Assessment of Land Degradation in the State of Maranhão to Support Sustainable Development Goal 15.3.1 in the Agricultural Frontier of MATOPIBA, Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Monitoring of SDG Indicator 15.3.1
3. Results
3.1. Land Cover Dynamics
3.2. Soil Organic Carbon Stock Dynamics
3.3. Land Productivity Dynamics
3.4. SDG Indicator 15.3.1
4. Discussion
4.1. Land Cover Dynamics
4.2. Changes in Soil Organic Carbon
4.3. Dynamics of Land Productivity
4.4. SDG Indicator 15.3.1
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABC+ | Low Carbon Agriculture Plan—Updated Cycle 2020–2030 |
CHIRPS | Climate Hazards Group InfraRed Precipitation with Station Data |
SOC | Soil Organic Carbon |
FAO | Food and Agriculture Organization of the United Nations |
GEE | Google Earth Engine |
IBGE | Brazilian Institute of Geography and Statistics |
ILPF | Integração Lavoura–Pecuária–Floresta (Crop–Livestock–Forest Integration) |
IPCC | Intergovernmental Panel on Climate Change |
LP | Land Productivity |
LC | Land Cover |
MATOPIBA | Acronym for the states of Maranhão, Tocantins, Piauí and Bahia |
RESTREND | Residual Trends Model |
SDG | Sustainable Development Goal |
TRENDS.EARTH | Tool for monitoring land degradation and SDG 15.3.1 |
References
- Prăvălie, R. Exploring the Multiple Land Degradation Pathways across the Planet. Earth Sci. Rev. 2021, 220, 103689. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions. Land 2020, 9, 28. [Google Scholar] [CrossRef]
- Lal, R.; Safriel, U.; Boer, B. Zero Net Land Degradation: A New Sustainable Development Goal for Rio+20; Report Prepared for the Secretariat of the United Nations Convention to Combat Desertification (UNCCD): Bonn, Germany, 2012. [Google Scholar]
- AbdelRahman, M.A.E. An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rend. Lincei Sci. Fis. Nat. 2023, 34, 767–808. [Google Scholar] [CrossRef]
- Cherif, I.; Kolintziki, E.; Alexandridis, T.K. Monitoring of Land Degradation in Greece and Tunisia Using Trends. Earth with a Focus on Cereal Croplands. Remote Sens. 2023, 15, 1766. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Fernandes, L.F.S.; Junior, R.F.V.; Valera, C.A.; Pissarra, T.C.T. Land Degradation: Multiple Environmental Consequences and Routes to Neutrality. Curr. Opin. Environ. Sci. Health 2018, 5, 79–86. [Google Scholar] [CrossRef]
- Sutton, P.; Anderson, S.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Perović, V.; Kadović, R.; Đurđević, V.; Pavlović, D.; Pavlović, M.; Čakmak, D.; Mitrović, M.; Pavlović, P. Major Drivers of Land Degradation Risk in Western Serbia: Current Trends and Future Scenarios. Ecol. Indic. 2021, 123, 107377. [Google Scholar] [CrossRef]
- Junior, C.H.L.S.; Celentano, D.; Rousseau, G.X.; de Moura, E.G.; van Deursen Varga, I.; Martinez, C.; Martins, M.B. Amazon Forest on the Edge of Collapse in the Maranhão State, Brazil. Land Use Policy 2020, 97, 104806. [Google Scholar] [CrossRef]
- Lapola, D.M.; Pinho, P.; Barlow, J.; Aragão, L.E.O.C.; Berenguer, E.; Carmenta, R.; Liddy, H.M.; Seixas, H.; Silva, C.V.J.; Silva, C.H.L.; et al. The Drivers and Impacts of Amazon Forest Degradation. Science 2023, 379, eabp8622. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change. Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2022; ISBN 9781009157988. [Google Scholar]
- OECD; FAO. OECD-FAO Agricultural Outlook 2023–2032; OECD Publishing: Paris, France, 2023; ISBN 9789264619333. [Google Scholar]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate Change Has Likely Already Affected Global Food Production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Kummu, M.; Heino, M.; Taka, M.; Varis, O.; Viviroli, D. Climate Change Risks Pushing One-Third of Global Food Production Outside the Safe Climatic Space. One Earth 2021, 4, 720–729. [Google Scholar] [CrossRef]
- FAO. Agricultural Production Statistics 2010–2023. FAOSTAT Analytical Briefs, 2024, n. 96. Rome. Available online: https://www.fao.org/statistics/highlights-archive/highlights-detail/agricultural-production-statistics-2010-2023/en (accessed on 28 August 2025).
- Maranhão, R.L.A.; Guimarães, R.F.; Hermuche, P.M.; Gomes, R.A.T.; Peripolli, V.; Tanure, C.B.; de Carvalho, O.L.F.; de Carvalho, O.A., Jr.; McManus, C. Growth and Acceleration Analysis of the Soybean, Sugar Cane, Maize and Cattle Production in Brazil. Environ. Dev. Sustain. 2025, 27, 11697–11742. [Google Scholar] [CrossRef]
- Lima, M.; da Silva Junior, C.A.; Rausch, L.; Gibbs, H.K.; Johann, J.A. Demystifying Sustainable Soy in Brazil. Land Use Policy 2019, 82, 349–352. [Google Scholar] [CrossRef]
- de Souza Medeiros, A.; Cesário, F.V.; dos Santos, T.C.; Maia, S.M.F. Differences in the Storage of Soil Organic Carbon in Brazil’s Agricultural Land: A Meta-Analysis. Catena 2025, 249, 108680. [Google Scholar] [CrossRef]
- Soterroni, A.C.; Ramos, F.M.; Mosnier, A.; Fargione, J.; Andrade, P.R.; Baumgarten, L.; Pirker, J.; Obersteiner, M.; Kraxner, F.; Câmara, G.; et al. Expanding the Soy Moratorium to Brazil’s Cerrado. Sci. Adv. 2019, 5, 7336–7353. [Google Scholar] [CrossRef] [PubMed]
- Cattelan, A.J.; Dall’Agnol, A. The Rapid Soybean Growth in Brazil. OCL—Oilseeds Fats Crops Lipids 2018, 25, D102. [Google Scholar] [CrossRef]
- Vogado, R.F.; de Souza, H.A.; Sagrilo, E.; de Brito, L.C.R.; Matias, S.S.R.; Neto, M.L.T.; de Oliveira Junior, J.O.L.; de Andrade, H.A.F.; Leite, L.F.C. Soil Organic Carbon Stocks and Fractions under Integrated Systems and Pasture in the Cerrado of Northeast Brazil. Catena 2024, 243, 108196. [Google Scholar] [CrossRef]
- Siqueira-Neto, M.; Popin, G.V.; Ferrão, G.E.; Santos, A.K.B.; Cerri, C.E.P.; Ferreira, T.O. Soybean Expansion Impacts on Soil Organic Matter in the Eastern Region of the Maranhão State (Northeastern Brazil). Soil Use Manag. 2022, 38, 1203–1216. [Google Scholar] [CrossRef]
- Polizel, S.P.; Vieira, R.M.d.S.P.; Pompeu, J.; da Cruz Ferreira, Y.; de Sousa-Neto, E.R.; Barbosa, A.A.; Ometto, J.P.H.B. Analysing the Dynamics of Land Use in the Context of Current Conservation Policies and Land Tenure in the Cerrado—MATOPIBA Region (Brazil). Land Use Policy 2021, 109, 105713. [Google Scholar] [CrossRef]
- Alvarenga, L.R.P.; Pompeu, P.S.; Leal, C.G.; Hughes, R.M.; Fagundes, D.C.; Leitão, R.P. Land-Use Changes Affect the Functional Structure of Stream Fish Assemblages in the Brazilian Savanna. Neotrop. Ichthyol. 2021, 19, e210035. [Google Scholar] [CrossRef]
- de Aquino Aragão, M.; Fiedler, N.C.; Ramalho, A.H.C.; Menezes, R.A.S.; da Silva, E.C.G.; Juvanhol, R.S.; Biazatti, L.D.; da Silva, E.F.; Pereira, R.S.; Guanaes, G.M.d.S.; et al. Risk of Forest Fires Occurrence on a Transition Island Amazon-Cerrado: Where to Act? For. Ecol. Manag. 2023, 536, 120858. [Google Scholar] [CrossRef]
- Pompeu, J.; Assis, T.O.; Ometto, J.P. Landscape Changes in the Cerrado: Challenges of Land Clearing, Fragmentation and Land Tenure for Biological Conservation. Sci. Total Environ. 2024, 906, 167581. [Google Scholar] [CrossRef]
- Pletsch, M.A.J.S.; Körting, T.S.; Morita, F.C.; Silva-Junior, C.H.L.; Anderson, L.O.; Aragão, L.E.O.C. Near Real-Time Fire Detection and Monitoring in the MATOPIBA Region, Brazil. Remote Sens. 2022, 14, 3141. [Google Scholar] [CrossRef]
- Silva Junior, C.H.L.; Alvarado, S.T.; Celentano, D.; Rousseau, G.X.; Hernández, L.M.; Ferraz, T.M.; Silva, F.B.; de Melo, M.H.F.; Rodrigues, T.C.S.; Viegas, J.C.; et al. Northeast Brazil’s Imperiled Cerrado. Science 2021, 372, 139–140. [Google Scholar] [CrossRef]
- Conceição, A.O.; de Andrade, H.A.F.; Rego, C.A.R.d.M.; Morais, P.A.d.O.; Pereira, R.Y.F.; de Sousa, A.M.; Santos, G.A.d.A.; Moraes, L.F.; Machado, N.A.F.; da Silva-Matos, R.R.S. New Organic Substrates for Seedling Production in the Transition Zone between the Amazon-Cerrado Biomes. Braz. J. Agric. Environ. Eng. 2024, 28, e279358. [Google Scholar] [CrossRef]
- Ottoni, F.P.; Filgueira, C.T.S.; Lima, B.N.; Vieira, L.O.; Rangel-Pereira, F.; Oliveira, R.F. Extreme Drought Threatens the Amazon. Science 2023, 382, 1253–1255. [Google Scholar] [CrossRef] [PubMed]
- Azevedo-Santos, V.M.; Daga, V.S.; Tonella, L.H.; Ruaro, R.; Arcifa, M.S.; Fearnside, P.M.; Giarrizzo, T. Brazil Undermines Flood Resilience. Science 2023, 282, 383. [Google Scholar] [CrossRef] [PubMed]
- Vommaro, F.; Menezes, J.A.; de Lima Barata, M.M. Contributions of Municipal Vulnerability Map of the Population of the State of Maranhão (Brazil) to the Sustainable Development Goals. Sci. Total Environ. 2020, 706, 134629. [Google Scholar] [CrossRef] [PubMed]
- Mendes, B.R.; Meirelles, M.S.P.; Benites, V.M.; Costa, R.O. The potential for recovery of degraded pastures in the Cerrado of MATOPIBA. Pedagog. J. 2024, 21, e11171. [Google Scholar] [CrossRef]
- Machado, R.B.; Aguiar, L.M.; Bustamante, M.M. Why Is It so Easy to Undergo Devegetation in the Brazilian Cerrado? Perspect. Ecol. Conserv. 2024, 22, 209–212. [Google Scholar] [CrossRef]
- United Nations (ONU). Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2022. [Google Scholar]
- Guerra, J.B.S.O.A.; Hoffmann, M.; Bianchet, R.T.; Medeiros, P.; Provin, A.P.; Iunskovski, R. Sustainable Development Goals and Ethics: Building “the Future We Want”. Environ. Dev. Sustain. 2022, 24, 9407–9428. [Google Scholar] [CrossRef]
- Sims, N.C.; Barger, N.N.; Metternicht, G.I.; England, J.R. A Land Degradation Interpretation Matrix for Reporting on UN SDG Indicator 15.3.1 and Land Degradation Neutrality. Environ. Sci. Policy 2020, 114, 1–6. [Google Scholar] [CrossRef]
- Sims, N.C.; Newnham, G.J.; England, J.R.; Guerschman, J.; Cox, S.J.D.; Roxburgh, S.H.; Viscarra Rossel, R.A.; Fritz, S.; Wheeler, I. Good Practice Guidance. SDG Indicator 15.3.1, Proportion of Land That Is Degraded Over Total Land Area; United Nations: New York, NY, USA, 2021. [Google Scholar]
- Bari, E.; Chowdhury, M.A.; Hossain, M.I.; Rahman, M.M. Using Remote Sensing Data to Study Anthropogenic Land Degradation in Khulna Division, Bangladesh for SDG Indicator 15.3.1. Heliyon 2024, 10, e38363. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). IBGE Cidades; IBGE: Rio de Janeiro, Brazil, 2023.
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.I.J.M.; Miralles, D.G. High-Resolution (1 Km) Köppen-Geiger Maps for 1901–2099 Based on Constrained CMIP6 Projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef] [PubMed]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L. Modeling Monthly Mean Air Temperature for Brazil. Theor. Appl. Climatol. 2013, 113, 407–427. [Google Scholar] [CrossRef]
- Valverde, M.C.; Marengo, J.A. Extreme Rainfall Indices in the Hydrographic Basins of Brazil. Open J. Mod. Hydrol. 2014, 4, 10–26. [Google Scholar] [CrossRef]
- de Oliveira Aparecido, L.E.; de Meneses, K.C.; Lorençone, P.A.; Lorençone, J.A.; de Moraes, J.R.d.S.C.; de Souza Rolim, G. Climate Classification by Thornthwaite (1948) Humidity Index in Future Scenarios for Maranhão State, Brazil. Environ. Dev. Sustain. 2022, 25, 855–878. [Google Scholar] [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006; NASA LP DAAC: Sioux Falls, SD, USA, 2015.
- Trends.Earth. Conservation International. 2025. Available online: http://trends.earth (accessed on 12 February 2025).
- QGIS Development Team. QGIS Geographic Information System 2024. Available online: https://www.qgis.org (accessed on 12 February 2025).
- Upadhyay, S.; Silwal, P.; Prajapati, R.; Talchabhadel, R.; Shrestha, S.; Duwal, S.; Lakhe, H. Evaluating Magnitude Agreement and Occurrence Consistency of CHIRPS Product with Ground-Based Observations over Medium-Sized River Basins in Nepal. Hydrology 2022, 9, 146. [Google Scholar] [CrossRef]
- Gonzalez-Roglich, M.; Zvoleff, A.; Noon, M.; Liniger, H.; Fleiner, R.; Harari, N.; Garcia, C. Synergizing Global Tools to Monitor Progress towards Land Degradation Neutrality: Trends. Earth and the World Overview of Conservation Approaches and Technologies Sustainable Land Management Database. Environ. Sci. Policy 2019, 93, 34–42. [Google Scholar] [CrossRef]
- Giuliani, G.; Chatenoux, B.; Benvenuti, A.; Lacroix, P.; Santoro, M.; Mazzetti, P. Monitoring Land Degradation at National Level Using Satellite Earth Observation Time-Series Data to Support SDG15—Exploring the Potential of Data Cube. Big Earth Data 2020, 4, 3–22. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H.A.; Daldegan, G.A.; Teich, I.; García, C.L.; Kumar, T.V.L.; Buriti, C.d.O. Impact of Drought on Land Productivity and Degradation in the Brazilian Semiarid Region. Land 2023, 12, 954. [Google Scholar] [CrossRef]
- Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to Detectability of Land Degradation by Trend Analysis of Vegetation Index Data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- Alencar, A.; Shimbo, J.Z.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Márcico Ribeiro, J.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef]
- Caballero, C.B.; Biggs, T.W.; Vergopolan, N.; West, T.A.P.; Ruhoff, A. Transformation of Brazil’s Biomes: The Dynamics and Fate of Agriculture and Pasture Expansion into Native Vegetation. Sci. Total Environ. 2023, 896, 166323. [Google Scholar] [CrossRef] [PubMed]
- da Silveira, J.G.; de Oliveira Neto, S.N.; do Canto, A.C.B.; Leite, F.F.G.D.; Cordeiro, F.R.; Assad, L.T.; Silva, G.C.C.; Marques, R.d.O.; Dalarme, M.S.L.; Ferreira, I.G.M.; et al. Land Use, Land Cover Change and Sustainable Intensification of Agriculture and Livestock in the Amazon and the Atlantic Forest in Brazil. Sustainability 2022, 14, 2563. [Google Scholar] [CrossRef]
- Kohlhepp, G. Conflitos de interesse no ordenamento territorial da Amazônia brasileira. Estud. Avançados 2002, 16, 37–61. [Google Scholar] [CrossRef]
- Celentano, D.; Rousseau, G.X.; Muniz, F.H.; van Deursen Varga, I.; Martinez, C.; Carneiro, M.S.; Miranda, M.V.C.; Barros, M.N.R.; Freitas, L.; Narvaes, I.d.S.; et al. Towards Zero Deforestation and Forest Restoration in the Amazon Region of Maranhão State, Brazil. Land Use Policy 2017, 68, 692–698. [Google Scholar] [CrossRef]
- Pires, M.O. ‘Cerrado’, Old and New Agricultural Frontiers. Braz. Political Sci. Rev. 2020, 14, e0004. [Google Scholar] [CrossRef]
- Rocha, C.B.; de Majo, C.; Silva, S.D. A Geo-Historical Analysis of Expanding Soybean Frontiers in the Brazilian Cerrado. Hist. Ambient. Latinoam. Caribeña 2022, 12, 217–252. [Google Scholar] [CrossRef]
- Lopes, G.R.; Lima, M.G.B.; dos Reis, T.N.P. Maldevelopment Revisited: Inclusiveness and Social Impacts of Soy Expansion over Brazil’s Cerrado in Matopiba. World Dev. 2021, 139, 105316. [Google Scholar] [CrossRef]
- Pereira, P.R.M.; Bolfe, E.L.; Rodrigues, T.C.S.; Sano, E.E. Dynamics of agricultural expansion in areas of the brazilian savanna between 2000 and 2019. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1607–1614. [Google Scholar] [CrossRef]
- Sodré, R.; Mattos, J. O Emaranhado Dos Conflitos de Terra No Campo Maranhense. GOT—J. Geogr. Spat. Plan. 2016, 10, 345–354. [Google Scholar] [CrossRef]
- Almeida, J.; Junior, J. The Struggle for Land in the Face of the Territorial Dynamics of Soy Agribusiness in Maranhão: The Case of the Chapadinha Microregion (1990–2015). J. Geogr. Spat. Plan. 2019, 16, 251–274. [Google Scholar] [CrossRef]
- Instituto Nacional de Pesquisas Espaciais (INPE) TerraBrasilis: PRODES (Desmatamento) 2024. Available online: https://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/increments (accessed on 25 February 2025).
- Parente, L.; Nogueira, S.; Baumann, L.; Almeida, C.; Maurano, L.; Affonso, A.G.; Ferreira, L. Quality Assessment of the PRODES Cerrado Deforestation Data. Remote Sens. Appl. 2021, 21, 100444. [Google Scholar] [CrossRef]
- Santos, I.B.; da Silva, A.; de Carvalho, I.S.; Silva, T.L.d.A.; Schwingel, P.R. Anthropogenic Threats in the Border Zone of the Amazon Forest: A Case Study of Land Use and Land Cover in RESEX Ciriaco, Maranhão, Brazil. Pedagog. J. 2024, 21, e9242. [Google Scholar] [CrossRef]
- Paiva, P.F.P.R.; de Lourdes Pinheiro Ruivo, M.; da Silva Júnior, O.M.; de Nazaré Martins Maciel, M.; Braga, T.G.M.; de Andrade, M.M.N.; dos Santos Junior, P.C.; da Rocha, E.S.; de Freitas, T.P.M.; da Silva Leite, T.V.; et al. Deforestation in Protect Areas in the Amazon: A Threat to Biodiversity. Biodivers. Conserv. 2020, 29, 19–38. [Google Scholar] [CrossRef]
- Garcia, A.S.; Vilela, V.M.d.F.N.; Rizzo, R.; West, P.; Gerber, J.S.; Engstrom, P.M.; Ballester, M.V.R. Assessing Land Use/Cover Dynamics and Exploring Drivers in the Amazon’s Arc of Deforestation through a Hierarchical, Multi-Scale and Multi-Temporal Classification Approach. Remote Sens. Appl. 2019, 15, 100233. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, C.; Boudh, S.; Rai, P.K.; Gupta, V.K.; Singh, J.S. Land Use Change: A Key Ecological Disturbance Declines Soil Microbial Biomass in Dry Tropical Uplands. J. Environ. Manag. 2019, 242, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Forest Soils and Carbon Sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Lal, R. World Cropland Soils as a Source or Sink for Atmospheric Carbon. Adv. Agron. 2001, 71, 145–191. [Google Scholar] [CrossRef]
- Moradi, E.; Khosravi, H.; Rahimabadi, P.D.; Choubin, B.; Muchová, Z. Integrated Approach to Land Degradation Risk Assessment in Arid and Semi-Arid Ecosystems: Applying SVM and EDPSIR/ANP Methods. Ecol. Indic. 2024, 169, 112947. [Google Scholar] [CrossRef]
- Tilman, D. Global Environmental Impacts of Agricultural Expansion: The Need for Sustainable and Efficient Practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef]
- Kopittke, P.; Menzies, N.; Wang, P.; McKenna, B.; Lombi, E. Soil and the Intensification of Agriculture for Global Food Security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Melo, L.F.d.S.; Júnior, P.L.P.; de Espindola, G.M. Analysis of Burns and Deforestation Resulting from Agricultural Practices in the Matopiba Region: Case Study in the Municipalities of Piauí. Obs. Econ. Latinoam. 2024, 22, e3223. [Google Scholar] [CrossRef]
- Ferraz-Almeida, R.; da Mota, R.P. Routes of Soil Uses and Conversions with the Main Crops in Brazilian Cerrado: A Scenario from 2000 to 2020. Land 2021, 10, 1135. [Google Scholar] [CrossRef]
- Zalles, V.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Pickens, A.; Song, X.; Adusei, B.; Okpa, C.; Aguilar, R.; et al. Near Doubling of Brazil’s Intensive Row Crop Area Since 2000. Proc. Natl. Acad. Sci. USA 2019, 116, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global Land Use Changes Are Four Times Greater Than Previously Estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef] [PubMed]
- Radwan, T.M.; Blackburn, G.A.; Whyatt, J.D.; Atkinson, P.M. Global Land Cover Trajectories and Transitions. Sci. Rep. 2021, 11, 12814. [Google Scholar] [CrossRef]
- Rêgo, J.C.L.; Soares-Gomes, A.; da Silva, F.S. Loss of Vegetation Cover in a Tropical Island of the Amazon Coastal Zone (Maranhão Island, Brazil). Land Use Policy 2018, 71, 593–601. [Google Scholar] [CrossRef]
- Mendes, T.J.; Siqueira, D.S.; de Figueiredo, E.B.; Bordonal, R.d.O.; Moitinho, M.R.; Marques Júnior, J.; La Scala, N. Soil Carbon Stock Estimations: Methods and a Case Study of the Maranhão State, Brazil. Environ. Dev. Sustain. 2021, 23, 16410–16427. [Google Scholar] [CrossRef]
- Rovai, A.S.; Twilley, R.R.; Worthington, T.A.; Riul, P. Brazilian Mangroves: Blue Carbon Hotspots of National and Global Relevance to Natural Climate Solutions. Front. For. Glob. Change 2022, 4, 787533. [Google Scholar] [CrossRef]
- Prescott, C.E. Sustaining organic matter in forest soils: What we have learned and what is left. Soil Sci. Soc. Am. J. 2023, 87, 1–15. [Google Scholar] [CrossRef]
- Hatje, V.; Masqué, P.; Patire, V.F.; Dórea, A.; Barros, F. Blue carbon stocks, accumulation rates, and associated spatial variability in Brazilian mangroves. Limnol. Oceanogr. 2021, 66, 321–334. [Google Scholar] [CrossRef]
- Fu, C.; Li, Y.; Zeng, L.; Tu, C.; Wang, X.; Ma, H.; Xiao, L.; Christie, P.; Luo, Y. Climate and mineral accretion as drivers of mineral-associated and particulate organic matter accumulation in tidal wetland soils. Glob. Change Biol. 2023, 30, e17070. [Google Scholar] [CrossRef] [PubMed]
- Prescott, C.E.; Grayston, S.J. Continuous root forestry—Living roots sustain the belowground ecosystem and soil carbon in managed forests. For. Ecol. Manag. 2023, 532, 120848. [Google Scholar] [CrossRef]
- Yang, R.; Yang, S.; Chen, L.; Yang, Z.; Xu, L.; Zhang, X.; Liu, G.; Zhang, X.; Jiao, C.; Bai, R.; et al. Effect of vegetation restoration on soil erosion control and soil carbon and nitrogen dynamics: A meta-analysis. Soil Tillage Res. 2023, 230, 105705. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The enduring world forest carbon sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
- Stumpf, F.; Keller, A.; Schmidt, K.; Mayr, A.; Gubler, A.; Schaepman, M. Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems. Agric. Ecosyst. Environ. 2018, 258, 129–142. [Google Scholar] [CrossRef]
- Cerretelli, S.; Poggio, L.; Yakob, G.; Boke, S.; Habte, M.; Coull, M.; Peressotti, A.; Black, H.; Gimona, A. The Advantages and Limitations of Global Datasets to Assess Carbon Stocks as Proxy for Land Degradation in an Ethiopian Case Study. Geoderma 2021, 399, 115117. [Google Scholar] [CrossRef]
- Xoxo, S.; Mantel, S.; De Vos, A.; Mahlaba, B.; Le Maître, D.; Tanner, J. Towards SDG 15.3: The biome context as the appropriate degradation monitoring dimension. Environ. Sci. Policy 2022, 136, 400–412. [Google Scholar] [CrossRef]
- SEEG—Greenhouse Gas Emissions and Removals Estimation System. SEEG Platform 2023. Available online: https://seeg.eco.br/english/home/ (accessed on 15 February 2025).
- Santos, R.S.; Zhang, Y.; Cotrufo, M.F.; Hong, M.; Oliveira, D.M.S.; Damian, J.M.; Cerri, C.E.P. Simulating soil C dynamics under intensive agricultural systems and climate change scenarios in the Matopiba region, Brazil. J. Environ. Manag. 2023, 347, 119149. [Google Scholar] [CrossRef]
- Rittl, T.F.; Oliveira, D.; Cerri, C.E.P. Soil Carbon Stock Changes under Different Land Uses in the Amazon. Geoderma Reg. 2017, 10, 138–143. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil Carbon Stocks and Land Use Change: A Meta Analysis. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Van Straaten, O.; Corre, M.D.; Wolf, K.; Tchienkoua, M.; Cuellar, E.; Matthews, R.B.; Veldkamp, E. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proc. Natl. Acad. Sci. USA 2015, 112, 9956–9960. [Google Scholar] [CrossRef] [PubMed]
- Bonini, I.; Marimon-Junior, B.; Matricardi, E.; Phillips, O.; Petter, F.; Oliveira, B.; Marimon, B. Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the Amazon-Cerrado transition. For. Ecol. Manag. 2018, 414, 64–73. [Google Scholar] [CrossRef]
- Ahirwal, J.; Kumari, S.; Singh, A.; Kumar, A.; Maiti, S. Changes in Soil Properties and Carbon Fluxes Following Afforestation and Agriculture in Tropical Forest. Ecol. Indic. 2021, 123, 107354. [Google Scholar] [CrossRef]
- Medeiros, A.d.S.; Santos, T.C.d.; Maia, S.M.F. Effect of long-term and soil depth on soil organic carbon stocks after conversion from native vegetation to conventional tillage systems in Brazil. Soil Tillage Res. 2022, 219, 105336. [Google Scholar] [CrossRef]
- Maia, S.M.F.; de Souza Medeiros, A.; dos Santos, T.C.; Lyra, G.B.; Lal, R.; Assad, E.D.; Cerri, C.E.P. Potential of No-till Agriculture as a Nature-Based Solution for Climate-Change Mitigation in Brazil. Soil Tillage Res. 2022, 220, 105368. [Google Scholar] [CrossRef]
- Molossi, L.; Hoshide, A.K.; de Abreu, D.C.; de Oliveira, R.A. Agricultural Support and Public Policies Improving Sustainability in Brazil’s Beef Industry. Sustainability 2023, 15, 4801. [Google Scholar] [CrossRef]
- Paul, B.K.; Epper, C.A.; Tschopp, D.J.; Long, C.T.M.; Tungani, V.; Burra, D.; Hok, L.; Phengsavanh, P.; Douxchamps, S. Crop-Livestock Integration Provides Opportunities to Mitigate Environmental Trade-Offs in Transitioning Smallholder Agricultural Systems of the Greater Mekong Subregion. Agric. Syst. 2022, 195, 103285. [Google Scholar] [CrossRef]
- Carvalho, J.L.N.; Raucci, G.S.; Cerri, C.E.P.; Bernoux, M.; Feigl, B.J.; Wruck, F.J.; Cerri, C.C. Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil Tillage Res. 2010, 110, 175–186. [Google Scholar] [CrossRef]
- Fujisaki, K.; Perrin, A.; Desjardins, T.; Bernoux, M.; Balbino, L.; Brossard, M. From forest to cropland and pasture systems: A critical review of soil organic carbon stocks changes in Amazonia. Glob. Change Biol. 2015, 21, 2773–2786. [Google Scholar] [CrossRef]
- Reith, J.; Ghazaryan, G.; Muthoni, F.; Dubovyk, O. Assessment of Land Degradation in Semiarid Tanzania—Using Multiscale Remote Sensing Datasets to Support Sustainable Development Goal 15.3. Remote Sens. 2021, 13, 1754. [Google Scholar] [CrossRef]
- Brazil—Ministério da Agricultura e Pecuária. Resultados do Plano ABC (2010–2020); Governo do Brasil: Brasília, Brazil, 2023.
- Brazil—Ministry of Agriculture, Livestock, and Supply. Sectoral Plan for Climate Change Adaptation and Low Carbon Emission in Agriculture for Sustainable Development (2020–2030): Strategic Vision for a New Cycle; MAPA: Brasília, Brazil, 2021.
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Cui, Y.; Li, X. A New Global Land Productivity Dynamic Product Based on the Consistency of Various Vegetation Biophysical Indicators. Big Earth Data 2022, 6, 36–53. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Bai, X.; Tan, Q.; Li, Q.; Wu, L.; Tian, S.; Hu, Z.; Li, C.; Deng, Y. Factors Affecting Long-Term Trends in Global NDVI. Forests 2019, 10, 372. [Google Scholar] [CrossRef]
- Souza Piao, R.; Silva, V.L.; Navarro del Aguila, I.; de Burgos Jiménez, J. Green Growth and Agriculture in Brazil. Sustainability 2021, 13, 1162. [Google Scholar] [CrossRef]
- Amaral, D.D.; Cordeiro, L.A.M.; Galerani, P.R. Sectoral Plan for Mitigation and Adaptation to Climate Change for a Consolidation Economy Low Carbon—ABC Plan. Braz. J. Phys. Geogr. 2011, 4, 1266–1274. [Google Scholar]
- Santos, C.O.D.; Mesquita, V.V.; Parente, L.L.; Pinto, A.d.S.; Ferreira, L.G., Jr. Assessing the Wall-to-Wall Spatial and Qualitative Dynamics of the Brazilian Pasturelands 2010–2018, Based on the Analysis of the Landsat Data Archive. Remote Sens. 2022, 14, 1024. [Google Scholar] [CrossRef]
- Reis, J.C.; Rodrigues, G.S.; Barros, I.; Rodrigues, R.A.R.; Garrett, R.D.; Valentim, J.F.; Kamoi, M.Y.T.; Michetti, M.; Wruck, F.J.; Rodrigues-Filho, S.; et al. Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. J. Clean. Prod. 2021, 283, 124580. [Google Scholar] [CrossRef]
- Calil, Y.C.D.; Ribera, L. Economic Feasibility of Crop-Livestock Integration System in Brazil. Agribusiness 2025, 1–11. [Google Scholar] [CrossRef]
- Gianetti, G.; Ferreira Filho, J.B.S. O Plano e Programa ABC: Uma análise da alocação dos recursos. Rev. Econ. Sociol. Rural 2021, 59, 1–15. [Google Scholar] [CrossRef]
- Zalles, V.; Hansen, M.C.; Potapov, P.V.; Parker, D.; Stehman, S.V.; Pickens, A.H.; Parente, L.L.; Ferreira, L.G.; Song, X.-P.; Hernandez-Serna, A.; et al. Rapid Expansion of Human Impact on Natural Land in South America since 1985. Sci. Adv. 2021, 7, eabg1620. [Google Scholar] [CrossRef]
- Junior, C.H.L.S.; Anderson, L.O.; de Aragão, L.E.O.e.C.; Rodrigues, B.D. Dynamics of Fires in the Cerrado of the State of Maranhão, Northeastern Brazi. Geogr. Dep. Univ. Sao Paulo 2018, 35, 1–14. [Google Scholar] [CrossRef]
- Silva, P.S.; Nogueira, J.; Rodrigues, J.A.; Santos, F.L.M.; Pereira, J.M.C.; DaCamara, C.C.; Daldegan, G.A.; Pereira, A.A.; Peres, L.F.; Schmidt, I.B.; et al. Putting Fire on the Map of Brazilian Savanna Ecoregions. J. Environ. Manag. 2021, 296, 113098. [Google Scholar] [CrossRef]
- Prestes, N.; Massi, K.; Silva, E.; Nogueira, D.; De Oliveira, E.; Freitag, R.; Marimon, B.; Marimon-Junior, B.; Keller, M.; Feldpausch, T. Fire effects on understory forest regeneration in Southern Amazonia. Front. For. Glob. Change 2020, 3, e00010. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Latawiec, A.E.; Barioni, L.G.; Nobre, C.A.; da Silva, V.P.; Valentim, J.F.; Vianna, M.; Assad, E.D. When Enough Should Be Enough: Improving the Use of Current Agricultural Lands Could Meet Production Demands and Spare Natural Habitats in Brazil. Glob. Environ. Change 2014, 28, 84–97. [Google Scholar] [CrossRef]
- Bolfe, É.L.; Victoria, D.d.C.; Sano, E.E.; Bayma, G.; Massruhá, S.M.F.S.; de Oliveira, A.F. Potential for Agricultural Expansion in Degraded Pasture Lands in Brazil Based on Geospatial Databases. Land 2024, 13, 200. [Google Scholar] [CrossRef]
- Pereira, O.J.R.; Ferreira, L.G.; Pinto, F.; Baumgarten, L. Assessing Pasture Degradation in the Brazilian Cerrado Based on the Analysis of MODIS NDVI Time-Series. Remote Sens. 2018, 10, 1761. [Google Scholar] [CrossRef]
- Barbier, E.; Di Falco, S. Populações Rurais, Degradação de Terras e Padrões de Vida em Países em Desenvolvimento. Rev. Econ. Política Ambient. 2021, 15, 115–133. [Google Scholar] [CrossRef]
- Sousa, A.C.; Sousa, A.M.; Corrêa, W.C.; Marques, J.I.; Meneses, K.C.; Pandorfi, H.; Silva, T.G.F.; Silva, J.L.B.; Silva, M.V.; Machado, N.A.F. Bioclimatic Zoning and Climate Change Impacts on Dairy Cattle in Maranhão, Brazil. Animals 2025, 15, 1646. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hochard, J.P. Does land degradation increase poverty in developing countries? PLoS ONE 2016, 11, e0152973. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, R.B.; dos Santos, L.C.A.; Bezerra, J.F.R.; da Silva, Q.D.; de Melo, S.N. Environmental Vulnerability of the Buriticupu River Water Basin, Maranhão—Brazil: The Relief as a Key Element. Soc. Nat. 2023, 35, e66679. [Google Scholar] [CrossRef]
- Rorato, A.; Escada, M.; Câmara, G.; Picoli, M.; Verstegen, J. Environmental vulnerability assessment of Brazilian Amazon Indigenous Lands. Environ. Sci. Policy 2022, 129, 19–36. [Google Scholar] [CrossRef]
- Almeida, G.S.S.; da Silva, E.M.; da Silva, V.d.P.R.; Campos, J.H.B.d.C.; Silva, M.T. Performance of the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) Model in the Northeast Region of Brazil. Braz. J. Phys. Geogr. 2024, 17, 4117–4130. [Google Scholar] [CrossRef]
- Costa, J.C.; Pereira, G.; Siqueira, M.E.; Cardozo, F.; da Silva, V.V. Validation of precipitation data indicators estimated by CHIRPS for Brazil. Braz. J. Climatol. 2019, 24, 228–243. [Google Scholar] [CrossRef]
- Thomas, A.; Bentley, L.; Feeney, C.; Lofts, S.; Robb, C.; Rowe, E.; Thomson, A.; Warren-Thomas, E.; Emmett, B. Land degradation neutrality: Testing the indicator in a temperate agricultural landscape. J. Environ. Manag. 2023, 346, 118884. [Google Scholar] [CrossRef] [PubMed]
- De Medeiros, F.J.; De Oliveira, C.P. Dynamical Aspects of the Recent Strong El Niño Events and Its Climate Impacts in Northeast Brazil. Pure Appl. Geophys. 2021, 178, 2315–2332. [Google Scholar] [CrossRef]
Item | Sensor/Dataset | Resolution | Coverage |
---|---|---|---|
NDVI | MOD-13Q1-Coll6 | 250 m | Global |
Precipitation | CHIRPS | 5 km | Global |
Land cover | 1 MapBiomas-Coll9 | 250 m | National |
Soil organic carbon | 1 MapBiomas-CollBeta | 250 m | National |
Land Cover 2023 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Land Cover 2001 | Forest | Grassland formation | Cropland | Pasture | Artificial area | Wetland | Other land | Water bodies | |
Forest | 0 | − | − | − | − | − | − | 0 | |
Grassland formation | + | 0 | − | − | − | − | − | 0 | |
Cropland | + | + | 0 | 0 | − | − | − | 0 | |
Pasture | + | + | 0 | 0 | − | − | − | 0 | |
Artificial area | + | + | + | + | 0 | + | + | 0 | |
Wetland | + | − | − | − | − | 0 | − | 0 | |
Other land | + | + | − | − | − | + | 0 | 0 | |
Water bodies | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Land Cover | Area in km2 (%) | Change in km2 (%) | |
---|---|---|---|
2001 | 2023 | 2001–2023 | |
Forest | 248,590.89 (75.45) | 189,913.39 (57.62) | −58,677.50 (−23.60) |
Grassland formation | 6460.14 (1.96) | 5819.69 (1.77) | −640.46 (−9.91) |
Cropland | 7839.30 (2.38) | 22,918.99 (6.95) | 15,079.56 (192.36) |
Pasture | 54,836.57 (16.64) | 96,710.60 (29.34) | 41,874.02 (76.36) |
Artificial area | 1322.04 (0.40) | 2075.49 (0.63) | 753.45 (56.99) |
Wetland | 5409.09 (1.64) | 6861.80 (2.08) | 1452.71 (26.86) |
Other land | 1203.40 (0.37) | 1148.27 (0.35) | −55.13 (−4.58) |
Water bodies | 3947.66 (1.20) | 4160.88 (1.26) | 213.22 (5.40) |
Land Cover | For | Grl | Crp | Pas | Art | Wet | Ol | Wb | Total 2001 |
---|---|---|---|---|---|---|---|---|---|
For | 184,275.76 | 294.38 | 16,022.45 | 44,938.92 | 524.03 | 2158.81 | 10.93 | 365.60 | 248,590.89 |
Grl | 51.65 | 5429.55 | 484.40 | 433.51 | 21.05 | 9.94 | 9.57 | 20.49 | 6460.14 |
Crp | 538.89 | 15.88 | 3869.22 | 3376.55 | 29.00 | 3.60 | 0.00 | 6.15 | 7839.30 |
Pas | 4452.81 | 34.49 | 2420.32 | 47,497.08 | 318.98 | 58.87 | 0.19 | 53.83 | 54,836.56 |
Art | 29.01 | 4.38 | 95.77 | 33.51 | 1153.53 | 0.51 | 0.94 | 4.39 | 1322.04 |
Wet | 304.81 | 8.68 | 24.15 | 363.86 | 6.26 | 4348.28 | 4.51 | 348.55 | 5409.09 |
Ol | 7.58 | 10.85 | 0.57 | 5.82 | 12.23 | 6.47 | 1091.46 | 68.43 | 1203.40 |
Wb | 252.89 | 21.49 | 2.10 | 61.34 | 10.40 | 275.32 | 30.69 | 3293.43 | 3947.66 |
Total 2023 | 189,913.39 | 5189.69 | 22,819.69 | 96,710.60 | 2075.49 | 6861.80 | 1148.27 | 4160.88 | 329,609.10 |
Land Cover | SOC (Mg ha−1) | Total SOC (Mg C) | Change SOC (Mg C) | ||
---|---|---|---|---|---|
2001 | 2023 | 2001 | 2023 | 2001–2023 | |
Forest | 37.80 | 38.12 | 939,673,600 | 723,949,800 | −215,723,700 |
Grassland formation | 28.08 | 27.52 | 18,140,070 | 16,015,790 | −2,124,286 |
Cropland | 35.07 | 28.45 | 27,492,430 | 65,204,530 | 37,712,100 |
Pasture | 34.32 | 3584 | 188,199,100 | 346,610,800 | 158,411,700 |
Artificial area | 19.08 | 17.01 | 2,522,452 | 3,530,408 | 1,007,956 |
Wetland | 46.77 | 46.19 | 25,303,720 | 31,694,650 | 6,390,931 |
Other land | 5.90 | 6.66 | 712,413 | 764,748 | 52,335 |
Total change | 1,202,043,785 | 1,187,770,726 | −14,272,964 |
Land Cover | Degradation | Stable | Improvement | No Data | ||
---|---|---|---|---|---|---|
Decline | Early Signs of Decline | Stable | Stable but Stressed | |||
Forest | 12,919.70 | 31,378.27 | 65,431.57 | 31.50 | 79,699.11 | 453.23 |
Grassland formation | 145.20 | 272.14 | 958.62 | 28.19 | 4409.52 | 6.03 |
Cropland | 5150.84 | 3227.36 | 7425.78 | 1.69 | 7111.06 | 2.27 |
Pasture | 22,642.47 | 18,570.46 | 34,956.01 | 3.65 | 20,472.98 | 65.02 |
Artificial area | 1090.99 | 270.50 | 394.01 | 951 | 294.59 | 15.88 |
Wetland | 427.87 | 1253.95 | 2292.87 | 9.36 | 2666.09 | 211.66 |
Other land | 269.08 | 153.27 | 311.52 | 152.58 | 170.62 | 91.19 |
Final km2 (%) | 42,646.14 (13.10) | 55,125.95 (16.94) | 111,770.38 (34.34) | 236.50 (0.07) | 114,823.98 (35.28) | 845.28 (0.26) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, A.M.N.; Sousa, A.M.d.; Carvalho, M.W.L.; Sousa, W.d.S.; Silva, M.V.d.; de Araújo Santos, G.A.; Medeiros, A.d.S.; Silva, J.L.B.d.; Oliveira-Júnior, J.F.d.; Machado, N.A.F. Assessment of Land Degradation in the State of Maranhão to Support Sustainable Development Goal 15.3.1 in the Agricultural Frontier of MATOPIBA, Brazil. ISPRS Int. J. Geo-Inf. 2025, 14, 356. https://doi.org/10.3390/ijgi14090356
Gomes AMN, Sousa AMd, Carvalho MWL, Sousa WdS, Silva MVd, de Araújo Santos GA, Medeiros AdS, Silva JLBd, Oliveira-Júnior JFd, Machado NAF. Assessment of Land Degradation in the State of Maranhão to Support Sustainable Development Goal 15.3.1 in the Agricultural Frontier of MATOPIBA, Brazil. ISPRS International Journal of Geo-Information. 2025; 14(9):356. https://doi.org/10.3390/ijgi14090356
Chicago/Turabian StyleGomes, Antonia Mara Nascimento, Andreza Maciel de Sousa, Marcus Willame Lopes Carvalho, Washington da Silva Sousa, Marcos Vinícius da Silva, Gustavo André de Araújo Santos, Aldair de Souza Medeiros, Jhon Lennon Bezerra da Silva, José Francisco de Oliveira-Júnior, and Nítalo André Farias Machado. 2025. "Assessment of Land Degradation in the State of Maranhão to Support Sustainable Development Goal 15.3.1 in the Agricultural Frontier of MATOPIBA, Brazil" ISPRS International Journal of Geo-Information 14, no. 9: 356. https://doi.org/10.3390/ijgi14090356
APA StyleGomes, A. M. N., Sousa, A. M. d., Carvalho, M. W. L., Sousa, W. d. S., Silva, M. V. d., de Araújo Santos, G. A., Medeiros, A. d. S., Silva, J. L. B. d., Oliveira-Júnior, J. F. d., & Machado, N. A. F. (2025). Assessment of Land Degradation in the State of Maranhão to Support Sustainable Development Goal 15.3.1 in the Agricultural Frontier of MATOPIBA, Brazil. ISPRS International Journal of Geo-Information, 14(9), 356. https://doi.org/10.3390/ijgi14090356