Previous Issue
Volume 13, December
 
 

Fibers, Volume 14, Issue 1 (January 2026) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 1784 KB  
Article
Research on the Workability of 3D Printed Fiber-Reinforced Concrete Materials
by Qunyi Huang, Qingyu Huang, Hong Yang, Jiahang Zhang and Yajie Wu
Fibers 2026, 14(1), 1; https://doi.org/10.3390/fib14010001 (registering DOI) - 19 Dec 2025
Abstract
This paper investigates the fundamental workability of 3D printed concrete materials incorporating different fiber types. Fluidity, extrudability, and buildability were proposed as key indicators for assessing printability, evaluated through corresponding test methods, including fluidity tests, filament extrusion tests, and slump tests. The results [...] Read more.
This paper investigates the fundamental workability of 3D printed concrete materials incorporating different fiber types. Fluidity, extrudability, and buildability were proposed as key indicators for assessing printability, evaluated through corresponding test methods, including fluidity tests, filament extrusion tests, and slump tests. The results demonstrate that the optimal ranges for printability are superplasticizer content between 0.35% and 0.45%, accelerator content between 0.60% and 0.85%, and silica fume replacement level between 7.5% and 10%. The incorporation of copper-coated steel fibers led to deteriorated workability, manifested as reduced fluidity, increased fluidity loss over time, poor pumpability, discontinuous extrusion, and low slump, although buildability remained satisfactory. Polypropylene fibers increased the air content in concrete, thereby improving workability; they exhibited good extrusion continuity, appropriate slump and filament width, and favorable buildability. Basalt fibers significantly enhanced air content and workability. However, due to the high stiffness of the fibers, extrusion continuity was only moderate. While the slump and filament width were suitable, the presence of minor voids in the printed filaments resulted in average buildability. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop