Structural Evolution of MoO3 Thin Films Deposited on Copper Substrates upon Annealing: An X-ray Absorption Spectroscopy Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Robertson, J. Origin of the high work function and high conductivity of MoO3. Appl. Phys. Lett. 2014, 105, 222110. [Google Scholar] [CrossRef]
- Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition metal oxides for organic electronics: energetics, device physics and applications. Adv. Mater. 2012, 24, 5408–5427. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Watson, G.W.; Payne, D.J.; Atkinson, G.R.; Egdell, R.G.; Law, D.S.L. Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C 2010, 114, 4636–4645. [Google Scholar] [CrossRef]
- Hanson, E.D.; Lajaunie, L.; Hao, S.; Myers, B.D.; Shi, F.; Murthy, A.A.; Dravid, V.P. Systematic study of oxygen vacancy tunable transport properties of few-layer MoO3−x enabled by vapor-based synthesis. Adv. Funct. Mater. 2017, 27, 1605380. [Google Scholar] [CrossRef]
- Macis, S.; Aramo, C.; Bonavolontà, C.; Cibin, G.; D’Elia, A.I.; Davoli, M.; De Lucia, M.; Lucci, S.; Lupi, M.; Miliucci, A.; et al. MoO3 films Grown on polycrystalline Cu: Morphological, structural, and electronic properties. J. Vac. Sci. Technol. A 2019, 37, 021513. [Google Scholar] [CrossRef]
- De Castro, I.A.; Datta, R.S.; Ou, J.Z.; Castellanos-Gomez, A.S.; Sriram, T.D.; Kalantar-zadeh, K. Molybdenum oxides–from fundamentals to functionality. Adv. Mat. 2017, 29, 1701619. [Google Scholar] [CrossRef]
- Greiner, M.T.; Chai, L.; Helander, M.G.; Tang, W.; Lu, Z.H. Metal/metal-oxide interfaces: How metal contacts affect the work function and band structure of MoO3. Adv. Funct. Mater. 2013, 23, 215–226. [Google Scholar] [CrossRef]
- Lambert, D.S.; Lennon, A.; Burr, P.A. Extrinsic defects in crystalline MoO3: Solubility and effect on the electronic structure. J. Phys. Chem. C 2018, 122, 27241–27249. [Google Scholar] [CrossRef]
- Lambert, D.S.; Murphy, S.T.; Lennon, A.; Burr, P.A. Formation of intrinsic and silicon defects in MoO3 under varied oxygen partial pressure and temperature conditions: An ab initio DFT investigation. RSC Adv. 2017, 7, 53810–53821. [Google Scholar] [CrossRef]
- Akande, S.O.; Chroneos, A.; Vasilopoulou, M.; Kennou, S.; Schwingenschlögl, U. Vacancy formation in MoO3: Hybrid density functional theory and photoemission experiments. J. Mater. Chem. C 2016, 4, 9526–9531. [Google Scholar] [CrossRef]
- Castorina, G.; Marcelli, A.; Monforte, F.; Sarti, S.; Spataro, B. An analytical model for evaluation of the properties of metallic coatings in RF structures. Condens. Matter 2016, 1, 12. [Google Scholar] [CrossRef]
- Marcelli, A.; Spataro, B.; Sarti, S.; Dolgashev, V.A.; Tantawi, S.; Yeremian, D.A.; Higashi, Y.; Parodi, R.; Notargiacomo, A.; Junqing, X.G.; et al. Characterization of thick conducting molybdenum films: Enhanced conductivity via thermal annealing. Surf. Coat. Tech. 2015, 261, 391–397. [Google Scholar] [CrossRef]
- Xu, Y.; Spataro, B.; Sarti, S.; Dolgashev, V.A.; Tantawi, S.; Yeremian, A.D.; Higashi, Y.; Grimaldi, M.G.; Romano, L.; Ruffino, F. Structural and morphological characterization of Mo coatings for high gradient accelerating structures. J. Phys. Conf. Ser. 2013, 430, 012091. [Google Scholar] [CrossRef]
- Marcelli, A.; Spataro, B.; Castorina, G.; Xu, W.; Sarti, S.; Monforte, F.; Cibin, G. Materials and breakdown phenomena: Heterogeneous molybdenum metallic films. Condens. Matter 2017, 2, 18. [Google Scholar] [CrossRef]
- Dolgashev, V.A.; Tantawi, S.G.; Park, M.; Higashi, Y.; Spataro, B. Study of basic Rf breakdown phenomena in high gradient vacuum structures. In Proceedings of the 16th International Linear Accelerator Conference LINAC2010, Tsukuba, Japan, 12–17 September 2010; pp. 1043–1047. [Google Scholar]
- Macis, S. Deposition and Characterization of Thin MoO3 Films on Cu for Technological Applications. Ph.D. Thesis, Roma Tor Vergata University, Roma, Italy, 2019. [Google Scholar]
- Bianconi, A.; Marcelli, A. Surface X-Ray Absorption near-edge structure: XANES. In Synchrotron Radiation Research. Advances in Surface Science; Bachrach, R.Z., Ed.; Plenum Press: New York, NY, USA, 1992; Chapter 2; Volume 1. [Google Scholar]
- Marcelli, A. Phase separations in highly correlated materials. Acta Phys. Polonica A 2016, 129, 264–269. [Google Scholar] [CrossRef]
- Garcia, J.; Benfatto, M.; Natoli, C.R.; Bianconi, A.; Davoli, I.; Marcelli, A. Three particle correlation function of metal ions in tetrahedral coordination determined by XANES. Solid State Commun. 1986, 58, 595–599. [Google Scholar] [CrossRef]
- Giuli, G.; Paris, E.; Wu, Z.; Brigatti, M.F.; Cibin, G.; Mottana, A.; Marcelli, A. Experimental and theoretical XANES and EXAFS study of tetra-ferriphlogopit. Eur. J. Miner. 2001, 13, 1099–1108. [Google Scholar] [CrossRef]
- d’Acapito, F.; Lepore, G.O.; Puri, A.; Laloni, A.; la Manna, F.; Dettona, E.; de Luisa, A.; Martin, A. The LISA beamline at ESRF. J. Synchrotron Radiat. 2019, 26, 551–558. [Google Scholar]
- Zabinsky, S.I.; Rehr, J.J.; Ankudinov, A.; Albers, R.C.; Eller, M.J. Multiple scattering calculations of X-ray absorption spectra. Phys. Rev. B 1995, 52, 2995. [Google Scholar] [CrossRef]
- Kopachevska, N.S.; Melnyk, A.K.; Bacherikova, I.V.; Zazhigalov, V.A.; Wieczorek-Ciurowa, K. Determination of molybdenum oxidation state on the mechanochemically treated MoO3. Хімія Фізиката Технoлoгія Пoверхні 2015, 6, 474–480, ISSN 2079-1704. [Google Scholar]
- Di Cicco, A.; Bianconi, A.; Coluzza, C.; Rudolf, P.; Lagarde, P.; Flank, A.M.; Marcelli, A. XANES study of structural disorder in amorphous silicon. J. Non-Cryst. Solids 1990, 116, 27–32. [Google Scholar] [CrossRef]
- Bianconi, A.; Garcia, J.; Marcelli, A.; Benfatto, M.; Natoli, C.R.; Davoli, I. Probing higher order correlation functions in liquids by XANES (X-ray absorption Near Edge Structure). J. Phys. Colloq. 1985, 46, 101–106. [Google Scholar] [CrossRef]
- Ressler, T.; Jentoft, R.E.; Wienold, J.; Gu1nter, M.M.; Timpe, O. In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3. J. Phys. Chem. B 2000, 104, 6360–6370. [Google Scholar] [CrossRef]
- Ressler, T.; Wienold, J.; Jentoft, R.E. Formation of bronzes during temperature-programmed reduction of MoO3 with hydrogen—An in situ XRD and XAFS study. Solid State Ion. 2001, 141, 243–251. [Google Scholar] [CrossRef]
α-MoO3 Reference | 350 °C Annealing | 500 °C Annealing | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Shell | CN | R(Å) | σ2(Å2) | Shell | CN | R(Å) | σ2(Å2) | Shell | CN | R(Å) | σ2(Å2) |
Mo-O | 1 | 1.70 ± 0.05 | 0.0024 ± 0.0004 | Mo-O | 1 | 1.70 ± 0.08 | 0.0015 ± 0.0012 | Mo-O | 2 | 1.99 ± 0.07 | 0.0037 ± 0.0011 |
Mo-O | 1 | 1.78 ± 0.10 | 0.0023 ± 0.0003 | Mo-O | 1 | 1.80 ± 0.08 | 0.0013 ± 0.0004 | Mo-O | 4 | 2.02 ± 0.05 | 0.0031 ± 0.0016 |
Mo-O | 2 | 1.99 ± 0.06 | 0.0025 ± 0.0002 | Mo-O | 2 | 2.07 ± 0.10 | 0.0021 ± 0.0010 | Mo-Mo | 2 | 3.17 ± 0.06 | 0.0041 ± 0.0012 |
Mo-O | 1 | 2.22 ± 0.04 | 0.0022 ± 0.0004 | Mo-O | 1 | 2.22 ± 0.11 | 0.0022 ± 0.0017 | Mo-O | 4 | 3.42 ± 0.05 | 0.0029 ± 0.0010 |
Mo-O | 1 | 2.31 ± 0.03 | 0.0022 ± 0.0003 | Mo-O | 1 | 2.30 ± 0.05 | 0.0016 ± 0.0009 | Mo-Mo | 8 | 3.73 ± 0.07 | 0.0037 ± 0.0007 |
Mo-Mo | 2 | 3.41 ± 0.03 | 0.0027 ± 0.0003 | Mo-Mo | 2 | 3.38 ± 0.05 | 0.0027 ± 0.0002 | Mo-O | 4 | 4.05 ± 0.08 | 0.0035 ± 0.0005 |
Mo-Mo | 2 | 3.75 ± 0.02 | 0.0025 ± 0.0002 | Mo-Mo | 2 | 3.73 ± 0.10 | 0.0019 ± 0.0002 | ||||
Mo-Mo | 2 | 4.02 ± 0.09 | 0.0025 ± 0.0010 | Mo-Mo | 2 | 4.08 ± 0.04 | 0.0019 ± 0.0005 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macis, S.; Rezvani, J.; Davoli, I.; Cibin, G.; Spataro, B.; Scifo, J.; Faillace, L.; Marcelli, A. Structural Evolution of MoO3 Thin Films Deposited on Copper Substrates upon Annealing: An X-ray Absorption Spectroscopy Study. Condens. Matter 2019, 4, 41. https://doi.org/10.3390/condmat4020041
Macis S, Rezvani J, Davoli I, Cibin G, Spataro B, Scifo J, Faillace L, Marcelli A. Structural Evolution of MoO3 Thin Films Deposited on Copper Substrates upon Annealing: An X-ray Absorption Spectroscopy Study. Condensed Matter. 2019; 4(2):41. https://doi.org/10.3390/condmat4020041
Chicago/Turabian StyleMacis, Salvatore, Javad Rezvani, Ivan Davoli, Giannantonio Cibin, Bruno Spataro, Jessica Scifo, Luigi Faillace, and Augusto Marcelli. 2019. "Structural Evolution of MoO3 Thin Films Deposited on Copper Substrates upon Annealing: An X-ray Absorption Spectroscopy Study" Condensed Matter 4, no. 2: 41. https://doi.org/10.3390/condmat4020041
APA StyleMacis, S., Rezvani, J., Davoli, I., Cibin, G., Spataro, B., Scifo, J., Faillace, L., & Marcelli, A. (2019). Structural Evolution of MoO3 Thin Films Deposited on Copper Substrates upon Annealing: An X-ray Absorption Spectroscopy Study. Condensed Matter, 4(2), 41. https://doi.org/10.3390/condmat4020041