Estrogen deficiency is a primary cause of osteoporosis, compromising bone mineral density that may impair peri-implant healing. Given the compromised bone environment associated with estrogen deficiency, strategies such as particle reduction via sonochemistry are promising approaches to enhance regenerative outcomes. However, its effects
[...] Read more.
Estrogen deficiency is a primary cause of osteoporosis, compromising bone mineral density that may impair peri-implant healing. Given the compromised bone environment associated with estrogen deficiency, strategies such as particle reduction via sonochemistry are promising approaches to enhance regenerative outcomes. However, its effects in promoting bone formation remain insufficiently explored. Therefore, this study evaluated the potential of two sonicated biomaterials to improve peri-implant repair in ovariectomized rats. Fifty female rats were allocated into five groups: blood clot (CLOT), Biogran
® (BGN), sonicated Biogran
® (BGS), Bio-Oss
® (BON), and sonicated Bio-Oss
® (BOS). Tibial peri-implant defects were created 30 days after ovariectomy and analyzed 28 days later by removal torque, microcomputed tomography, and confocal microscopy. BGS exhibited the highest removal torque (6.28 Ncm), followed by BON (5.37 Ncm), BOS (3.92 Ncm), BGN (3.15 Ncm), and CLOT (2.58 Ncm). Micro-CT revealed bone volume fraction (BV/TV) values of 8.07% (CLOT), 6.47% (BOS), 6.02% (BGS), 5.55% (BGN), and 2.84% (BON). For the trabecular number (Tb.N), BGS (1.11 mm
−1) showed a significant increase compared with BGN (0.69 mm
−1),
p < 0.05. These findings show that sonochemically modified bioactive glass improves mechanical stability and trabecular microarchitecture under estrogen-deficient conditions. However, further studies are needed to standardize sonication parameters for different biomaterials and expand their translational applicability.
Full article