Effect of Sodium Hypophosphite on Copper Deposition and Coating Properties of Carbon Fibers in a Citrate Bath
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CF-Cu
2.3. Electrochemical Testing
- Cathodic polarization curve measurement
- 2.
- Cyclic voltammetry (CV) test
2.4. Current Efficiency Test
2.5. Coating Adhesion Test
2.6. Characterization
3. Results and Discussion
3.1. Effect of NaH2PO2 on Copper Deposition on CF Surface
3.2. Effect of NaH2PO2 on Plating of CF-Cu
3.3. The Adhesion and Growth Process of Copper on CF Surfaces
3.4. Effect of NaH2PO2 on the Properties of CF-Cu
4. Conclusions
- The properties of CF-Cu exhibit a distinct relationship with the NaH2PO2 concentration in the plating solution. Elevated concentrations correlate positively with augmented copper loading and improved core CF encapsulation integrity in CF-Cu bundles. Optimal performance was achieved at 20 g/L, where single-filament electrical conductivity increased from 1.05 × 103 (at 0 g/L) to 1.63 × 103 S·cm−1, coupled with breaking force enhancement from 13.54 cN to 14.57 cN. Beyond this concentration, both electrical and mechanical properties exhibited deterioration.
- Cathodic polarization curve analysis indicates that NaH2PO2 lowers the reduction potential of Cu2+. CV and SEM analyses confirmed that NaH2PO2 does not produce coordination complexes with Cu2+ but primarily increases nucleation density on CF surfaces through lowered activation energy for copper deposition, resulting in enhanced coating densification. XRD analysis demonstrated three microstructural changes at the optimal concentration (CF-Cu-20): a 52.30% increase in grain coarsening, a reduction in internal stress to 403.70 MPa, and a preferential orientation along the (111) crystallographic plane. However, adhesion tests showed no significant improvement in interfacial bonding strength between the coating and substrate. CF-Cu-30 exhibited 4.25% and 9.50% mass loss under thermal shock and ultrasonic impact tests, respectively. In contrast, CF-Cu-20 maintained structural stability with no significant quality deterioration compared to the control group, demonstrating optimal performance characteristics with balanced coating properties.
- SEM observations delineated four sequential copper deposition phases on CF surfaces: initial particle adsorption, particle growth with concurrent new nucleation, interparticle bridging, and final continuous coating formation. Notably, these phases progressed dynamically in parallel during copper deposition, with current density variations among monofilaments correlating with this parallel progression and ultimately manifesting as diameter discrepancies.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CFs | carbon fibers |
| CF-Cu | copper-plated carbon fibers |
References
- Shi, B.; Shang, Y.; Pei, Y.; Pei, S.; Wang, L.; Heider, D.; Zhao, Y.Y.; Zheng, C.; Yang, B.; Yarlagadda, S.; et al. Low tortuous, highly conductive, and high-areal-capacity battery electrodes enabled by through-thickness aligned carbon fiber framework. Nano Lett. 2020, 20, 5504–5512. [Google Scholar] [CrossRef] [PubMed]
- Lund, A.; Wu, Y.; Fenech-Salerno, B.; Torrisi, F.; Carmichael, T.B.; Muller, C. Conducting materials as building blocks for electronic textiles. MRS Bull. 2021, 46, 491–501. [Google Scholar] [CrossRef]
- Daneshvar, F.; Tagliaferri, S.; Chen, H.; Zhang, T.; Liu, C.; Sue, H.-J. Ultralong electrospun copper–carbon nanotube composite fibers for transparent conductive electrodes with high operational stability. ACS Appl. Electron. Mater. 2020, 2, 2692–2698. [Google Scholar] [CrossRef]
- Zhu, L.; Li, N.; Childs, P.R.N. Light-weighting in aerospace component and system design. Propuls. Power Res. 2018, 7, 103–119. [Google Scholar] [CrossRef]
- Rosenthal, S.; Maaß, F.; Kamaliev, M.; Hahn, M.; Gies, S.; Tekkaya, A.E. Lightweight in automotive components by forming technology. Automot. Innov. 2020, 3, 195–209. [Google Scholar] [CrossRef]
- Rohatgi, P.; Weiss, D.; Srivatsan, T.S.; Ghaderi, O.; Zare, M. Solidification processing of aluminum alloy metal matrix composites for use in transportation applications. Metall. Mater. Trans. A 2024, 55, 4867–4881. [Google Scholar] [CrossRef]
- Cliche, M.-L.; Mone, R.; Liberati, A.C.; Stoyanov, P. Influence of fiber direction on the tribological behavior of carbon reinforced peek for application in gas turbine engines. Surf. Coat. Technol. 2025, 511, 132212. [Google Scholar] [CrossRef]
- Park, M.; Lee, D.-M.; Park, M.; Park, S.; Lee, D.S.; Kim, T.-W.; Lee, S.H.; Lee, S.-K.; Jeong, H.S.; Hong, B.H.; et al. Performance enhancement of graphene assisted cnt/cu composites for lightweight electrical cables. Carbon 2021, 179, 53–59. [Google Scholar] [CrossRef]
- Tran, T.Q.; Lee, J.K.Y.; Chinnappan, A.; Loc, N.H.; Tran, L.T.; Ji, D.; Jayathilaka, W.A.D.M.; Kumar, V.V.; Ramakrishna, S. High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables. J. Mater. Sci. Technol. 2020, 42, 46–53. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, Y.; Li, T.; Ma, L.; Qi, Q.; Yang, T.; Meng, F. Advances in carbon fiber-based electromagnetic shielding materials: Composition, structure, and application. Carbon 2024, 226, 119203. [Google Scholar] [CrossRef]
- Ismail, K.B.M.; Kumar, M.A.; Mahalingam, S.; Raj, B.; Kim, J. Carbon fiber-reinforced polymers for energy storage applications. J. Energy Storage 2024, 84, 110931. [Google Scholar] [CrossRef]
- Wang, Y.; Li, A.; Zhang, S.; Guo, B.; Niu, D. A review on new methods of recycling waste carbon fiber and its application in construction and industry. Constr. Build. Mater. 2023, 367, 130301. [Google Scholar] [CrossRef]
- Almushaikeh, A.M.; Alaswad, S.O.; Alsuhybani, M.S.; AlOtaibi, B.M.; Alarifi, I.M.; Alqahtani, N.B.; Aldosari, S.M.; Alsaleh, S.S.; Haidyrah, A.S.; Alolyan, A.A.; et al. Manufacturing of carbon fiber reinforced thermoplastics and its recovery of carbon fiber: A review. Polym. Test. 2023, 122, 108029. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, W.; Li, B.; Zhu, J.; Wang, C.; Song, G.; Wu, G.; Yang, X.; Huang, Y.; Ma, L. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review. Compos. Part B Eng. 2022, 233, 109639. [Google Scholar] [CrossRef]
- Basheer, B.; Akhil, M.G.; Rajan, T.P.D.; Agarwal, P.; Vijay Saikrishna, V. Copper metallization of carbon fiber-reinforced epoxy polymer composites by surface activation and electrodeposition. Surf. Coat. Technol. 2024, 487, 131016. [Google Scholar] [CrossRef]
- Guan, H.; He, X.; Zhu, P.; Zhang, Z.; Zhang, T.; Qu, X. Microstructure and thermal properties of copper matrix composites reinforced by 3d carbon fiber networks. Compos. Commun. 2023, 44, 101758. [Google Scholar] [CrossRef]
- Sha, J.-J.; Lü, Z.-Z.; Sha, R.-Y.; Zu, Y.-F.; Dai, J.-X.; Xian, Y.-Q.; Zhang, W.; Cui, D.; Yan, C.-L. Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites by squeeze melt infiltration technique. Trans. Nonferrous Met. Soc. China 2021, 31, 317–330. [Google Scholar] [CrossRef]
- Cheon, J.; Kim, M. Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing mwcnt-anchored carbon fiber. Compos. Part B Eng. 2021, 217, 108872. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, L.; Song, J.; Wang, X.; Liu, H. Superhydrophobic nickel-electroplated carbon fibers for versatile oil/water separation with excellent reusability and high environmental stability. ACS Appl. Mater. Interfaces 2020, 12, 24390–24402. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Guo, L.; Qi, L.; Sun, J.; Wang, J.; Cao, Y. Growth mechanism and thermal behavior of electroless cu plating on short carbon fibers. Surf. Coat. Technol. 2021, 419, 127294. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, B.; Gao, Y.; Wu, X.; Chen, J.; Shan, L.; Sun, K.; Zhao, Y.; Yang, K.; Yu, J.; et al. Epoxy composites with high thermal conductivity by constructing three-dimensional carbon fiber/carbon/nickel networks using an electroplating method. ACS Omega 2021, 6, 19238–19251. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, G.; Zhou, Z.; Qu, Y.; Chen, R.; Gao, X.; Xu, W.; Nie, S.; Tian, C.; Li, R. Effect of Ni2+ concentration on microstructure and bonding capacity of electroless copper plating on carbon fibers. J. Alloy Compd. 2021, 863, 158467. [Google Scholar] [CrossRef]
- Guan, H.; He, X.; Zhang, Z.; Huang, J.; Qu, X. Effect of tungsten carbide interface decoration on thermal and mechanical properties of carbon fiber reinforced copper matrix composites. Mater. Today Commun. 2024, 41, 110810. [Google Scholar] [CrossRef]
- Ogawa, F.; Masuda, C.; Fujii, H. In situ chemical vapor deposition of metals on vapor-grown carbon fibers and fabrication of aluminum-matrix composites reinforced by coated fibers. J. Mater. Sci. 2017, 53, 5036–5050. [Google Scholar] [CrossRef]
- Xu, F.; Cui, Y.; Bao, D.; Lin, D.; Yuan, S.; Wang, X.; Wang, H.; Sun, Y. A 3D interconnected cu network supported by carbon felt skeleton for highly thermally conductive epoxy composites. Chem. Eng. J. 2020, 388, 124287. [Google Scholar] [CrossRef]
- Yi, H.; Kim, J.Y.; Gul, H.Z.; Kang, S.; Kim, G.; Sim, E.; Ji, H.; Kim, J.; Choi, Y.C.; Kim, W.S.; et al. Wiedemann-franz law of cu-coated carbon fiber. Carbon 2020, 162, 339–345. [Google Scholar] [CrossRef]
- Lee, W.-H.; Chung, K.C. Investigation of a copper–nickel alloy resistor using co-electrodeposition. J. Appl. Electrochem. 2020, 50, 535–547. [Google Scholar] [CrossRef]
- Han, W.; Qian, X.; Ma, H.; Wang, X.; Zhang, Y. Effect of nickel electroplating followed by a further copper electroplating on the micro-structure and mechanical properties of high modulus carbon fibers. Mater. Today Commun. 2021, 27, 102345. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, J.; Su, C.; Di, C.; Ci, S.; Mou, Y.; Fu, Y.; Qiao, K. The effect of annealing on the properties of copper-coated carbon fiber. Surf. Interfaces 2023, 37, 102630. [Google Scholar] [CrossRef]
- Lai, D.; Liu, T.; Jiang, G.; Chen, W. Synthesis of highly stable dispersions of copper nanoparticles using sodium hypophosphite. J. Appl. Polym. Sci. 2012, 128, 1443–1449. [Google Scholar] [CrossRef]
- Chu, Y.; Yu, G.; Hu, B.; Dong, Q.; Zhang, J.; Zhang, X. Effect of hypophosphite on electrodeposition of graphite@copper powders. Adv. Powder Technol. 2014, 25, 477–482. [Google Scholar] [CrossRef]
- Huang, M.; Li, W.; Liu, X.; Feng, M.; Yang, J. Study on structure and performance of surface-metallized carbon fibers reinforced rigid polyurethane composites. Polym. Adv. Technol. 2020, 31, 1805–1813. [Google Scholar] [CrossRef]
- Giurlani, W.; Fidi, A.; Anselmi, E.; Pizzetti, F.; Bonechi, M.; Carretti, E.; Lo Nostro, P.; Innocenti, M. Specific ion effects on copper electroplating. Colloids Surf. B Biointerfaces 2023, 225, 113287. [Google Scholar] [CrossRef] [PubMed]
- ASTM B571-23; Standard Practice for Qualitative Adhesion Testing of Metallic Coatings. ASTM International: West Conshohocken, PA, USA, 2023.
- Zhang, G.; Yang, W.; Ding, J.; Liu, M.; Di, C.; Ci, S.; Qiao, K. Influence of carbon fibers on interfacial bonding properties of copper-coated carbon fibers. Carbon Lett. 2024, 34, 1055–1064. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.; Zhong, C.; Shen, B.; Hu, W. Effect of carbon fiber surface treatment on cu electrodeposition: The electrochemical behavior and the morphology of cu deposits. J. Alloy Compd. 2011, 509, 3532–3536. [Google Scholar] [CrossRef]
- Turoňová, A.; Gálová, M.; Šupicová, M. Parameters influencing the electrodeposition of a ni-cu coating on fe powders. I. Effect of the electrolyte composition and current density. J. Solid State Electrochem. 2003, 7, 684–688. [Google Scholar] [CrossRef]
- Chiu, Y.-D.; Dow, W.-P. Accelerator screening by cyclic voltammetry for microvia filling by copper electroplating. J. Electrochem. Soc. 2013, 160, D3021–D3027. [Google Scholar] [CrossRef]
- Satpathy, B.; Jena, S.; Das, S.; Das, K. A comparative study of electrodeposition routes for obtaining silver coatings from a novel and environment-friendly thiosulphate-based cyanide-free electroplating bath. Surf. Coat. Technol. 2021, 424, 127680. [Google Scholar] [CrossRef]
- Song, S.; Ortega, C.M.; Liu, Z.; Du, J.; Wu, X.; Cai, Z.; Sun, L. In situ study of copper electrodeposition on a single carbon fiber. J. Electroanal. Chem. 2013, 690, 53–59. [Google Scholar] [CrossRef]
- Rode, S.; Henninot, C.; Vallie`res, C.; Matlosz, M. Complexation chemistry in copper plating from citrate baths. J. Electrochem. Soc. 2004, 151, C405. [Google Scholar] [CrossRef]
- Hung, A.; Chen, K. Mechanism of hypophosphite-reduced electroless copper plating. J. Electrochem. Soc. 1989, 136, 72–75. [Google Scholar] [CrossRef]
- Yang, F.; Yang, B.; Lu, B.; Huang, L.; Xu, S.; Zhou, S. Electrochemical study on electroless copper plating using sodium hypophosphite as reductant. Acta Phys.-Chim. Sin. 2006, 22, 1317–1321. [Google Scholar] [CrossRef]
- Yu, S.; Park, B.-I.; Park, C.; Hong, S.M.; Han, T.H.; Koo, C.M. Rta-treated carbon fiber/copper core/shell hybrid for thermally conductive composites. ACS Appl. Mater. Interfaces 2014, 6, 7498–7503. [Google Scholar] [CrossRef] [PubMed]
- Varentsova, V.I.; Varenstov, V.K.; Bataev, I.A.; Yusin, S.I. Effect of surface state of carbon fiber electrode on copper electroplating from sulfate solutions. Prot. Met. Phys. Chem. Surf. 2011, 47, 43–47. [Google Scholar] [CrossRef]
- Rafailović, L.D.; Trišović, T.; Stupavská, M.; Souček, P.; Velicsanyi, P.; Nixon, S.; Elbataioui, A.; Zak, S.; Cordill, M.J.; Hohenwarter, A.; et al. Selective cu electroplating enabled by surface patterning and enhanced conductivity of carbon fiber reinforced polymers upon air plasma etching. J. Alloys Compd. 2024, 992, 174569. [Google Scholar] [CrossRef]









| Composition | Concentration (g/L) |
|---|---|
| CuSO4‧5H2O | 50 |
| Na3C6H5O7·2H2O | 90 |
| NaKC4H4O6·4H2O | 10 |
| CH3(CH2)11OSO3Na | 0.4 |
| NaH2PO2·H2O | 0, 5, 10, 20, 30 |
| Solution | Composition |
|---|---|
| 1 | CuSO4·5H2O |
| 2 | Solution 1 + NaH2PO2·H2O |
| 3 | Solution 1 + Na3C6H5O7·2H2O |
| 4 | Solution 3 + NaKC4H4O6·4H2O |
| 5 | Solution 4 + CH3(CH2)11OSO3Na |
| 6 | Solution 5 + NaH2PO2·H2O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, H.; Jiang, W.; Hu, S.; Zhang, G.; Yang, W.; Ci, S.; Yang, T.; Qiao, K. Effect of Sodium Hypophosphite on Copper Deposition and Coating Properties of Carbon Fibers in a Citrate Bath. Fibers 2026, 14, 5. https://doi.org/10.3390/fib14010005
Liu H, Jiang W, Hu S, Zhang G, Yang W, Ci S, Yang T, Qiao K. Effect of Sodium Hypophosphite on Copper Deposition and Coating Properties of Carbon Fibers in a Citrate Bath. Fibers. 2026; 14(1):5. https://doi.org/10.3390/fib14010005
Chicago/Turabian StyleLiu, Houzhen, Wenzheng Jiang, Shaokai Hu, Guodong Zhang, Weizhuang Yang, Shengzong Ci, Tianrun Yang, and Kun Qiao. 2026. "Effect of Sodium Hypophosphite on Copper Deposition and Coating Properties of Carbon Fibers in a Citrate Bath" Fibers 14, no. 1: 5. https://doi.org/10.3390/fib14010005
APA StyleLiu, H., Jiang, W., Hu, S., Zhang, G., Yang, W., Ci, S., Yang, T., & Qiao, K. (2026). Effect of Sodium Hypophosphite on Copper Deposition and Coating Properties of Carbon Fibers in a Citrate Bath. Fibers, 14(1), 5. https://doi.org/10.3390/fib14010005

