Continental ecosystems are crucial constituents of the worldwide carbon process, and their carbon source and sink processes are highly sensitive to human-induced climate change. However, the spatiotemporal changes and principal determinants of carbon source/sink in Shandong Province remain unclear. This study constructs six dominant control modes of carbon sources/sinks based on three carbon sink indicators (gross primary production (GPP), net primary production (NPP), and net ecosystem productivity (NEP)) and three carbon source indicators (autotrophic respiration (Ra), heterotrophic respiration (Rh), and total ecosystem respiration (Rs)), revealing the main control characteristics of the spatiotemporal dynamics of carbon source/sink in the continental ecosystems of Shandong Province. Additionally, the principal determinants of carbon sources and sinks are quantitatively analyzed using cloud models. The research findings are as follows: (1) From 2001 to 2020, the continental ecosystem of Shandong Province demonstrated a weak carbon sink overall, with both carbon sinks and sources showing fluctuating growth trends (growth rate: GPP, NEP, NPP, Rs, Ra, and Rh consist of 15.55, 6.14, 6.09, 9.59, 9.47, and 0.07 gCm
−2a
−1). (2) The dominant control characteristics of carbon source/sink in Shandong Province exhibit significant spatial differentiation, which can be classified into absolute carbon sink cities (Jinan, Zibo, Rizhao, Jining, Liaocheng, Zaozhuang, Binzhou, Dezhou, Tai’an) and relative carbon source cities (Weifang, Yantai, Weihai, Linyi, Qingdao, Heze, and Dongying). GPP is the dominant control factor in carbon sink areas and is widely distributed across the province, while Rs and GPP are the dominant control factors in carbon source fields, focused on the eastern coastal and southwestern inland sites. (3) Landscape modification and rainfall are the main driving elements influencing the carbon sink and source variations in Shandong Province’s continental ecosystems. (4) The spatial differentiation of the driving factors of carbon producers and reservoirs is significant. In absolute carbon sink cities, land-use change and vegetation cover are the dominant factors for carbon sinks and sources, with significant changes in both range and spatial differentiation. In relative carbon source cities, land-use change is the leading factor for carbon source/sink, and the range of changes and spatial differentiation is most notable. The observations from this study supply scientific underpinnings and reference for enhancing carbon sequestration in continental ecosystems, urban ecological safety management, and achieving carbon neutrality goals.
Full article