.

8. Scaling Relations

Scaling relations play an important role in the theory of superconductivity assisting the search
for new high-temperature superconductors with record parameters. These relations can emerge as a
result of numerous experiments lacking any reliable theoretical substantiation. Or else they can be
derived from insufficiently reliable theoretical considerations, but subsequently be supported by a lot
of experiments. By way of example we refer to Uemura law considered in the previous section.

The theory presented here enables us to give a natural explanation to some important scaling
relations. In particular, in this section we will derive Alexandrov’s formula [69,70] and Homes’s
scaling law.

• Alexandrov’s formula As was mentioned in [39], in an anisotropic case formula (49) takes on
the form:
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T̃c = F−2/3
3/2 (ω̃/T̃c)

(
nbp

M||

)
2πh̄2

M1/3
⊥ ω∗

. (52)

It is convenient to pass on in formula (52) from quantities nbp, M||, M⊥ which can hardly be
determined in experiments to quantities which are easily measured experimentally:

λab =

[
M||

16πnbpe2

]1/2

, λc =

[
M⊥

16πnbpe2

]1/2

, RH =
1

2enbp
, (53)

where λab = λ||, λc = λ⊥ are London lengths of penetration into the planes of layers and in
perpendicular direction, respectively; RH is Hall coefficient. In expressions (53) the light velocity
is assumed to be equal to unity: c = 1. With the use of relations (53) and (52) we get:

kBTc =
21/3

8
F−2/3

3/2

(
ω̃/T̃c

) h̄2

e2

(
eRH

λ4
abλ2

c

)1/3

. (54)

In formula (54) the quantity eRH is measured in cm3, λab, λc in cm, Tc in Kelvin.

Taking into account that in most HTSC materials ω̃ ≈ T̃c and the function F3/2(ω̃/T̃) changes
near ω̃ = T̃c only slightly, with the use of the value F3/2(1) = 0.428 and expression (53) we present
Tc in the form:

Tc ∼= 8.7

(
eRH

λ4
abλ2

c

)1/3

. (55)

Formula (55) differs from Alexandrov’s formula [69,70] only in numerical coefficient which
in [69,70] is equal to 1.64. As is shown in [69,70], formula (55) practically always properly
describes relation between the parameters for all known HTSC materials. In [69,70] it is also
shown that Uemura relation [71,72] is a particular case of formula (55).

• Homes’s law Homes’s law holds that scaling relation are valid for superconducting
materials [73,74]:

ρS = CσDC(Tc)Tc, (56)

where ρS is the density of a superfluid component for T = 0, σDC(Tc) is the conductivity of direct
current for T = Tc, C is a constant equal to ≈ 35cm−2 for ordinary superconductors and HTSC
materials for a current running in the plane of layers.

The quantity ρS involved in (56) is related to plasma frequency ωp =
√

4πnSe2
S/m∗S (where nS is a

concentration of superconducting charge carriers; m∗S, eS are a mass and charge of superconducting
charge carriers) by a well-known expression ρS = ω2

p [75]. Using this expression, relation
σDC = e2

nnnτ/m∗n (where nn is the concentration of charge carriers for T = Tc), m∗n, en are the
mass and the charge of charge carriers, relation τ ∼ h̄/Tc (where τ is the minimum Planck time
for scattering of electrons at the critical point [75]) and also expression (56), on the assumption
eS = en, mS = mn, we get:

nS(0) ∼= nn(Tc). (57)

This result is confirmed by experimental data [76].

In our scenario of Bose-condensation of TI-bipolarons, Homes’s law in the form of (57) becomes
almost obvious. Indeed, for T = Tc TI-bipolarons are stable formations (they decay at temperature
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equal to the pseudogap energy which considerably exceeds Tc). Their concentration for T = Tc

is equal to nn and therefore these bipolarons for T = Tc start forming condensate whose
concentration nS(T) reaches its maximum nS(0) = nn(Tc) for T = 0 (i.e., when bipolarons
fully pass on to condensed state) which corresponds to relation (57). Notice that in the framework
of BCS theory Homes’s law can hardly be explained.

9. Summary

It is generally accepted that super-flow, superfluidity and superconductivity are collective
phenomena that are driven by inter-particle interactions. Here we state an opposite suggestion
that the above phenomena are mainly determined by the specific properties of separate boson particles.

In this paper we have presented conclusions emerging from consistent translation-invariant
consideration of EPI. It implies that pairing of electrons, for any coupling constant, leads to a concept
of TI-polarons and TI-bipolarons. Being bosons, TI-bipolarons can experience Bose condensation when
H 6= 0 leading to superconductivity. Let us list the main results following from this approach.

First and foremost the theory resolves the problem of the great value of the bipolaron effective
mass (Section 4). As a consequence, formal limitations on the value of the critical temperature of the
transition are eliminated too. The theory quantitatively explains such thermodynamic properties of
HTSC-conductors as availability and value of the jump in the heat capacity (details in [39]) lacking in
the theory of Bose condensation of an ideal gas. The theory also gives an insight into the occurrence of
a great ratio between the width of the pseudogap and Tc ([39,40]). It accounts for the small value of
the correlation length [36] and explains the availability of a gap and a pseudogap ([39,40]) in HTSC
materials. Accordingly, isotopic effect automatically follows from expression (25) where the phonon
frequency ω0 acts as a gap. The conclusion of the dependence of the temperature of the transition Tc

on the relation nbp/M|| (see [39]) correlates with Alexandrov-Uemura law (Section 8) universal for all
HTSC materials. It is shown that Homes’s scaling law is a natural consequence of the theory presented
(Section 8). The theory explains a wide variety of phenomena observed in a magnetic field (Section 6).
In particular:

1. It is shown that the occurrence of a gap in the spectrum of TI-bipolarons makes possible their
condensation in a magnetic field.

2. It is demonstrated that there exists a critical value of the magnetic field above which homogeneous
Bose-condensation becomes impossible.

3. The temperature dependence of the critical magnetic field and London penetration depth obtained
in the paper are in good agreement with the experiment.

At the same time the theory presented shows that:

1. Rutgers formula cannot be applied to describe Bose-condensation of TI-bipolarons.
2. Ginzburg-Landau expansions do not suit to describe Bose-condensation of TI-bipolarons.

The theory predict some phenomena such as:

1. Isotopic effect for a jump of heat capacity in passing from the normal phase to superconducting one.
2. A possibility of the existence of a phase transition of infinite kind in a magnetic field at

low temperatures.
3. Identity of the energy gap with phonon frequency.
4. Existence of superconducting TI-bipolarons whose concentration is much less than the total

concentration of charge carriers.

Application of the theory to 1D and 2D systems leads to qualitatively new results since the
occurrence of a gap in the TI-bipolaron spectrum automatically removes divergences at small momenta,
inherent in the theory of ideal Bose gas. An important consequence of this fact is the existence of a
superconducting phase in homogeneous 1D and 2D systems [77].
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In conclusion it should be said that in the theory developed the TI-bipolarons are equivalent
of Cooper pairing in BCS. In distinction from the latter, this theory does not impose the upper limit
of critical temperature for SC transition. Of course there are a lot of other mechanisms of pairing.
Each theory of superconductivity needs to explain three basic effects: the zero resistance at T < Tc,
Meissner effect and the isotop effect. As was shown in the paper the considered EPI is sufficient for such
an explanation. Recent experiments on H3S and LaH10 (with Tc = 203 K for H3S [78] and Tc = 260 K for
LaH10 [79,80]) possessing a record temperature of SC transition (under high pressure) are in accordance
with the idea of the important role of EPI mechanism and TI-bipolarons considered in the paper.
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Appendix A

Hamiltonian H1 involved in (12) has the form:

H1 = ∑
k
(Vk + fk h̄ωk)(ak + a+k ) + ∑

k,k′

~k~k′

m
fk′(a+k akak′ + a+k a+k′ ak) +

1
2m ∑

k,k′
~k~k′a+k a+k′ akak′ ,

Let us apply the operator H1 to functional R̂|0〉, where R̂—operator that generates
Bogolyubov-Tyablikov canonical transformation (15). We will show that 〈0|R̂+H1R̂|0〉 = 0. Indeed,
the action of R̂ on H1 terms containing an odd number of operators in H1 (i.e., the first and second
terms in H1) will always contain an odd number of terms and mathematical expectation for these
terms will tend to zero.

Let us consider mathematical expectation for the last term in H1:

〈0|R̂+ ∑
k,k′

~k~k′a+k a+k′ akak′ R̂|0〉 . (A1)

The function 〈0|R̂+a+k a+k′ akak′ R̂|0〉 represents the norm of vector akak′ R̂|0〉 and will be positively
defined for all k and k′. If we replace~k→ −~k in (A1) than the whole expression will change the sign
and, therefore, (A1) is also equal to zero. Hence 〈0|R̂+H1R̂|0〉 = 0.

As was shown in [42] the explicit form for operator R̂ is:

R̂ = C exp

{
1
2 ∑

k,k′
a+k Akk′ a

+
k′

}
,

where C is the normalizing constant and matrix A satisfies the conditions:

A = M∗2(M∗1)
−1 , A = AT ,

where M1 and M2 are matrices involved in (15).
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