Orbital Symmetry and Orbital Excitations in High-Tc Superconductors
Abstract
:1. Introduction: Towards Superconductivity with Orbital Degrees of Freedom
2. The Role of Orbitals in Superconducting Cuprates
2.1. Earlier Theoretical Proposals
2.2. Orbital Excitations in Cuprates
Cu() Orbital | LaCuO | SrCuOCl | CaCuO |
---|---|---|---|
1.44 (1.37) | 1.71 (1.75) | 2.39 (2.38) | |
1.54 (1.43) | 1.24 (1.16) | 1.38 (1.36) | |
1.86 (1.78) | 1.58 (1.69) | 1.69 (2.02) |
3. Superconductivity with Orbital Degrees of Freedom
3.1. Beyond the Cuprates with the Pairing in a Single Orbital
3.2. Nickelates
3.3. Superconducting Ruthenate SrRuO
3.4. Iron-Based Superconductors
4. Summary
Summarizing, the presence of orbital degrees of freedom makes high- superconductors an even more exciting class of quantum materials where the competing quantum phases are of particular importance for superconductivity in layered compounds [165]. It seems that orbital fluctuations could enhance the superconducting transition temperature , but we emphasize that the role of orbital degrees of freedom in the phenomenon of pairing belongs to open problems in the theory; in particular the interplay between orbital degeneracy and the Jahn-Teller coupling to lattice—the idea that guided Bednorz and Müller in their discovery of high- superconductivity—has to be worked out in a greater detail.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bednorz, J.G.; Muller, K.A. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Lee, P.A.; Nagaosa, N.; Wen, X.G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 2006, 78, 17–85. [Google Scholar] [CrossRef] [Green Version]
- Ogata, M.; Fukuyama, H. The t-J model for the oxide high-Tc superconductors. Rep. Prog. Phys. 2008, 71, 036501. [Google Scholar] [CrossRef]
- Vojta, M. Lattice symmetry breaking in cuprate superconductors: Stripes, nematics, and superconductivity. Adv. Phys. 2009, 58, 699–820. [Google Scholar] [CrossRef]
- Bianconi, A.; Poccia, N. Superstripes and complexity in High-Temperature Superconductors. J. Supercond. Nov. Magn. 2012, 25, 1403–1412. [Google Scholar] [CrossRef]
- Keimer, B.; Kivelson, S.A.; Norman, M.R.; Uchida, S.; Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 2015, 518, 179–186. [Google Scholar] [CrossRef]
- Paglione, J.; Greene, R.L. High-Temperature Tuperconductivity in Iron-Based Material. Nat. Phys. 2010, 6, 645–658. [Google Scholar] [CrossRef]
- Hirschfeld, P.J.; Korshunov, M.M.; Mazin, I.I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 2011, 74, 124508. [Google Scholar] [CrossRef] [Green Version]
- Scalapino, D.J. A common thread: The pairing interaction for unconventional superconductors. Rev. Mod. Phys. 2012, 84, 1383–1417. [Google Scholar] [CrossRef] [Green Version]
- Si, Q.; Yu, R.; Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mat. 2016, 1, 16017. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.M.; Chubukov, A.V. Low-energy microscopic models for iron-based superconductors: A review. Rep. Prog. Phys. 2017, 80, 014503. [Google Scholar] [CrossRef]
- Cava, R.J.; Takagi, H.; Zandbergen, H.W.; Krajewski, J.J.; Peck, W.F., Jr.; Siegrist, T.; Batlogg, B.; van Dover, R.B.; Felder, R.J.; Mizuhashi, K.; et al. Superconductivity in the quaternary intermetallic compounds LnNi2B2C. Nature 1994, 367, 252–253. [Google Scholar] [CrossRef]
- Kastner, M.A.; Birgeneau, R.J.; Shirane, G.; Endoh, Y. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. 1998, 70, 897–928. [Google Scholar] [CrossRef]
- Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 1998, 70, 1039–1263. [Google Scholar] [CrossRef]
- Mackenzie, A.P.; Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 2003, 75, 657–712. [Google Scholar] [CrossRef]
- Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puźniak, R.; Conder, K. Superconductivity in alkali metal intercalated iron selenides. J. Phys. Condens. Mat. 2016, 28, 293002. [Google Scholar] [CrossRef]
- Graser, S.; Maier, T.A.; Hirschfeld, P.J.; Scalapino, D.J. Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides. New J. Phys. 2009, 21, 025016. [Google Scholar] [CrossRef]
- Ohta, Y.; Tohyama, T.; Maekawa, S. Apex oxygen and critical temperature in copper oxide superconductors: Universal correlation with the stability of local singlets. Phys. Rev. B 1991, 43, 2968–2982. [Google Scholar] [CrossRef]
- Pavarini, E.; Dasgupta, I.; Saha-Dasgupta, T.; Jepsen, O.; Andersen, O.K. Band-Structure Trend in Hole-Doped Cuprates and Correlation with Tc max. Phys. Rev. Lett. 2014, 112, 127002. [Google Scholar]
- Sakakibara, H.; Usui, H.; Kuroki, K.; Arita, R.; Aoki, H. Two-Orbital Model Explains the Higher Transition Temperature of the Single-Layer Hg-Cuprate Superconductor Compared to That of the La-Cuprate Superconductor. Phys. Rev. Lett. 2010, 105, 057003. [Google Scholar] [CrossRef]
- Feiner, L.F.; Jefferson, J.H.; Raimondi, R. Effective single-band models for the high-Tc cuprates. 1. Coulomb interactions. Phys. Rev. B 1996, 53, 8751–8773. [Google Scholar] [CrossRef]
- Bianconi, A. Lifshitz Transitions In Multi-band Hubbard Models for Topological Superconductivity in Complex Quantum Matter. J. Supercond. Novel Magn. 2018, 31, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Capitani, F.; Langerome, B.; Brubach, J.-B.; Roy, P.; Drozdov, A.; Eremets, M.I.; Nicol, E.J.; Carbotte, J.P.; Timusk, T. Spectroscopic evidence of a new energy scale for superconductivity in H3S. Nat. Phys. 2017, 13, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.A. Large, small, and especially Jahn-Teller polarons. J. Supercond. 1999, 12, 3–7. [Google Scholar] [CrossRef]
- Keller, H.; Bussmann-Holder, A.; Müller, K.A. Jahn-Teller physics and high-Tc superconductivity. Mat. Today 2008, 11, 38–46. [Google Scholar] [CrossRef]
- Zaanen, J.; Oleś, A.M. Carriers binding to excitons: Crystal-field excitations in doped Mott-Hubbard insulators. Phys. Rev. B 1993, 48, 7197–7215. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Wang, Y.; Han, S.; Lv, Y.-F.; Wang, W.-L.; Zhang, D.; Ding, H.; Zhang, Y.-M.; Wang, L.; He, K.; et al. Nodeless pairing in superconducting copper-oxide monolayer films on Bi2Sr2CaCu2O8+δ. Sci. Bull. 2016, 61, 1239–1247. [Google Scholar] [CrossRef]
- Jiang, K.; Wu, X.; Hu, J.; Wang, Z. Nodeless High-Tc Superconductivity in the Highly Overdoped CuO2 Monolayer. Phys. Rev. Lett. 2018, 121, 227002. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tsay, Y.N.; Suenaga, M.; Klemm, R.A.; Gu, G.D.; Koshizuka, N. Bi2Sr2CaCu2O8+δ Bicrystal c-Axis Twist Josephson Junctions: A New Phase-Sensitive Test of Order Parameter Symmetry. Phys. Rev. Lett. 1999, 83, 4160–4163. [Google Scholar] [CrossRef]
- Misra, S.; Oh, S.; Hornbaker, D.J.; DiLuccio, T.; Eckstein, J.N.; Yazdani, A. Atomic Scale Imaging and Spectroscopy of a CuO2 Plane at the Surface of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 2002, 89, 087002. [Google Scholar] [CrossRef]
- Hoogenboom, B.W.; Kadowaki, K.; Revaz, B.; Fischer, Ø. Homogeneous samples of Bi2Sr2CaCu2O8+δ. Phys. C 2003, 391, 376–380. [Google Scholar] [CrossRef]
- Latyshev, Y.I.; Orlov, A.P.; Nikitina, A.M.; Monceau, P.; Klemm, R.A. c-axis transport in naturally grown Bi2Sr2CaCu2O8+δ cross-whisker junctions. Phys. Rev. B 2004, 70, 094517. [Google Scholar] [CrossRef]
- Klemm, R.A. The phase-sensitive c-axis twist experiments on Bi2Sr2CaCu2O8+δ and their implications. Philos. Mag. 2004, 85, 801–853. [Google Scholar] [CrossRef]
- Zhu, Y.; Liao, M.; Zhang, Q.; Meng, F.; Zhong, R.; Schneeloch, J.; Gu, G.; Gu, L.; Ma, X.; Zhang, D.; et al. Isotropic Josephson tunneling in c-axis twist bicrystals of Bi2Sr2CaCu2O8+δ. arXiv 2019, arXiv:1903.07965. [Google Scholar]
- Chaloupka, J.; Khaliullin, G. Orbital Order and Possible Superconductivity in LaNiO3/LaMO3 Superlattices. Phys. Rev. Lett. 2008, 100, 016404. [Google Scholar] [CrossRef]
- Knolle, J.; Eremin, I.; Moessner, R. Multiorbital spin susceptibility in a magnetically ordered state: Orbital versus excitonic spin density wave scenario. Phys. Rev. B 2011, 83, 224503. [Google Scholar] [CrossRef]
- Veenstra, C.N.; Zhu, Z.-H.; Raichle, M.; Ludbrook, B.M.; Nicolaou, A.; Slomski, B.; Landolt, G.; Kittaka, S.; Maeno, Y.; Dil, J.H.; et al. Spin-Orbital Entanglement and the Breakdown of Singlets and Triplets in Sr2RuO4 Revealed by Spin- and Angle-Resolved Photoemission Spectroscopy. Phys. Rev. Lett. 2014, 112, 127002. [Google Scholar] [CrossRef]
- Bertinshaw, J.; Kim, Y.K.; Khaliullin, G.; Kim, B.J. Square Lattice Iridates. Annu. Rev. Condens. Matter Phys. 2019, 10, 315–336. [Google Scholar] [CrossRef]
- Varma, C.M.; Schmitt-Rink, S.; Abrahams, E. Charge transfer excitations and superconductivity in “ionic” metals. Solid State Commun. 1987, 62, 681–685. [Google Scholar] [CrossRef]
- Emery, V.J. Theory of High-Tc Superconductivity in Oxides. Phys. Rev. Lett. 1987, 58, 2794–2797. [Google Scholar] [CrossRef]
- Oleś, A.M.; Zaanen, J.; Fulde, P. How strongly are electrons correlated in the high-Tc superconducting materials? Phys. B & C 1987, 148, 260–263. [Google Scholar]
- Arrigoni, E.; Aichhorn, M.; Daghofer, M.; Hanke, W. Phase diagram and single-particle spectrum of CuO2 layers within a variational cluster approach to the 3-band Hubbard model. New J. Phys. 2009, 11, 055066. [Google Scholar] [CrossRef]
- Hanke, W.; Kiesel, M.L.; Aichhorn, M.; Brehm, S.; Arrigoni, E. The 3-band Hubbard model versus the 1-band model for the high-Tc cuprates: Pairing dynamics, superconductivity and the ground state phase diagram. Eur. Phys. J. Spec. Top. 2010, 188, 15–32. [Google Scholar] [CrossRef]
- Ebrahimnejad, H.; Sawatzky, G.A.; Berciu, M. The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations. Nat. Phys. 2014, 10, 951–955. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, A.; De Santis, M.; Flank, A.; Fontaine, A.; Lagarde, P.; Marcelli, A.; Katayamayoshida, H.; Kotani, A. Determination of the symmetry of the 3d9L states by polarized Cu L3 XAS spectra of single crystal YBa2Cu3O6.9. Phys. C 1988, 153–155, 1760–1761. [Google Scholar] [CrossRef]
- Bianconi, A.; De Santis, M.; Di Cicco, A.; Flank, A.M.; Fontaine, A.; Lagarde, P.; Katayama-Yoshida, H.; Kotani, A.; Marcelli, A. Symmetry of the 3d9 ligand hole induced by doping in YBa2Cu3O7−x. Phys. Rev. B 1988, 38, 7196–7199. [Google Scholar] [CrossRef]
- Nücker, N.; Pellegrin, E.; Schweiss, P.; Fink, J.; Molodtsov, S.L.; Simmons, C.T.; Kaindl, G.; Frentrup, W.; Erb, A.; Müller-Vogt, G. Site-specific and doping-dependent electronic structure of YBa2Cu3Ox probed by O 1s and Cu 2p x-ray-absorption spectroscopy. Phys. Rev. B 1995, 51, 8529–8542. [Google Scholar] [CrossRef]
- Pompa, M.; Castrucci, P.; Li, C.; Udron, D.; Flank, A.M.; Lagarde, P.; Katayama-Yoshida, H.; Della Longa, S.; Bianconi, A. On the orbital angular momentum of Cu 3d hole states in superconducting La2−xSrxCuO4. Phys. C 1991, 184, 102–112. [Google Scholar] [CrossRef]
- Chen, C.T.; Tjeng, L.H.; Kwo, J.; Kao, H.L.; Rudolf, P.; Sette, F.; Fleming, R.M. Out-of-plane orbital characters of intrinsic and doped holes in La2−xSrxCuO4. Phys. Rev. Lett. 1992, 68, 2543–2546. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H.; Suzuki, K.; Usui, H.; Kuroki, K.; Arita, R.; Scalapino, D.J.; Aoki, H. Multiorbital analysis of the effects of uniaxial and hydrostatic pressure on Tc in the single-layered cuprate superconductors. Phys. Rev. B 2012, 86, 134520. [Google Scholar] [CrossRef]
- Seino, Y.; Kotani, A.; Bianconi, A. Effect of Rhombic Distortion on the Polarized X-Ray Absorption Spectra in High Tc Superconductors. J. Phys. Soc. Jpn. 1990, 59, 815–818. [Google Scholar] [CrossRef]
- Bianconi, A.; Valletta, A.; Perali, A.; Saini, N.L. Superconductivity of a striped phase at the atomic limit. Phys. C 1998, 1998 296, 269–280. [Google Scholar] [CrossRef]
- Bianconi, A.; Di Castro, D.; Bianconi, G.; Pifferi, A.; Saini, N.L.; Chou, F.C.; Johnston, D.C.; Colapietro, M. Coexistence of stripes and superconductivity: Tc amplification in a superlattice of superconducting stripes. Phys. C 2000, 341, 1719–1722. [Google Scholar] [CrossRef]
- Bianconi, A.; Bianconi, G.; Caprara, S.; Di Castro, D.; Oyanagi, H.; Saini, N.L. The stripe critical point for cuprates. J. Phys. Condens. Matter 2000, 12, 10655–10666. [Google Scholar] [CrossRef]
- Bianconi, A.; Agrestini, S.; Bianconi, G.; Di Castro, D.; Saini, N.L. A quantum phase transition driven by the electron lattice interaction gives high Tc superconductivity. J. Alloys Compd. 2001, 317, 537–541. [Google Scholar] [CrossRef]
- Bersuker, I.B. Pseudo-Jahn-Teller effect? A two-state paradigm in formation, deformation, and transformation of molecular systems and solids. Chem. Rev. 2013, 113, 1351–1390. [Google Scholar] [CrossRef]
- Müller, K.A. Recent experimental insights into HTSC materials. Phys. C 2000, 341, 11–18. [Google Scholar] [CrossRef]
- Bussmann-Holder, A.; Keller, H.; Bishop, A.R.; Simon, A.; Micnas, R.; Müller, K.A. Unconventional isotope effects as evidence for polaron formation in cuprates. Europhys. Lett. 2005, 72, 423–429. [Google Scholar] [CrossRef]
- Müller, K.A. The unique properties of superconductivity in cuprates. J. Supercond. Novel Magn. 2014, 27, 2163–2179. [Google Scholar] [CrossRef]
- Zhou, J.S.; Bersuker, G.I.; Goodenough, J.B.. Non-adiabatic electron-lattice interactions in the copper-oxide superconductors. J. Supercond. 1995, 8, 541–544. [Google Scholar] [CrossRef]
- Bersuker, G.I.; Goodenough, J.B. Large low-symmetry polarons of the high-Tc copper oxides: Formation, mobility and ordering. Phys. C 1997, 274, 267–285. [Google Scholar] [CrossRef]
- Lanzara, A.; Zhao, G.M.; Saini, N.L.; Bianconi, A.; Conder, K.; Keller, H.; Müller, K.A. Oxygen-isotope shift of the charge-stripe ordering temperature in La2−xSrxCuO4 from x-ray absorption spectroscopy. J. Phys. Condens. Matter 1999, 11, L541–L546. [Google Scholar] [CrossRef]
- McQueeney, R.J.; Petrov, Y.; Egami, T.; Yethiraj, M.; Shirane, G.; Endoh, Y. Anomalous Dispersion of LO Phonons in La1.85Sr0.15CuO4 at Low Temperatures. Phys. Rev. Lett. 1999, 82, 628–631. [Google Scholar] [CrossRef]
- Le Tacon, M.; Bosak, A.; Souliou, S.M.; Dellea, G.; Loew, T.; Heid, R.; Bohnen, K.-P.; Ghiringhelli, G.; Krisch, M.; Keimer, B. Giant phonon anomalies and central peak due to charge density wave formation in YBa2Cu3O6.6. Nat. Phys. 2014, 10, 52–58. [Google Scholar] [CrossRef]
- Miao, H.; Ishikawa, D.; Heid, R.; Le Tacon, M.; Fabbris, G.; Meyers, D.; Gu, G.D.; Baron, A.Q.R.; Dean, M.P.M. Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates. Phys. Rev. X 2018, 8, 011008. [Google Scholar] [CrossRef] [Green Version]
- Weber, W. A Cu d-d Excitation Model for the Pairing in the High-Tc Cuprates. Z. Phys. B 1988, 70, 323–329. [Google Scholar] [CrossRef]
- Jarrell, M.; Krishnamurthy, H.R.; Cox, D.L. Charge-transfer mechanisms for high-Tc superconductivity. Phys. Rev. B 1988, 38, 4584–4587. [Google Scholar] [CrossRef]
- Cox, D.L.; Jarrell, M.; Jayaprakash, C.; Krishnamurthy, H.R.; Deisz, J. Virtual Electric Quadrupole Fluctuations: A Mechanism for High Tc. Phys. Rev. Lett. 1989, 62, 2188–2191. [Google Scholar] [CrossRef]
- Feiner, L.F.; Grilli, M.; Di Castro, C. Apical oxygen ions and the electronic structure of the high-Tc cuprates. Phys. Rev. B 1992, 45, 10647–10669. [Google Scholar] [CrossRef]
- Buda, F.; Cox, D.L.; Jarrell, M. Random-phase-approximation analysis of orbital- and magnetic-fluctuation- mediated superconductivity in a two-band Hubbard model. Phys. Rev. B 1994, 49, 1255–1268. [Google Scholar] [CrossRef]
- Bucci, F.; Castellani, C.; Di Castro, C.; Grilli, M. Charge fluctuations in the four-band extended Hubbard model. Phys. Rev. B 1995, 52, 6880–6893. [Google Scholar] [CrossRef]
- Sakakibara, H.; Suzuki, K.; Usui, H.; Miyao, S.; Maruyama, I.; Kusakabe, K.; Arita, R.; Aoki, H.; Kuroki, K. Orbital mixture effect on the Fermi-surface–Tc correlation in the cuprate superconductors: Bilayer vs. single layer. Phys. Rev. B 2014, 89, 224505. [Google Scholar] [CrossRef]
- Weber, C.; Haule, K.; Kotliar, G. Apical oxygens and correlation strength in electron- and hole-doped copper oxides. Phys. Rev. B 2010, 82, 125107. [Google Scholar] [CrossRef]
- Zaanen, J.; Oleś, A.M. Canonical Perturbation Theory and the Two-Band Model for High-Tc Superconductors. Phys. Rev. B 1988, 45, 9423–9438. [Google Scholar] [CrossRef]
- Zhang, F.C.; Rice, T.M. Effective Hamiltonian for the superconducting Cu Oxides. Phys. Rev. B 1988, 37, 3759–3761. [Google Scholar] [CrossRef]
- Perkins, J.D.; Graybeal, J.M.; Kastner, M.A.; Birgeneau, R.J.; Falck, J.P.; Greven, M. Mid-infrared optical absorption in undoped lamellar copper oxides. Phys. Rev. Lett. 1992, 71, 1621–1624. [Google Scholar] [CrossRef]
- Ghiringhelli, G.; Brookes, N.B.; Annese, E.; Berger, H.; Dallera, C.; Grioni, M.; Perfetti, L.; Tagliaferri, A.; Braicovich, L. Low Energy Electronic Excitations in the Layered Cuprates Studied by Copper L3 Resonant Inelastic X-Ray Scattering. Phys. Rev. Lett. 2004, 92, 117406. [Google Scholar] [CrossRef]
- Lorenzana, J.; Sawatzky, G.A. Phonon assisted multimagnon optical absorption and long lived two-magnon states in undoped lamellar copper oxides. Phys. Rev. Lett. 1995, 74, 1867–1870. [Google Scholar] [CrossRef]
- Ament, L.J.P.; van Veenendaal, M.; Devereaux, T.P.; Hil, J.P.; van den Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 2011, 83, 705–767. [Google Scholar] [CrossRef] [Green Version]
- Hozoi, L.; Siurakshina, L.; Fulde, P.; van den Brink, J. Ab Initio determination of Cu 3d orbital energies in layered copper oxides. Sci. Rep. 2011, 1, 65. [Google Scholar] [CrossRef]
- Moretti Sala, M.; Bisogni, V.; Aruta, C.; Balestrino, G.; Berger, H.; Brookes, N.B.; de Luca, G.M.; Di Castro, D.; Grioni, M.; Guarise, M.; et al. Energy and symmetry of dd excitations in undoped layered cuprates measured by Cu L3 resonant inelastic x-ray scattering. New J. Phys. 2011, 13, 043026. [Google Scholar] [CrossRef]
- Bianconi, A.; Castrucci, P.; Fabrizi, A.; Pompa, M.; Flank, A.M.; Lagarde, P.; Katayama-Yoshida, H.; Calestani, G. Correlation between mixing of Cu d orbitals and Tc determined by polarized Cu L3 XAS: Experimental evidence for pairing mediated by d-d excitations. Phys. C 1989, 162, 209–210. [Google Scholar] [CrossRef]
- Nücker, N.; Romberg, H.; Xi, X.X.; Fink, J.; Gegenheimer, B.; Zhao, Z.X. Symmetry of holes in high-Tc superconductors. Phys. Rev. B 1989, 39, 6619–6629. [Google Scholar] [CrossRef]
- Khomskii, D.I.; Neimark, E.I. Orbital structure of copper in high temperature superconductors. Phys. C 1991, 173, 342–346. [Google Scholar] [CrossRef]
- Ellis, D.S.; Huang, Y.B.; Olalde-Velasco, P.; Dantz, M.; Pelliciari, J.; Drachuck, G.; Ofer, R.; Bazalitsky, G.; Berger, J.; Schmitt, T.; et al. Correlation of the superconducting critical temperature with spin and orbital excitations in (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy as measured by resonant inelastic x-ray scattering. Phys. Rev. B 2015, 92, 104507. [Google Scholar] [CrossRef]
- Fumagalli, R.; Braicovich, L.; Minola, M.; Peng, Y.Y.; Kummer, K.; Betto, D.; Rossi, M.; Lefrancois, E.; Morawe, C.; Salluzzo, M. Polarization resolved Cu L3-edge resonant inelastic x-ray scattering of orbital and spin excitations in NdBa2Cu3O7-δ. arXiv 2019, arXiv:1902.05471. [Google Scholar] [CrossRef]
- Kang, M.; Pelliciari, J.; Krockenberger, Y.; Li, J.; McNally, D.E.; Paris, E.; Liang, R.; Hardy, W.N.; Bonn, D.A.; Yamamoto, H.; et al. Resolving the nature of electronic excitations in resonant inelastic x-ray scattering. Phys. Rev. B 2019, 99, 045105. [Google Scholar] [CrossRef]
- Kugel, K.I.; Khomskii, D.I. Jahn-Teller Effect and Magnetism: Transition Metal Compounds. Usp. Fiz. Nauk 1982, 25, 621–664. [Google Scholar] [CrossRef]
- Feiner, L.F.; Oleś, A.M.; Zaanen, J. Quantum Melting of Magnetic Order due to Orbital Fluctuations. Phys. Rev. Lett. 1997, 78, 2799–2802. [Google Scholar] [CrossRef] [Green Version]
- Tokura, Y.; Nagaosa, N. Orbital Physics in Transition-Metal Oxides. Science 2000, 288, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Oleś, A.M.; Khaliullin, G.; Horsch, P.; Feiner, L.F. Fingerprints of spin-orbital physics in cubic Mott insulators: Magnetic exchange interactions and optical spectral weights. Phys. Rev. B 2005, 72, 214431. [Google Scholar] [CrossRef]
- Khaliullin, G. Orbital Order and Fluctuations in Mott Insulators. Prog. Theor. Phys. Suppl. 2005, 160, 155–202. [Google Scholar] [CrossRef] [Green Version]
- Normand, B.; Oleś, A.M. Frustration and entanglement in the t2g spin-orbital model on a triangular lattice: Valence-bond and generalized liquid states. Phys. Rev. B 2008, 78, 094427. [Google Scholar] [CrossRef]
- Corboz, P.; Lajkó, M.; Laüchli, A.M.; Penc, K.; Mila, F. Spin-Orbital Quantum Liquid on the Honeycomb Lattice. Phys. Rev. X 2012, 2, 041013. [Google Scholar] [CrossRef]
- Oleś, A.M. Fingerprints of Spin-Orbital Entanglement in Transition Metal Oxides. J. Phys. Condens. Matter 2012, 24, 313201. [Google Scholar] [CrossRef]
- Schlappa, J.; Wohlfeld, K.; Zhou, K.J.; Mourigal, M.; Haverkort, M.W.; Strocov, V.N.; Hozoi, L.; Monney, C.; Nishimoto, S.; Singh, S.; et al. Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3. Nature 2012, 485, 82–85. [Google Scholar] [CrossRef]
- Bisogni, V.; Wohlfeld, K.; Nishimoto, S.; Monney, C.; Trinckauf, J.; Zhou, K.; Kraus, R.; Koepernik, K.; Sekar, C.; Strocov, V.; et al. Orbital Control of Effective Dimensionality: From Spin-Orbital Fractionalization to Confinement in the Anisotropic Ladder System CaCu2O3. Phys. Rev. Lett. 2015, 114, 096402. [Google Scholar] [CrossRef]
- Wohlfeld, K.; Daghofer, M.; Nishimoto, S.; Khaliullin, G.; van den Brink, J. Intrinsic Coupling of Orbital Excitations to Spin Fluctuations in Mott Insulators. Phys. Rev. Lett. 2011, 107, 247201. [Google Scholar] [CrossRef] [PubMed]
- Wohlfeld, K.; Nishimoto, S.; Haverkort, M.W.; van den Brink, J. Microscopic origin of spin-orbital separation in Sr2CuO3. Phys. Rev. B 2013, 88, 195138. [Google Scholar] [CrossRef]
- Brzezicki, W.; Oleś, A.M.; Cuoco, M. Spin-Orbital Order Modified by Orbital Dilution in Transition-Metal Oxides: From Spin Defects to Frustrated Spins Polarizing Host Orbitals. Phys. Rev. X 2015, 5, 011037. [Google Scholar] [CrossRef]
- Brzezicki, W. Spin, orbital and topological order in models of strongly correlated electrons. arXiv 2019, arXiv:1904.11772. [Google Scholar]
- Comin, R.; Damascelli, A. Resonant X-Ray Scattering Studies of Charge Order in Cuprates. Annu. Rev. Condens. Matter Phys. 2016, 7, 369–405. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.Q.; Yang, H.; Qin, X.M.; Yu, Y.; Yang, L.X.; Li, F.Y.; Yu, R.C.; Jin, C.Q.; Uchida, S. Enhancement of the superconducting critical temperature of Sr2CuO3+δ up to 95K by ordering dopant atoms. Phys. Rev. B 2006, 74, 100506(R). [Google Scholar] [CrossRef]
- Maier, T.A.; Berlijn, T.; Scalapino, D.J. d-wave and s± Pairing Strengths in Ba2CuO3+δ. arXiv 2018, arXiv:1809.04156. [Google Scholar]
- Geballe, T.H.; Marezio, M. Enhanced superconductivity in Sr2CuO4-v. Phys. C 2009, 469, 680–684. [Google Scholar] [CrossRef]
- Li, W.M.; Cao, L.P.; Zhao, J.F.; Yu, R.Z.; Zhang, J.; Liu, Y.; Liu, Q.Q.; Zhao, G.Q.; Wang, X.C.; Hu, Z.; et al. A new superconductor of cuprates with unique features. arXiv 2018, arXiv:1808.09425. [Google Scholar]
- Uchida, M.; Ishizaka, K.; Hansmann, P.; Yang, X.; Sakano, M.; Miyawaki, J.; Arita, R.; Kaneko, Y.; Takata, Y.; Oura, M.; et al. Orbital characters of three-dimensional Fermi surfaces in Eu2−xSrxNiO4 as probed by soft-x-ray angle-resolved photoemission spectroscopy. Phys. Rev. B 2011, 84, 241109(R). [Google Scholar] [CrossRef]
- Hansmann, P.; Yang, X.; Toschi, A.; Khaliullin, G.; Andersen, O.K.; Held, K. Turning a Nickelate Fermi Surface into a Cupratelike One through Heterostructuring. Phys. Rev. Lett. 2009, 103, 016401. [Google Scholar] [CrossRef] [Green Version]
- Disa, A.S.; Kumah, D.P.; Malashevich, A.; Chen, H.; Arena, D.A.; Specht, E.D.; Ismail-Beigi, S.; Walker, F.J.; Ahn, C.H. Orbital Engineering in Symmetry-Breaking Polar Heterostructures. Phys. Rev. Lett. 2015, 114, 026801. [Google Scholar] [CrossRef]
- Wu, M.; Benckiser, E.; Haverkort, M.V.; Frano, A.; Lu, Y.; Nwanko, N.; Brück, S.; Audehm, P.; Goering, E.; Mache, S.; et al. Strain and composition dependence of the orbital polarization in nickelate superlattices. Phys. Rev. B 2013, 88, 125124. [Google Scholar] [CrossRef]
- Hepting, M.; Minola, M.; Frano, A.; Cristiani, G.; Logvenov, G.; Schierle, E.; Wu, M.; Bluschke, M.; Weschke, E.; Habermeier, H.-U.; et al. Tunable spin and charge order. Phys. Rev. Lett. 2014, 113, 227206. [Google Scholar] [CrossRef]
- Zhang, J.; Botana, A.S.; Freeland, J.W.; Phelan, D.; Zheng, H.; Pardo, V.; Norman, M.R.; Mitchell, J.F. Large orbital polarization in a metallic square-planar nickelate. Nat. Phys. 2017, 13, 864–869. [Google Scholar] [CrossRef] [Green Version]
- Botana, A.S.; Pardo, V.; Norman, M.R. Electron doped layered nickelates: Spanning the phase diagram of the cuprates. Phys. Rev. Mater. 2017, 1, 021801(R). [Google Scholar] [CrossRef]
- Le, C.; Zeng, J.; Gu, Y.; Cao, G.-H.; Hub, J. A possible family of Ni-based high temperature superconductors. Sci. Bull. 2018, 63, 957–963. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Wang, W.-H.; Xie, X.; Zhang, F.-C. Correlation effects in the electronic structure of the Ni-based superconducting KNi2S2. Phys. Rev. B 2013, 87, 115131. [Google Scholar] [CrossRef]
- Maeno, Y.; Hashimoto, H.; Yoshida, K.; Nishizaki, S.; Fujita, T.; Bednorz, J.G.; Lichtenberg, F. Superconductivity in a layered perovskite without copper. Nature 1994, 372, 532–534. [Google Scholar] [CrossRef]
- Agterberg, D.F.; Rice, T.M.; Sigrist, M. Orbital Dependent Superconductivity in Sr2RuO4. Phys. Rev. Lett. 1997, 78, 3374–3377. [Google Scholar] [CrossRef]
- Maeno, Y.; Rice, T.M.; Sigrist, M. The Intriguing Superconductivity of Strontium Ruthenate. Phys. Today 2001, 54, 42–47. [Google Scholar] [CrossRef]
- Suderow, H.; Crespo, V.; Guillamon, I.; Vieira, S.; Servant, S.; Leyey, P.; Brison, J.P.; Floquet, J. A nodeless superconducting gap in Sr2RuO4 from tunneling spectroscopy. New J. Phys. 2009, 11, 093004. [Google Scholar] [CrossRef]
- Pustogow, A.; Yonkang, L.; Chronister, A.; Su, Y.-S.; Sokolov, D.A.; Jerzembeck, F.; Mackenzie, A.P.; Hicks, C.W.; Kikugawa, N.; Raghu, S.; et al. Pronounced drop of 17O NMR Knight shift in superconducting state of Sr2RuO4. arXiv 2019, arXiv:1904.00047. [Google Scholar]
- Wang, Q.H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F.C.; Hanke, W.; Rice, T.M.; Thomale, R. Theory of superconductivity in a three-orbital model of Sr2RuO4. Europhys. Lett. 2013, 104, 17013. [Google Scholar] [CrossRef]
- Imai, Y.; Wakabayashi, K.; Sigrist, M. Topological and edge state properties of a three-band model for Sr2RuO4. Phys. Rev. B 2013, 88, 144503. [Google Scholar] [CrossRef]
- Akebi, S.; Kondo, T.; Nakayama, M.; Kuroda, K.; Kunisada, S.; Taniguchi, H.; Maeno, Y.; Shin, S. Low-energy electron-mode couplings in the surface bands of Sr2RuO4 revealed by laser-based angle-resolved photoemission spectroscopy. Phys. Rev. B 2019, 99, 081108(R). [Google Scholar] [CrossRef]
- Khaliullin, G.; Koshibae, W.; Maekawa, S. Low Energy Electronic States and Triplet Pairing in Layered Cobaltate. Phys. Rev. Lett. 2004, 93, 176401. [Google Scholar] [CrossRef] [PubMed]
- Jackeli, G.; Khaliullin, G. Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models. Phys. Rev. Lett. 2009, 102, 017205. [Google Scholar] [CrossRef]
- Kim, B.J.; Jin, H.; Moon, S.J.; Kim, J.-Y.; Park, B.G.; Leem, C.S.; Yu, J.; Noh, T.W.; Kim, C.; Oh, S.-J.; et al. Novel Jeff=1/2 Mott State Induced by Relativistic Spin-Orbit Coupling in Sr2IrO4. Phys. Rev. Lett. 2008, 101, 076402. [Google Scholar] [CrossRef]
- Kim, B.J.; Ohsumi, H.; Komesu, T.; Sakai, S.; Morita, T.; Takagi, H.; Arima, T. Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4. Science 2009, 323, 1329–1332. [Google Scholar] [CrossRef]
- Kim, J.; Casa, D.; Upton, M.H.; Gog, T.; Kim, Y.-J.; Mitchell, J.F.; van Veenendaal, M.; Daghofer, M.; van den Brink, J.; Khaliullin, G.; et al. Magnetic Excitation Spectra of Sr2IrO4 Probed by Resonant Inelastic X-Ray Scattering: Establishing Links to Cuprate Superconductors. Phys. Rev. Lett. 2012, 108, 177003. [Google Scholar] [CrossRef]
- Liu, H.; Khaliullin, G. Pseudo-Jahn-Teller Effect and Magnetoelastic Coupling in Spin-Orbit Mott Insulators. Phys. Rev. Lett. 2019, 122, 057203. [Google Scholar] [CrossRef]
- Kim, Y.K.; Krupin, O.; Denlinger, J.D.; Bostwick, A.; Rotenberg, E.; Zhao, Q.; Mitchell, J.F.; Allen, J.W.; Kim, B.J. Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet. Science 2014, 160, 1329–1332. [Google Scholar] [CrossRef]
- Imada, M. Universality classes of metal-insulator transitions in strongly correlated electron systems and mechanism of high-temperature superconductivity. Phys. Rev. B 2005, 72, 075113. [Google Scholar] [CrossRef]
- Andersen, O.K.; Boeri, L. On the multi-orbital band structure and itinerant magnetism of iron-based superconductors. Ann. Phys. 2011, 523, 8–50. [Google Scholar] [CrossRef] [Green Version]
- Ferber, J.; Jeschke, H.O.; Valentí, R. Fermi Surface Topology of LaFePO and LiFeP. Phys. Rev. Lett. 2012, 109, 236403. [Google Scholar] [CrossRef]
- Raghu, S.; Qi, X.L.; Liu, C.X.; Scalapino, D.J.; Zhang, S.C. Minimal two-band model of the superconducting iron oxypnictides. Phys. Rev. B 2013, 88, 144503. [Google Scholar] [CrossRef]
- Daghofer, M.; Nicholson, A.; Moreo, A.; Dagotto, E. Three orbital model for the iron-based superconductors. Phys. Rev. B 2010, 81, 014511. [Google Scholar] [CrossRef]
- Fernandes, R.M.; Schmalian, J. Competing order and nature of the pairing state in the iron pnictides. Phys. Rev. B 2010, 82, 014521. [Google Scholar] [CrossRef]
- Nicholson, A.; Ge, W.; Zhang, X.; Riera, J.; Daghofer, M.; Oleś, A.M.; Martins, G.B.; Moreo, A.; Dagotto, E. Competing Pairing Symmetries in a Generalized Two-Orbital Model for the Pnictide Superconductors. Phys. Rev. Lett. 2011, 106, 217002. [Google Scholar] [CrossRef]
- Nicholson, A.; Ge, W.; Riera, J.; Daghofer, M.; Moreo, A.; Dagotto, E. Pairing symmetries of a hole-doped extended two-orbital model for the pnictides. Phys. Rev. B 2012, 85, 024532. [Google Scholar] [CrossRef]
- Ptok, A.; Kapcia, K.J.; Cichy, A.; Oleś, A.M.; Piekarz, P. Magnetic Lifshitz transition and its consequences in multi-band iron-based superconductors. Sci. Rep. 2017, 7, 41979. [Google Scholar] [CrossRef] [Green Version]
- Tafti, F.F.; Juneau-Fecteau, A.; Delage, M.E.; René de Cotret, S.; Reid, J.P.; Wang, A.F.; Luo, X.G.; Chen, X.H.; Doiron-Leyraud, N.; Taillefer, L. Sudden reversal in the pressure dependence of Tc in the iron-based superconductor KFe2As2. Nat. Phys. 2013, 9, 349–352. [Google Scholar] [CrossRef]
- Qi, Q.; Abrahams, E. Strong Correlations and Magnetic Frustration in the High Tc Iron Pnictides. Phys. Rev. Lett. 2008, 101, 076401. [Google Scholar]
- Krüger, F.; Kumar, S.; Zaanen, J.; van den Brink, J. Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors. Phys. Rev. B 2009, 79, 054504. [Google Scholar] [CrossRef]
- Fink, J.; Rienks, E.D.L.; Thirupathaiah, S.; Nayak, J.; van Roekeghem, A.; Biermann, S.; Wolf, T.; Adelmann, P.; Jeevan, H.S.; Gegenwart, P.; et al. Experimental evidence for importance of Hund’s exchange interaction for incoherence of charge carriers in iron-based superconductors. Phys. Rev. B 2017, 95, 144513. [Google Scholar] [CrossRef]
- Yaresko, A.N.; Liu, G.-Q.; Antonov, V.N.; Andersen, O.K. Interplay between magnetic properties and Fermi surface nesting in iron pnictides. Phys. Rev. B 2009, 79, 144421. [Google Scholar] [CrossRef]
- Wysocki, A.L.; Belashchenko, K.D.; Antropov, V.P. Consistent model of magnetism in ferropnictides. Nat. Phys. 2011, 7, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Wang, Z.; Goswami, P.; Nievidomskyy, A.H.; Si, Q.; Abrahams, E. Spin dynamics of a J1-J2-K model for the paramagnetic phase of iron pnictides. Phys. Rev. B 2012, 86, 085148. [Google Scholar] [CrossRef]
- Glasbrenner, J.K.; Mazin, I.I.; Jeschke, H.O.; Hirschfeld, P.J.; Valentí, R. Effect of magnetic frustration on nematicity and superconductivity in Fe chalcogenides. Nat. Phys. 2015, 11, 953–958. [Google Scholar] [CrossRef]
- Chaloupka, J.; Khaliullin, G. Spin-State Crossover Model for the Magnetism of Iron Pnictides. Phys. Rev. Lett. 2013, 110, 207205. [Google Scholar] [CrossRef]
- Dai, P.C.; Hu, J.P.; Dagotto, E. Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nat. Phys. 2012, 8, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Beak, S.-H.; Efremov, D.V.; Ok, J.M.; Kim, J.S.; van den Brink, J.; Büchner, B. Orbital-driven nematicity in FeSe. Nat. Mat. 2014, 14, 210–214. [Google Scholar] [CrossRef] [Green Version]
- Watson, M.D.; Kim, T.K.; Haghighirad, A.A.; Davies, N.R.; McCollam, A.; Narayanan, A.; Blake, S.F.; Chen, Y.L.; Ghannadzadeh, S.; Schofield, A.J.; et al. Emergence of nematic electronic state in FeSe. Phys. Rev. B 2015, 91, 155106. [Google Scholar] [CrossRef]
- Fernandes, R.M.; Chubukov, A.V.; Knolle, J.; Eremin, I.; Schmalian, J. Preemptive nematic order, pseudogap, and orbital order in the iron pnictides. Phys. Rev. B 2012, 85, 024534. [Google Scholar] [CrossRef] [Green Version]
- Kontani, H.; Onari, S. Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model. Phys. Rev. Lett. 2010, 104, 157001. [Google Scholar] [CrossRef]
- Onari, S.; Kontani, H. Self-consistent Vertex Correction Analysis for Iron-based Superconductors: Mechanism of Coulomb Interaction-Driven Orbital Fluctuations. Phys. Rev. Lett. 2012, 109, 137001. [Google Scholar] [CrossRef]
- Saito, T.; Onari, S.; Kontani, H. Orbital fluctuation theory in iron pnictides: Effects of As-Fe-As bond angle, isotope substitution, and Z2-orbital pocket on superconductivity. Phys. Rev. B 2010, 82, 144510. [Google Scholar] [CrossRef]
- Chubukov, A.V.; Khodas, M.; Fernandes, R.M. Magnetism, Superconductivity, and Spontaneous Orbital Order in Iron-Based Superconductors: Which Comes First and Why? Phys. Rev. X 2016, 6, 041045. [Google Scholar] [CrossRef]
- Liu, D.F.; Li, C.; Huang, J.W.; Lei, B.; Wang, L.; Wu, X.X.; Shen, B.; Gao, Q.; Zhang, Y.X.; Liu, X.; et al. Orbital Origin of Extremely Anisotropic Superconducting Gap in Nematic Phase of FeSe Superconductor. Phys. Rev. X 2018, 8, 031033. [Google Scholar] [CrossRef]
- Hashimoto, H.; Ota, Y.; Yamamoto, H.Q.; Suzuki, Y.; Shimojima, T.; Watanabe, S.; Chen, C.; Kashara, S.; Matsuda, Y.; Shibauchi, T.; et al. Superconducting gap anisotropy sensitive to nematic domains in FeSe. Nat. Commun. 2018, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Sprau, P.O.; Kostin, A.; Kreisel, A.; Böhmer, A.E.; Taufour, V.; Canfield, P.C.; Mukherjee, S.; Hirschfeld, P.J.; Andersen, B.M.; Séamus Davis, J.C. Discovery of orbital-selective Cooper pairing in FeSe. Science 2017, 357, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Nica, E.M.; Yu, R.; Si, Q. Orbital-selective pairing and superconductivity in iron selenides. NPJ Quantum Mater. 2017, 2, 24. [Google Scholar] [CrossRef]
- Ptok, A.; Kapcia, K.J.; Piekarz, P.; Oleś, A.M. The ab initio study of unconventional superconductivity in CeCoIn5 and FeSe. New J. Phys. 2017, 19, 063039. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Z.; Wang, X.; Tam, D.W.; Abernathy, D.L.; Podlesnyak, A.; Zhang, C.; Wang, M.; Xing, L.; Jin, C.; et al. Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe1−xCoxAs. Phys. Rev. Lett. 2016, 116, 247001. [Google Scholar] [CrossRef]
- Gawraczyński, J.; Kurzydłowski, D.; Ewings, R.A.; Bandaru, S.; Mazej, Z.; Ruani, G.; Bergenti, I.; Jaroń, T.; Ozarowski, A.; Hill, S.; et al. Silver route to cuprate analogs. PNAS 2019, 116, 1812857. [Google Scholar] [CrossRef]
- Jarlborg, T.; Bianconi, A. Multiple Electronic Components and Lifshitz Transitions by Oxygen Wires Formation in Layered Cuprates and Nickelates. Condens. Matter 2019, 4, 15. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleś, A.M.; Wohlfeld, K.; Khaliullin, G. Orbital Symmetry and Orbital Excitations in High-Tc Superconductors. Condens. Matter 2019, 4, 46. https://doi.org/10.3390/condmat4020046
Oleś AM, Wohlfeld K, Khaliullin G. Orbital Symmetry and Orbital Excitations in High-Tc Superconductors. Condensed Matter. 2019; 4(2):46. https://doi.org/10.3390/condmat4020046
Chicago/Turabian StyleOleś, Andrzej M., Krzysztof Wohlfeld, and Giniyat Khaliullin. 2019. "Orbital Symmetry and Orbital Excitations in High-Tc Superconductors" Condensed Matter 4, no. 2: 46. https://doi.org/10.3390/condmat4020046
APA StyleOleś, A. M., Wohlfeld, K., & Khaliullin, G. (2019). Orbital Symmetry and Orbital Excitations in High-Tc Superconductors. Condensed Matter, 4(2), 46. https://doi.org/10.3390/condmat4020046