Bioactive Glass Modified by Sonochemistry Improves Peri-Implant Bone Repair in Ovariectomized Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics and Sample Size
2.2. Groups
2.3. Estrous Cycle
2.4. Ovariectomy
2.5. Biomaterials Modified by Sonochemistry
2.6. Implant Placement
2.7. Fluorochromes
2.8. Euthanasia
2.9. Biomechanical Analysis
2.10. Micro-CT
2.11. Confocal Microscopy
2.12. Statistical Analyse
3. Results
3.1. Removal Torque
3.2. Micro-CT
3.3. Confocal Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ARRIVE | Animal Research: Reporting of In Vivo Experiments |
| BGN | Biogran® in natura |
| BGS | Biogran® sonicated |
| BON | Bio-Oss® in natura |
| BOS | Bio-Oss® sonicated |
| BV | Bone volume |
| BV/TV | Bone volume per tissue volume |
| CEUA | Animal Ethics Committee |
| FC-UNESP | Bauru School of Sciences—São Paulo State University |
| FOA-UNESP | Araçatuba School of Dentistry—São Paulo State University |
| IBSP | Integrin binding sialoprotein |
| LSMT | Laboratory for Study of Mineralized Tissue |
| MAR | Mineral Apposition Rate |
| micro-CT | Microcomputed tomography |
| OVX | Ovariectomy |
| OCN | Osteocalcin |
| OPG | Osteoprotegerin |
| RANK | Receptor activator of nuclear factor kappa-Β |
| RANKL | Receptor activator of nuclear factor kappa-Β ligand |
| RT-PCR | Real Time Reverse Transcription Polymerase Chain Reaction |
| SD | Standard deviation |
| Tb.N | Trabecular number |
| Tb.Sp | Trabecular separation |
| Tb.Th | Trabecular thickness |
| IS | Intersection surface |
| % | Percentage |
| °C | Degrees Celsius |
| g | Gram |
| h | Hour(s) |
| kg | Kilogram |
| mg | Milligram |
| mg/kg | Milligram per kilogram |
| mL | Milliliter |
| mm | Millimeter |
| mm−1 | Per millimeter |
| mm3 | Cubic millimeter |
| μm | Micrometer |
| μm2 | Square micrometer |
| μm/day | Micrometer per day |
| Ncm | Newton centimeter |
| rpm | Revolutions per minute |
References
- Yao, Y.; Cai, X.; Chen, Y.; Zhang, M.; Zheng, C. Estrogen deficiency-mediated osteoimmunity in postmenopausal osteoporosis. Med. Res. Rev. 2025, 45, 561–575. [Google Scholar] [CrossRef]
- Wagner, F.; Schuder, K.; Hof, M.; Heuberer, S.; Seemann, R.; Dvorak, G. Does osteoporosis influence the marginal peri-implant bone level in female patients? A cross-sectional study in a matched collective. Clin. Implant. Dent. Relat. Res. 2017, 19, 616–623. [Google Scholar] [CrossRef]
- Shibli, J.A.; Naddeo, V.; Cotrim, K.C.; Kalil, E.C.; de Avila, E.D.; Faot, F.; Faverani, L.P.; Souza, J.G.S.; Fernandes, J.C.H.; Fernandes, G.V.O. Osteoporosis’ effects on dental implants osseointegration and survival rate: A systematic review of clinical studies. Quintessence Int. 2025, 56, 206–216. [Google Scholar]
- Lemos, C.A.A.; de Oliveira, A.S.; Faé, D.S.; Oliveira, H.F.F.E.; Rosa, C.D.D.R.D.; Bento, V.A.A.; Verri, F.R.; Pellizzer, E.P. Do dental implants placed in patients with osteoporosis have higher risks of failure and marginal bone loss compared to those in healthy patients? A systematic review with meta-analysis. Clin. Oral Investig. 2023, 27, 2483–2493. [Google Scholar] [CrossRef]
- Dhayanithi, J.; Rajasekar, A. Comparison of Alveolar Bone Level around Osseointegrated Dental Implants among Premenopausal and Postmenopausal Women: A 2-Year Study. J. Long-Term Eff. Med. Implant. 2024, 34, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Eghbali-Fatourechi, G.; Khosla, S.; Sanyal, A.; Boyle, W.J.; Lacey, D.L.; Riggs, B.L. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Investig. 2003, 111, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- de Villiers, T.J. Bone health and menopause: Osteoporosis prevention and treatment. Best. Pract. Res. Clin. Endocrinol. Metab. 2024, 38, 101782. [Google Scholar] [CrossRef]
- Pedroso, A.L.; Canal, R.; Gehrke, S.A.; da Costa, E.M.; Scarano, A.; Zanelatto, F.B.; Pelegrine, A.A. The Validation of an Experimental Model in Wistar Female Rats to Study Osteopenia and Osteoporosis. Bioengineering 2025, 12, 702. [Google Scholar] [CrossRef]
- Duarte, N.D.; Mulinari-Santos, G.; Batista, F.R.S.; Gomes, M.B.; Monteiro, N.G.; Silva, A.C.E.D.; Gruber, R.; Lisboa-Filho, P.N.; Gomes-Ferreira, P.H.S.; Okamoto, R. Sonification of Deproteinized Bovine Bone Functionalized with Genistein Enhances Bone Repair in Peri-Implant Bone Defects in Ovariectomized Rats. J. Funct. Biomater. 2024, 15, 328. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, V.B.; Gedanken, A. Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrason. Sonochem. 2020, 64, 105009. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Ferreira, P.H.S.; Lisboa-Filho, P.N.; da Silva, A.C.; Bim-Júnior, O.; de Souza Batista, F.R.; Ervolino-Silva, A.C.; Garcia-Junior, I.R.; Okamoto, R. Sonochemical time standardization for bioactive materials used in periimplantar defects filling. Ultrason. Sonochem. 2019, 56, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Rosales Pérez, A.; Esquivel Escalante, K. The Evolution of Sonochemistry: From the Beginnings to Novel Applications. Chempluschem 2024, 89, e202300660. [Google Scholar] [CrossRef]
- Florencio-Silva, R.; Sasso, G.R.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef]
- Deplaigne, V.; Rochefort, G.Y. Cell-Biomaterial Interactions. Bioengineering 2023, 10, 241. [Google Scholar] [CrossRef]
- Chatel, G. How sonochemistry contributes to green chemistry? Ultrason. Sonochem. 2018, 40, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Draye, M.; Kardos, N. Advances in Green Organic Sonochemistry. Top. Curr. Chem. 2016, 374, 74. [Google Scholar] [CrossRef]
- de Souza Santos, A.M.; Dos Santos Pereira, R.; Montemezzi, P.; Mello-Machado, R.C.; Okamoto, R.; Sacco, R.; Noronha Lisboa-Filho, P.; Messora, M.R.; Mourão, C.F.; Hochuli-Vieira, E. The Interplay of Raloxifene and Sonochemical Bio-Oss in Early Maxillary Sinus Bone Regeneration: A Histological and Immunohistochemical Analysis in Rabbits. Medicina 2023, 59, 1521. [Google Scholar] [CrossRef]
- Gomes-Ferreira, P.H.S.; Micheletti, C.; Frigério, P.B.; de Souza Batista, F.R.; Monteiro, N.G.; Bim-Júnior, O.; Lisboa-Filho, P.N.; Grandfield, K.; Okamoto, R. PTH 1-34-functionalized bioactive glass improves peri-implant bone repair in orchiectomized rats: Microscale and ultrastructural evaluation. Biomater. Adv. 2022, 134, 112688. [Google Scholar] [CrossRef]
- Shi, K.; Xu, Y.; Chen, Z.; Shan, L.; Zhao, J.; Sun, Z.; He, Z.; Wang, L.; Zheng, Y. Preventive effect of platelet-rich plasma/Bio-Oss granules composite on medication-related osteonecrosis of the jaw in a rat model. J. Dent. 2025, 158, 105802. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar]
- Long, J.A.; Evans, H.M. The Oestrus Cycle in the Rat and Its Related Phenomena, 1st ed.; University of California Press: Berkeley, CA, USA, 1922. [Google Scholar]
- Marcantonio, C.C.; Perles, G.H.; Lopes, M.E.S.; Soares, L.F.F.; da Costa, P.I.; Cerri, P.S.; Cirelli, J.A. Influence of anti-sclerostin monoclonal antibody in the repair of post-extraction sockets of ovariectomized rats. Arch. Oral Biol. 2024, 162, 105962. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Fujikawa, K.; Matsuki-Fukushima, M.; Nakamura, M. Effect of ovariectomy induced osteoporosis on metaphysis and diaphysis repair process. Injury 2021, 52, 1300–1309. [Google Scholar] [CrossRef]
- dos Santos, K.; Freire, A.R.; Ferreira-Pileggi, B.C.; de Andreazza Freitas, I.; Okamoto, R.; Prado, F.B.; Rossi, A.C. Alveolar Bone Repair Dynamics in Rats Influenced by Coffee Ingestion: A Confocal Microscopy Analysis. Cureus 2025, 17, e79702. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Yuan, P.; Wang, L.; Li, X.; Lei, B. Multifunctional bioactive glass nanoparticles: Surface–interface decoration and biomedical applications. Regen. Biomater. 2024, 11, rbae110. [Google Scholar] [CrossRef]
- Pandey, C.; Rokaya, D.; Bhattarai, B.P. Contemporary Concepts in Osseointegration of Dental Implants: A Review. BioMed Res. Int. 2022, 2022, 6170452. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, J.C.R.; Sobral Silva, L.A.; de Barros Lima, V.A.; Bastos Campos, T.M.; Lisboa Filho, P.N.; Okamoto, R.; de Vasconcellos, L.M.R. The Local Release of Teriparatide Incorporated in 45S5 Bioglass Promotes a Beneficial Effect on Osteogenic Cells and Bone Repair in Calvarial Defects in Ovariectomized Rats. J. Funct. Biomater. 2023, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Kanno, T.; Takahashi, T.; Tsujisawa, T.; Ariyoshi, W.; Nishihara, T. Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J. Oral Maxillofac. Surg. 2005, 63, 362–369. [Google Scholar] [CrossRef]
- Raines, A.L.; Olivares-Navarrete, R.; Wieland, M.; Cochran, D.L.; Schwartz, Z.; Boyan, B.D. Regulation of angiogenesis during osseointegration by titanium surface microstructure and energy. Biomaterials 2019, 34, 890–901. [Google Scholar] [CrossRef]
- Roccuzzo, M.; Gaudioso, L.; Bunino, M.; Dalmasso, P. Long-term stability of soft tissues following alveolar ridge preservation: 10-year results of a prospective study around nonsubmerged implants. Int. J. Periodontics Restor. Dent. 2014, 34, 795–804. [Google Scholar] [CrossRef]
- Rokaya, D.; Srimaneepong, V.; Wisitrasameewon, W.; Humagain, M.; Thunyakitpisal, P. Peri-implantitis Update: Risk Indicators, Diagnosis, and Treatment. Eur. J. Dent. 2020, 14, 672–682. [Google Scholar] [CrossRef]
- Duarte, N.D.; Frigério, P.B.; Chica, G.E.A.; Okamoto, R.; Buchaim, R.L.; Buchaim, D.V.; Messora, M.R.; Issa, J.P.M. Biomaterials for Guided Tissue Regeneration and Guided Bone Regeneration: A Review. Dent. J. 2025, 13, 179. [Google Scholar] [CrossRef]
- Dempster, D.W.; Compston, J.E.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R.; Parfitt, A.M. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2013, 28, 2–17. [Google Scholar] [CrossRef]
- La Monaca, G.; Iezzi, G.; Cristalli, M.P.; Pranno, N.; Sfasciotti, G.L.; Vozza, I. Comparative Histological and Histomorphometric Results of Six Biomaterials Used in Two-Stage Maxillary Sinus Augmentation Model after 6-Month Healing. BioMed Res. Int. 2018, 2018, 9430989. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Hou, Q.; Hao, Y.; Ding, Z. Ball Milling Innovations Advance Mg-Based Hydrogen Storage Materials Towards Practical Applications. Materials 2024, 17, 2510. [Google Scholar] [CrossRef] [PubMed]
- Saleem, I.Y.; Smyth, H.D. Micronization of a soft material: Air-jet and micro-ball milling. AAPS Pharmscitech 2010, 11, 1642–1649. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lim, J.; Han, Y.; Wang, L.; Chong, M.S.; Teoh, S.H.; Xu, C. Cryomilling for the fabrication of doxorubicin-containing silica-nanoparticle/polycaprolactone nanocomposite films. Nanoscale 2016, 8, 2568–2574. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Ida, Y.; Sekine, K.; Kawano, F.; Hamada, K. Effects of high-energy ball-milling on injectability and strength of β-tricalcium-phosphate cement. J. Mech. Behav. Biomed. Mater. 2015, 47, 77–86. [Google Scholar] [CrossRef]
- Glösel, B.; Kuchler, U.; Watzek, G.; Gruber, R. Review of dental implant rat research models simulating osteoporosis or diabetes. Int. J. Oral Maxillofac. Implants 2010, 25, 516–524. [Google Scholar]







| Analysis | CLOT | BGN | BGS | BON | BOS |
|---|---|---|---|---|---|
| Removal Torque (Ncm) | 2.583 ± 0.6113 | 3.157 ± 0.7525 | 6.28 ± 1.055 | 5.375 ± 2.909 | 3.925 ± 1.141 |
| BV (mm3) | 0.5077 ± 0.1376 | 0.3472 ± 0.08601 | 0.3112 ± 0.08537 | 0.177 ± 0.09877 | 0.2643 ± 0.0408 |
| BV/TV (%) | 8.07 ± 1.873 | 5.548 ± 1.197 | 6.023 ± 1.418 | 2.836 ± 1.146 | 6.471 ± 1.373 |
| Tb.N (mm−1) | 1.074 ± 0.1974 | 0.688 ± 0.1054 | 1.11 ± 0.08016 | 0.5251 ± 0.1666 | 0.593 ± 0.1364 |
| Tb.Th (mm) | 0.08802 ± 0.01146 | 0.08287 ± 0.006735 | 0.07492 ± 0.01027 | 0.06051 ± 0.00692 | 0.08001 ± 0.01446 |
| Tb.Sp (mm) | 0.1504 ± 0.003897 | 0.1565 ± 0.003615 | 0.1531 ± 0.00302 | 0.1586 ± 0.004437 | 0.1594 ± 0.002245 |
| IS (mm3) | 10.56 ± 2.812 | 6.063 ± 1.964 | 6.352 ± 0.7552 | 5.764 ± 1.663 | 5.683 ± 0.4703 |
| MAR (μm) | 2.987 ± 0.1514 | 3.087 ± 0.3711 | 3.443 ± 0.4291 | 3.97 ± 0.6736 | 3.757 ± 1.266 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, M.B.; Duarte, N.D.; Mulinari-Santos, G.; Batista, F.R.d.S.; Costa, L.d.A.; Botacin, P.R.; Lisboa-Filho, P.N.; Okamoto, R. Bioactive Glass Modified by Sonochemistry Improves Peri-Implant Bone Repair in Ovariectomized Rats. Biomimetics 2025, 10, 821. https://doi.org/10.3390/biomimetics10120821
Gomes MB, Duarte ND, Mulinari-Santos G, Batista FRdS, Costa LdA, Botacin PR, Lisboa-Filho PN, Okamoto R. Bioactive Glass Modified by Sonochemistry Improves Peri-Implant Bone Repair in Ovariectomized Rats. Biomimetics. 2025; 10(12):821. https://doi.org/10.3390/biomimetics10120821
Chicago/Turabian StyleGomes, Marcelly Braga, Nathália Dantas Duarte, Gabriel Mulinari-Santos, Fábio Roberto de Souza Batista, Luy de Abreu Costa, Paulo Roberto Botacin, Paulo Noronha Lisboa-Filho, and Roberta Okamoto. 2025. "Bioactive Glass Modified by Sonochemistry Improves Peri-Implant Bone Repair in Ovariectomized Rats" Biomimetics 10, no. 12: 821. https://doi.org/10.3390/biomimetics10120821
APA StyleGomes, M. B., Duarte, N. D., Mulinari-Santos, G., Batista, F. R. d. S., Costa, L. d. A., Botacin, P. R., Lisboa-Filho, P. N., & Okamoto, R. (2025). Bioactive Glass Modified by Sonochemistry Improves Peri-Implant Bone Repair in Ovariectomized Rats. Biomimetics, 10(12), 821. https://doi.org/10.3390/biomimetics10120821

