Next Issue
Volume 15, November
Previous Issue
Volume 15, September
 
 

J. Funct. Biomater., Volume 15, Issue 10 (October 2024) – 37 articles

Cover Story (view full-size image): Dermal substitutes are frequently used for the initial treatment of large full-thickness skin defects in combination with split-thickness skin graft coverage. However, these dermal substitutes first require an adequate vascularization and integration into the surrounding host tissue before being successfully covered, which is a time-consuming process. To overcome this problem, dermal substitutes were seeded with nanofat, an autologous fat derivative with potent angiogenic and regenerative effects. In a murine dorsal skinfold chamber model, this seeding of nanofat accelerated the vascularization and tissue integration of the implanted dermal substitutes without affecting their good biocompatibility. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 10730 KiB  
Article
Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants
by Pedro Nogueira, João Magrinho, Luis Reis, Augusto Moita de Deus, Maria Beatriz Silva, Pedro Lopes, Luís Oliveira, António Castela, Ricardo Cláudio, Jorge L. Alves, Maria Fátima Vaz, Maria Carmezim and Catarina Santos
J. Funct. Biomater. 2024, 15(10), 313; https://doi.org/10.3390/jfb15100313 - 21 Oct 2024
Viewed by 676
Abstract
Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing technologies for creating customised 316L Stainless Steel (SS) implants with biomimetic characteristics, controlled porosity, and optimal structural and functional properties. However, the behaviour of as-fabricated 3D 316L SS structures without [...] Read more.
Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing technologies for creating customised 316L Stainless Steel (SS) implants with biomimetic characteristics, controlled porosity, and optimal structural and functional properties. However, the behaviour of as-fabricated 3D 316L SS structures without any surface finishing in environments that simulate body fluids remains largely unknown. To address this knowledge gap, the present study investigates the surface characteristics, the internal porosity, the corrosion in simulated body fluid (SBF), and the mechanical properties of as-fabricated 316L SS structures manufactured by L-PBF with rhombitruncated cuboctahedron (RTCO) unit cells with two distinct relative densities (10 and 35%). The microstructural analysis confirmed that the RTCO structure has a pure austenitic phase with a roughness of ~20 µm and a fine cellular morphology. The micro-CT revealed the presence of keyholes and a lack of fusion pores in both RTCO structures. Despite the difference in the internal porosity, the mechanical properties of both structures remain within the range of bone tissue and in line with the Gibson and Ashby model. Additionally, the as-fabricated RTCO structures demonstrated passive corrosion behaviour in the SBF solution. Thus, as-fabricated porous structures are promising biomaterials for implants due to their suitable surface roughness, mechanical properties, and corrosion resistance, facilitating bone tissue growth. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

22 pages, 19957 KiB  
Article
A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy
by Qinle Xiao, Changjun Wan, Zhe Zhang, Hui Liu, Pingting Liu, Qianli Huang and Dapeng Zhao
J. Funct. Biomater. 2024, 15(10), 312; https://doi.org/10.3390/jfb15100312 - 21 Oct 2024
Viewed by 721
Abstract
Osteosarcoma is one of the major bone cancers, especially for youngsters. The current treatment usually requires systemic chemotherapy and the removal of bone tumors. Titanium (Ti)-based implants can be modified as local drug delivery (LDD) systems for controllable and localized chemotherapeutic drug release. [...] Read more.
Osteosarcoma is one of the major bone cancers, especially for youngsters. The current treatment usually requires systemic chemotherapy and the removal of bone tumors. Titanium (Ti)-based implants can be modified as local drug delivery (LDD) systems for controllable and localized chemotherapeutic drug release. In this work, a pH-responsive Ti-based LDD prototype was designed by introducing polydopamine (PDA) to release doxorubicin (DOX) around osteosarcoma cells with low pH. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a contact angle meter were applied for surface characterization. Both direct and indirect cell culture modes were performed for biocompatibility and biofunction assessments. The results indicate that the Ti-based LDD prototype exhibits significant pH-dependent DOX release. The cumulative release can reach up to approximately 40% at pH = 6.0 after 72 h, but only around 20% at pH = 7.4. The Ti-based LDD implant shows good biocompatibility with approximately 93% viability of MC3T3 cells after direct culture in vitro for 24 h. Both direct and indirect culture modes verify the good anti-osteosarcoma function of the LDD implant, which should be attributed to the pH-responsive release of DOX. Full article
(This article belongs to the Special Issue Metals and Alloys for Biomedical Application)
Show Figures

Figure 1

17 pages, 6847 KiB  
Article
PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles
by Thamires Santos-Silva, Inácio Silva Viana, Andrea Barros Piazzon S. Queiroz, Fabrício Singaretti de Oliveira, Bianca de Oliveira Horvath-Pereira, Leandro Norberto da Silva-Júnior, Michelle Silva Araujo, Paulo Alescio Canola, Luís Gustavo Gosuen G. Dias, Marcelo Melo Soares and Maria Angelica Miglino
J. Funct. Biomater. 2024, 15(10), 311; https://doi.org/10.3390/jfb15100311 - 20 Oct 2024
Viewed by 682
Abstract
Bone defects in animals can arise from various causes, including diseases, neoplasms, and most commonly, trauma. Comminuted fractures that exceed the critical size may heal poorly due to deficient or interrupted vascularization, resulting in an insufficient number of progenitor cells necessary for bone [...] Read more.
Bone defects in animals can arise from various causes, including diseases, neoplasms, and most commonly, trauma. Comminuted fractures that exceed the critical size may heal poorly due to deficient or interrupted vascularization, resulting in an insufficient number of progenitor cells necessary for bone regeneration. In this context, 3D printing techniques using poly-L-lactic acid/graphene oxide (PLLA/GO) aim to address this issue by creating customized scaffolds combined with canine placenta hydrogel and mesenchymal stem cells for use in goat mandibles, compared to a control group using titanium plate fixation. Ten canine placentas were decellularized and characterized using histological techniques. A hydrogel derived from the canine placenta extracellular matrix (cpECM) was produced to improve cell attachment to the scaffolds. In vitro cytotoxicity and cell adhesion to the cpECM hydrogel were assessed by scanning electron microscopy (SEM). The resulting biomaterials, cpECM hydrogel and PLLA/GO scaffolds, maintained their functional structure and supported cell adhesion, maintenance, and proliferation in vitro. Thermography showed that PLLA/GO scaffolds with cpECM hydrogel performed effectively, similar to the control group. Computed tomography scans revealed bone calluses, suggesting an ongoing repair process. These findings demonstrate the innovative technological potential of these materials for use in surgical interventions. Future studies on PLLA/GO scaffolds will provide further insights into their effects on goat models. Full article
Show Figures

Figure 1

14 pages, 3646 KiB  
Article
Benzyldimethyldodecyl Ammonium Chloride-Doped Denture-Based Resin: Impact on Strength, Surface Properties, Antifungal Activities, and In Silico Molecular Docking Analysis
by Sarah Aldulaijan, Raghad Alruwili, Rawan Almulaify, Fatimah A. Alhassan, Yousif A. Al-Dulaijan, Faris A. Alshahrani, Lamia Mokeem, Mohammed M. Gad, Mary Anne S. Melo and Abdulrahman A. Balhaddad
J. Funct. Biomater. 2024, 15(10), 310; https://doi.org/10.3390/jfb15100310 - 18 Oct 2024
Viewed by 662
Abstract
Candida albicans (C. albicans) adhering to denture-based resins (DBRs) is a known cause of denture stomatitis. A new approach to prevent denture stomatitis is to include antimicrobial substances within DBRs. Here, we examined the mechanical performance and antifungal properties of DBRs [...] Read more.
Candida albicans (C. albicans) adhering to denture-based resins (DBRs) is a known cause of denture stomatitis. A new approach to prevent denture stomatitis is to include antimicrobial substances within DBRs. Here, we examined the mechanical performance and antifungal properties of DBRs containing benzyldimethyldodecyl ammonium chloride (C12BDMA-Cl) as an antimicrobial compound. C12BDMA-Cl is a quaternary ammonium compound, and its antifungal properties have never been investigated when combined with dental acrylic resin. Therefore, we modified a commercially available heat-polymerized acrylic DBR to contain 3 and 5 wt.% of C12BDMA-Cl. Unmodified DBR was used as a control group. Specimens were prepared using the conventional heat processing method. The specimen’s flexural strength, elastic modulus, microhardness, and surface roughness were evaluated. C. albicans biofilm was grown on the specimens and assessed via colony-forming units (CFUs) and scanning electron microscopy (SEM). In silico molecular docking was applied to predict the potential C12BDMA-Cl inhibition activity as an antifungal drug. The 3% C12BDMA-Cl DBR demonstrated antifungal activities without a deterioration effect on the mechanical performance. SEM images indicated fewer colonies in DBR containing C12BDMA-Cl, which can be a potential approach to managing denture stomatitis. In conclusion, C12BDMA-Cl is a promising antifungal agent for preventing and treating denture stomatitis. Full article
(This article belongs to the Special Issue Advanced Dental Restorative Composite Materials)
Show Figures

Figure 1

16 pages, 5120 KiB  
Article
A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells
by Jesús Alejandro Torres-Betancourt, Rene Hernández-Delgadillo, Juan Valerio Cauich-Rodríguez, Diego Adrián Oliva-Rico, Juan Manuel Solis-Soto, Claudia María García-Cuellar, Yesennia Sánchez-Pérez, Nayely Pineda-Aguilar, Samantha Flores-Treviño, Irene Meester, Sergio Eduardo Nakagoshi-Cepeda, Katiushka Arevalo-Niño, María Argelia Akemi Nakagoshi-Cepeda and Claudio Cabral-Romero
J. Funct. Biomater. 2024, 15(10), 309; https://doi.org/10.3390/jfb15100309 - 16 Oct 2024
Viewed by 687
Abstract
Electrospun membranes (EMs) have a wide range of applications, including use as local delivery systems. In this study, we manufactured a polyurethane Tecoflex™ EM loaded with bismuth-based lipophilic nanoparticles (Tecoflex™ EMs-BisBAL NPs). The physicochemical and mechanical characteristics, along with the antitumor and bactericidal [...] Read more.
Electrospun membranes (EMs) have a wide range of applications, including use as local delivery systems. In this study, we manufactured a polyurethane Tecoflex™ EM loaded with bismuth-based lipophilic nanoparticles (Tecoflex™ EMs-BisBAL NPs). The physicochemical and mechanical characteristics, along with the antitumor and bactericidal effects, were evaluated using a breast cancer cell line and methicillin-susceptible and resistant Staphylococcus aureus (MRSA). Drug-free Tecoflex™ EMs and Tecoflex™ EMs-BisBAL NPs had similar fiber diameters of 4.65 ± 1.42 µm and 3.95 ± 1.32 µm, respectively. Drug-free Tecoflex™ EMs did not negatively impact a human fibroblast culture, indicating that the vehicle is biocompatible. Tecoflex™ EMs-BisBAL NPs increased 94% more in size than drug-free Tecoflex™ EMs, indicating that the BisBAL NPs enhanced hydration capacity. Tecoflex™ EMs-BisBAL NPs were highly bactericidal against both methicillin-susceptible S. aureus and MRSA clinical isolates, inhibiting their growth by 93.11% and 61.70%, respectively. Additionally, Tecoflex™ EMs-BisBAL NPs decreased the viability of MCF-7 tumor cells by 86% after 24 h exposure and 70.1% within 15 min. Regarding the mechanism of action of Tecoflex™ EMs-BisBAL NPs, it appears to disrupt the tumor cell membrane. In conclusion, Tecoflex™ EMs-BisBAL NPs constitute an innovative low-cost drug delivery system for human breast cancer and postoperative wound infections. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 4458 KiB  
Systematic Review
Stem Cells: Present Understanding and Prospects for Regenerative Dentistry
by Angelo Michele Inchingolo, Alessio Danilo Inchingolo, Paola Nardelli, Giulia Latini, Irma Trilli, Laura Ferrante, Giuseppina Malcangi, Andrea Palermo, Francesco Inchingolo and Gianna Dipalma
J. Funct. Biomater. 2024, 15(10), 308; https://doi.org/10.3390/jfb15100308 - 15 Oct 2024
Viewed by 708
Abstract
Regenerative medicine in dentistry focuses on repairing damaged oral tissues using advanced tools like stem cells, biomaterials, and tissue engineering (TE). Mesenchymal stem cells (MSCs) from dental sources, such as dental pulp and periodontal ligament, show significant potential for tissue regeneration due to [...] Read more.
Regenerative medicine in dentistry focuses on repairing damaged oral tissues using advanced tools like stem cells, biomaterials, and tissue engineering (TE). Mesenchymal stem cells (MSCs) from dental sources, such as dental pulp and periodontal ligament, show significant potential for tissue regeneration due to their proliferative and differentiative abilities. This systematic review, following PRISMA guidelines, evaluated fifteen studies and identified effective strategies for improving dental, periodontal, and bone tissue regeneration through scaffolds, secretomes, and bioengineering methods. Key advancements include the use of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) to boost cell viability and manage inflammation. Additionally, pharmacological agents like matrine and surface modifications on biomaterials improve stem cell adhesion and promote osteogenic differentiation. By integrating these approaches, regenerative medicine and TE can optimize dental therapies and enhance patient outcomes. This review highlights the potential and challenges in this field, providing a critical assessment of current research and future directions. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

85 pages, 3124 KiB  
Systematic Review
Prosthetic Joint Infection Research Models in NZW Rabbits: Opportunities for Standardization—A Systematic Review
by Julia L. van Agtmaal, Sanne W. G. van Hoogstraten and Jacobus J. C. Arts
J. Funct. Biomater. 2024, 15(10), 307; https://doi.org/10.3390/jfb15100307 - 15 Oct 2024
Viewed by 892
Abstract
Prosthetic joint infection (PJI) is a major complication following total arthroplasty. Rising antimicrobial resistance (AMR) to antibiotics will further increase therapeutic insufficiency. New antibacterial technologies are being developed to prevent PJI. In vivo models are still needed to bridge the translational gap to [...] Read more.
Prosthetic joint infection (PJI) is a major complication following total arthroplasty. Rising antimicrobial resistance (AMR) to antibiotics will further increase therapeutic insufficiency. New antibacterial technologies are being developed to prevent PJI. In vivo models are still needed to bridge the translational gap to clinical implementation. Though rabbit models have been used most frequently, there is no consensus about methodology and measured outcomes. The PubMed, Scopus, and EMBASE databases were searched for literature on PJI in rabbit models. Data extraction included bias control, experimental design, and outcome measures of the NZW rabbit models in the articles. A total of 60 articles were included in this systematic literature review. The articles were divided into six groups based on the PJI intervention: no intervention used (21%), revision surgery (14%), prevention with only antibiotics (21%), prevention with surface modifications (7%), prevention with coatings (23%), and others (14%). Despite the current availability of guidelines and recommendations regarding experimental design, bias control, and outcome measures, many articles neglect to report on these matters. Ultimately, this analysis aims to assist researchers in determining suitable clinically relevant methodologies and outcome measures for in vivo PJI models using NZW rabbits to test new antimicrobial technologies. Full article
Show Figures

Figure 1

11 pages, 1849 KiB  
Article
Early Effects of Porcine Placental Extracts and Stem Cell-Derived Exosomes on Aging Stress in Skin Cells
by Takaaki Matsuoka, Katsuaki Dan, Keita Takanashi and Akihiro Ogino
J. Funct. Biomater. 2024, 15(10), 306; https://doi.org/10.3390/jfb15100306 - 15 Oct 2024
Viewed by 568
Abstract
The initial efficacy of placental extracts (Pla-Exts) and human mesenchymal stem-cell-derived exosomes (hMSC-Exo) against aging-induced stress in human dermal fibroblasts (HDFs) was examined. The effect of Pla-Ext alone, hMSC-Exo alone, the combined effect of Pla-Ext and hMSC-Exo, and the effect of hMSC-Exo (Pla/MSC-Exo) [...] Read more.
The initial efficacy of placental extracts (Pla-Exts) and human mesenchymal stem-cell-derived exosomes (hMSC-Exo) against aging-induced stress in human dermal fibroblasts (HDFs) was examined. The effect of Pla-Ext alone, hMSC-Exo alone, the combined effect of Pla-Ext and hMSC-Exo, and the effect of hMSC-Exo (Pla/MSC-Exo) recovered from cultures with Pla-Ext added to hMSC were verified using collagen, elastin, and hyaluronic acid synthase mRNA levels for each effect. Cells were subjected to photoaging (UV radiation), glycation (glycation end-product stimulation), and oxidation (H2O2 stimulation) as HDF stressors. Pla-Ext did not significantly affect normal skin fibroblasts with respect to intracellular parameters; however, a pro-proliferative effect was observed. Pla-Ext induced resistance to several stresses in skin fibroblasts (UV irradiation, glycation stimulation, H2O2 stimulation) and inhibited reactive oxygen species accumulation following H2O2 stimulation. Although the effects of hMSC-Exo alone or the combination of hMSC-Exo and Pla-Ext are unknown, pretreated hMSC-Exo stimulated with Pla-Ext showed changes that conferred resistance to aging stress. This suggests that Pla-Ext supplementation may cause some changes in the surface molecules or hMSC-Exo content (e.g., microRNA). In skin cells, the direct action of Pla-Ext and exosomes secreted from cultured hMSCs pretreated with Pla-Ext (Pla/MSC-Exo) also conferred resistance to early aging stress. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

18 pages, 4750 KiB  
Article
Role of Niobium on the Passivation Mechanisms of TiHfZrNb High-Entropy Alloys in Hanks’ Simulated Body Fluid
by Ayoub Tanji, Xuesong Fan, Ridwan Sakidja, Peter K. Liaw and Hendra Hermawan
J. Funct. Biomater. 2024, 15(10), 305; https://doi.org/10.3390/jfb15100305 - 14 Oct 2024
Viewed by 553
Abstract
A family of TiHfZrNb high-entropy alloys has been considered novel biomaterials for high-performance, small-sized implants. The present work evaluates the role of niobium on passivation kinetics and electrochemical characteristics of passive film on TiHfZrNb alloys formed in Hanks’ simulated body fluid by analyzing [...] Read more.
A family of TiHfZrNb high-entropy alloys has been considered novel biomaterials for high-performance, small-sized implants. The present work evaluates the role of niobium on passivation kinetics and electrochemical characteristics of passive film on TiHfZrNb alloys formed in Hanks’ simulated body fluid by analyzing electrochemical data with three analytical models. Results confirm that higher niobium content in the alloys reinforces the compactness of the passive film by favoring the dominance of film formation and thickening mechanism over the dissolution mechanism. Higher niobium content enhances the passivation kinetics to rapidly form the first layer, and total surface coverage reinforces the capacitive-resistant behavior of the film by enrichment with niobium oxides and reduces the point defect density and their mobility across the film, lowering pitting initiation susceptibility. With the high resistance to dissolution and rapid repassivation ability in the aggressive Hanks’ simulated body fluid, the TiHfZrNb alloys confirm their great potential as new materials for biomedical implants and warrant further biocompatibility testing. Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

14 pages, 3923 KiB  
Article
Antimicrobial Activity of Amino-Modified Cellulose Nanofibrils Decorated with Silver Nanoparticles
by Vesna Lazić, Jovan M. Nedeljković and Vanja Kokol
J. Funct. Biomater. 2024, 15(10), 304; https://doi.org/10.3390/jfb15100304 - 13 Oct 2024
Viewed by 696
Abstract
Silver nanoparticles (Ag NPs) conjugated with amino-functionalized cellulose nanofibrils (NH2−CNFs) were in situ-prepared by reducing silver ions with free amino groups from NH2−CNFs. The spectroscopy and transmission electron microscopy measurements confirmed the presence of non-agglomerated nanometer-in-size Ag NPs within [...] Read more.
Silver nanoparticles (Ag NPs) conjugated with amino-functionalized cellulose nanofibrils (NH2−CNFs) were in situ-prepared by reducing silver ions with free amino groups from NH2−CNFs. The spectroscopy and transmission electron microscopy measurements confirmed the presence of non-agglomerated nanometer-in-size Ag NPs within micrometer-large NH2−CNFs of high (20 wt.-%) content. Although the consumption of amino groups during the formation of Ag NPs lowers the ζ-potential and surface charge of prepared inorganic–organic hybrids (from +31.3 to +19.9 mV and from 2.4 to 1.0 mmol/g at pH 7, respectively), their values are sufficiently positive to ensure electrostatic interaction with negatively charged cell walls of pathogens in acidic and slightly (up to pH ~8.5) alkaline solutions. The antimicrobial activity of hybrid microparticles against various pathogens (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans) is comparable with pristine NH2−CNFs. However, a long-timescale use of hybrids ensures the slow and controlled release of Ag+ ions to surrounding media (less than 1.0 wt.-% for one month). Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Figure 1

15 pages, 3373 KiB  
Article
Osteoblast Response to Widely Ranged Texturing Conditions Obtained through High Power Laser Beams on Ti Surfaces
by Federico Alessandro Ruffinatti, Tullio Genova, Ilaria Roato, Martina Perin, Giorgia Chinigò, Riccardo Pedraza, Olivio Della Bella, Francesca Motta, Elisa Aimo Boot, Domenico D’Angelo, Giorgio Gatti, Giorgia Scarpellino, Luca Munaron and Federico Mussano
J. Funct. Biomater. 2024, 15(10), 303; https://doi.org/10.3390/jfb15100303 - 12 Oct 2024
Viewed by 635
Abstract
Titanium and titanium alloys are the prevailing dental implant materials owing to their favorable mechanical properties and biocompatibility, but how roughness dictates the biological response is still a matter of debate. In this study, laser texturing was used to generate eight paradigmatic roughened [...] Read more.
Titanium and titanium alloys are the prevailing dental implant materials owing to their favorable mechanical properties and biocompatibility, but how roughness dictates the biological response is still a matter of debate. In this study, laser texturing was used to generate eight paradigmatic roughened surfaces, with the aim of studying the early biological response elicited on MC3T3-E1 pre-osteoblasts. Prior to cell tests, the samples underwent SEM analysis, optical profilometry, protein adsorption assay, and optical contact angle measurement with water and diiodomethane to determine surface free energy. While all the specimens proved to be biocompatible, supporting similar cell viability at 1, 2, and 3 days, surface roughness could impact significantly on cell adhesion. Factorial analysis and linear regression showed, in a robust and unprecedented way, that an isotropic distribution of deep and closely spaced valleys provides the best condition for cell adhesion, to which both protein adsorption and surface free energy were highly correlated. Overall, here the authors provide, for the first time, a thorough investigation of the relationship between roughness parameters and osteoblast adhesion that may be applied to design and produce new tailored interfaces for implant materials. Full article
Show Figures

Figure 1

16 pages, 2858 KiB  
Article
Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes
by Siddharth Shanbhag, Niyaz Al-Sharabi, Katarina Fritz-Wallace, Einar K. Kristoffersen, Dagmar Fosså Bunæs, Mario Romandini, Kamal Mustafa, Mariano Sanz and Reinhard Gruber
J. Funct. Biomater. 2024, 15(10), 302; https://doi.org/10.3390/jfb15100302 - 9 Oct 2024
Viewed by 839
Abstract
Collagen barrier membranes are frequently used in guided tissue and bone regeneration. The aim of this study was to analyze the signature of human serum proteins adsorbed onto collagen membranes using a novel protein extraction method combined with mass spectrometry. Native porcine-derived collagen [...] Read more.
Collagen barrier membranes are frequently used in guided tissue and bone regeneration. The aim of this study was to analyze the signature of human serum proteins adsorbed onto collagen membranes using a novel protein extraction method combined with mass spectrometry. Native porcine-derived collagen membranes (Geistlich Bio-Gide®, Wolhusen, Switzerland) were exposed to pooled human serum in vitro and, after thorough washing, subjected to protein extraction either in conjunction with protein enrichment or via a conventional surfactant-based method. The extracted proteins were analyzed via liquid chromatography with tandem mass spectrometry. Bioinformatic analysis of global profiling, gene ontology, and functional enrichment of the identified proteins was performed. Overall, a total of 326 adsorbed serum proteins were identified. The enrichment and conventional methods yielded similar numbers of total (315 vs. 309), exclusive (17 vs. 11), and major bone-related proteins (18 vs. 14). Most of the adsorbed proteins (n = 298) were common to both extraction groups and included several growth factors, extracellular matrix (ECM) proteins, cell adhesion molecules, and angiogenesis mediators involved in bone regeneration. Functional analyses revealed significant enrichment of ECM, exosomes, immune response, and cell growth components. Key proteins [transforming growth factor-beta 1 (TGFβ1), insulin-like growth factor binding proteins (IGFBP-5, -6, -7)] were exclusively detected with the enrichment-based method. In summary, native collagen membranes exhibited a high protein adsorption capacity in vitro. While both extraction methods were effective, the enrichment-based method showed distinct advantages in detecting specific bone-related proteins. Therefore, the use of multiple extraction methods is advisable in studies investigating protein adsorption on biomaterials. Full article
Show Figures

Figure 1

26 pages, 7508 KiB  
Article
Complete Digital Workflow for Manufacturing Presurgical Orthodontic Palatal Plates in Newborns and Infants with Cleft Lip and/or Palate
by Christina Weismann, Alexander B. Xepapadeas, Marit Bockstedte, Bernd Koos, Michael Krimmel, Christian F. Poets and Maite Aretxabaleta
J. Funct. Biomater. 2024, 15(10), 301; https://doi.org/10.3390/jfb15100301 - 8 Oct 2024
Viewed by 560
Abstract
Deciding on the implementation or modification of steps in daily clinical care is a nuanced process that demands careful evaluation. This is crucial not only for selecting the most appropriate solution but also for achieving the best treatment outcome. Thus, implementing a workflow [...] Read more.
Deciding on the implementation or modification of steps in daily clinical care is a nuanced process that demands careful evaluation. This is crucial not only for selecting the most appropriate solution but also for achieving the best treatment outcome. Thus, implementing a workflow for treating cleft lip and/or palate patients with a presurgical orthodontic cleft-covering plate needs to consider objective factors, prioritized from most to least important: safety and quality level, user-friendliness, feasibility, and, finally, efficiency and cost. The goal of this workflow is to integrate CAD/CAM technologies into daily clinical routine to enhance technical and clinical efficiency, reduce the burden of cleft care, and simplify the implementation of these technologies in other facilities. To achieve this, a methodology based on intraoral scanning and additive manufacturing is employed to produce patient-specific passive palatal plates. The approach describes possible pitfalls and their resolution within the routine of a cleft centre, along with an exemplary case scenario. Comparative analysis between the digital workflow and the conventional process demonstrated the digital approach to be safer, higher in quality, more user-friendly, feasible, and cost- and time-effective than the conventional process. Full article
Show Figures

Figure 1

20 pages, 8915 KiB  
Article
Bioconjugation of Serratiopeptidase with Titanium Oxide Nanoparticles: Improving Stability and Antibacterial Properties
by Jhon Jairo Melchor-Moncada, Santiago Vasquez-Giraldo, Augusto Zuluaga-Vélez, Lina Marcela Orozco, Luz Angela Veloza and Juan Carlos Sepúlveda-Arias
J. Funct. Biomater. 2024, 15(10), 300; https://doi.org/10.3390/jfb15100300 - 7 Oct 2024
Viewed by 936
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, necessitating the development of novel antibacterial strategies. Serratiopeptidase (SP), a metalloprotease produced by bacteria such as Serratia marcescens, has gained attention not only for its anti-inflammatory properties but also for its potential antibacterial [...] Read more.
Antimicrobial resistance (AMR) poses a significant global health threat, necessitating the development of novel antibacterial strategies. Serratiopeptidase (SP), a metalloprotease produced by bacteria such as Serratia marcescens, has gained attention not only for its anti-inflammatory properties but also for its potential antibacterial activity. However, its protein nature makes it susceptible to pH changes and self-proteolysis, limiting its effectiveness. This study aimed to increase both the enzymatic stability and antibacterial activity of serratiopeptidase through immobilization on titanium oxide nanoparticles (TiO2-NPs), leveraging the biocompatibility and stability of these nanomaterials. Commercial TiO2-NPs were characterized using TGA/DTG, FT-IR, UV–Vis, and XRD analyses, and their biocompatibility was assessed through cytotoxicity studies. Serratiopeptidase was produced via fermentation using the C8 isolate of Serratia marcescens obtained from the intestine of Bombyx mori L., purified chromatographically, and immobilized on carboxylated nanoparticles via EDC/NHS coupling at various pH conditions. The optimal enzymatic activity was achieved by using pH 5.1 for nanoparticle activation and pH 5.5 for enzyme coupling. The resulting bioconjugate demonstrated stable proteolytic activity at 25 °C for 48 h. Immobilization was confirmed by FT-IR spectroscopy, and the Michaelis–Menten kinetics were determined. Notably, the bioconjugate exhibited two-fold greater antibacterial activity against E. coli than the free enzyme or TiO2-NPs at 1000 µg/mL. This study successfully developed a serratiopeptidase–TiO2 bioconjugate with enhanced enzymatic stability and antibacterial properties. The improved antibacterial activity of the immobilized enzyme presents a promising approach for developing new tools to combat antimicrobial resistance, with potential applications in healthcare, food safety, and environmental protection. Full article
(This article belongs to the Special Issue Medical Application of Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

19 pages, 654 KiB  
Review
The Mechanical and Clinical Properties of Customized Orthodontic Bracket Systems—A Comprehensive Review
by Issa Elabed, Zhong Zheng, Yu Zhang, Chun-Hsi Chung and Chenshuang Li
J. Funct. Biomater. 2024, 15(10), 299; https://doi.org/10.3390/jfb15100299 - 7 Oct 2024
Viewed by 917
Abstract
The rise of computer-aided design and computer-aided manufacturing (CAD/CAM) and 3D printing technologies in orthodontics has revolutionized the development of customized labial and lingual bracket systems with a variety of materials, which offer potential advantages over traditional orthodontic brackets. To highlight the current [...] Read more.
The rise of computer-aided design and computer-aided manufacturing (CAD/CAM) and 3D printing technologies in orthodontics has revolutionized the development of customized labial and lingual bracket systems with a variety of materials, which offer potential advantages over traditional orthodontic brackets. To highlight the current state of knowledge regarding the mechanical and clinical properties of CAD/CAM and 3D-printed custom bracket systems, we conducted a comprehensive search across the PubMed, Embase, Cochrane Library, Web of Science, and Scopus databases to identify relevant articles published before April 2024. Mechanical (including fracture toughness, hardness, modulus of elasticity, frictional resistance, slot accuracy, torque transmission, and shear bond strength) and clinical (including treatment efficiency and duration, cost, and comfort) properties were compared between traditional and customized orthodontic bracket systems in the current review. Our findings suggest that customized brackets have the potential to increase bracket slot precision, reduce treatment time, and offer cost-efficiency. However, it is worth noting that the advantages and disadvantages of customized bracket systems vary depending on the bracket material and the manufacturing methods, warranting comprehensively controlled investigations in the future. Full article
(This article belongs to the Special Issue Orthodontics Materials and Technologies)
Show Figures

Figure 1

15 pages, 891 KiB  
Perspective
Theoretical Model for In Vivo Induction of Chemotherapy Sensitization Using miRNA Packaged in Distinct Layered Liposomes
by Ruxandra-Ioana Cipu, Mihai-Laurențiu Stănişteanu, Mihaela-Aurelia Andrei, Daniel Dumitru Banciu and Adela Banciu
J. Funct. Biomater. 2024, 15(10), 298; https://doi.org/10.3390/jfb15100298 - 5 Oct 2024
Viewed by 1023
Abstract
Resistance to chemotherapy is a problem of major social and economic importance, when looking at factors like the decrease in life expectancy, the associated therapeutic costs, and a significant number of cancers that resist current chemotherapy. The development of chemotherapeutics for all theoretically [...] Read more.
Resistance to chemotherapy is a problem of major social and economic importance, when looking at factors like the decrease in life expectancy, the associated therapeutic costs, and a significant number of cancers that resist current chemotherapy. The development of chemotherapeutics for all theoretically possible tumor variants is an approach that requires unreasonable resources. We propose a theoretical model that serves the purpose of overcoming resistance to chemotherapeutic agents used in cancer therapy. The model describes a gene delivery system based on liposomes, which are optically guided to the tumor’s location. The main aim of the gene delivery system is inhibiting the activity of enzymes involved in drug metabolism, hence offering the opportunity to use inexpensive chemotherapeutics that are already on the market. This model will reduce the costs of chemotherapy and will assure a positive outcome for patients. Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

17 pages, 6452 KiB  
Article
3D-Printable Gelatin Methacrylate-Xanthan Gum Hydrogel Bioink Enabling Human Induced Pluripotent Stem Cell Differentiation into Cardiomyocytes
by Virginia Deidda, Isabel Ventisette, Marianna Langione, Lucrezia Giammarino, Josè Manuel Pioner, Caterina Credi and Federico Carpi
J. Funct. Biomater. 2024, 15(10), 297; https://doi.org/10.3390/jfb15100297 - 5 Oct 2024
Viewed by 832
Abstract
We describe the development of a bioink to bioprint human induced pluripotent stem cells (hiPSCs) for possible cardiac tissue engineering using a gelatin methacrylate (GelMA)-based hydrogel. While previous studies have shown that GelMA at a low concentration (5% w/v) allows [...] Read more.
We describe the development of a bioink to bioprint human induced pluripotent stem cells (hiPSCs) for possible cardiac tissue engineering using a gelatin methacrylate (GelMA)-based hydrogel. While previous studies have shown that GelMA at a low concentration (5% w/v) allows for the growth of diverse cells, its 3D printability has been found to be limited by its low viscosity. To overcome that drawback, making the hydrogel both compatible with hiPSCs and 3D-printable, we developed an extrudable GelMA-based bioink by adding xanthan gum (XG). The GelMA-XG composite hydrogel had an elastic modulus (~9 kPa) comparable to that of cardiac tissue, and enabled 3D printing with high values of printing accuracy (83%) and printability (0.98). Tests with hiPSCs showed the hydrogel’s ability to promote their proliferation within both 2D and 3D cell cultures. The tests also showed that hiPSCs inside hemispheres of the hydrogel were able to differentiate into cardiomyocytes, capable of spontaneous contractions (average frequency of ~0.5 Hz and amplitude of ~2%). Furthermore, bioprinting tests proved the possibility of fabricating 3D constructs of the hiPSC-laden hydrogel, with well-defined line widths (~800 μm). Full article
Show Figures

Figure 1

15 pages, 1428 KiB  
Review
PMA-Zeolite: Chemistry and Diverse Medical Applications
by Aleksandar Bulog, Kresimir Pavelic, Ivana Šutić and Sandra Kraljevic Pavelic
J. Funct. Biomater. 2024, 15(10), 296; https://doi.org/10.3390/jfb15100296 - 4 Oct 2024
Viewed by 809
Abstract
Numerous scientific studies have been conducted in recent decades with the aim to study targeted application of zeolites in various industries, ecology, agronomy and medicine. The biggest advances, however, have been documented in medical and veterinary research of the natural zeolite, clinoptilolite. Although [...] Read more.
Numerous scientific studies have been conducted in recent decades with the aim to study targeted application of zeolites in various industries, ecology, agronomy and medicine. The biggest advances, however, have been documented in medical and veterinary research of the natural zeolite, clinoptilolite. Although the exact biological mechanisms of action of the zeolite clinoptilolite are not completely elucidated, obtained results point to its antioxidative, immunomodulatory and detoxifying effects, the latter partially based on release of soluble and bioavailable silica forms from the surface material. The studied zeolite clinoptilolite materials have different geographical origins which confer to the physicochemical differences in the material. In addition, the production process of the material for oral applications differs between different producers which also accounts for different properties of the surface upon mechanical activation. Recently, a well-characterized zeolite clinoptilolite material, namely the PMA-zeolite, has been tested in different clinical applications and has shown potential as supportive therapy in inflammatory conditions, osteoporosis as well as during tumor chemotherapy. We accordingly present a comprehensive review of the PMA-zeolite effects in the clinical applications and discuss its probable mechanisms of effect in vivo. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Figure 1

18 pages, 4850 KiB  
Article
In Vivo Biocompatibility of Synechococcus sp. PCC 7002-Integrated Scaffolds for Skin Regeneration
by Benedikt Fuchs, Sinan Mert, Constanze Kuhlmann, Alexandra Birt, Daniel Hofmann, Paul Severin Wiggenhauser, Riccardo E. Giunta, Myra N. Chavez, Jörg Nickelsen, Thilo Ludwig Schenck and Nicholas Moellhoff
J. Funct. Biomater. 2024, 15(10), 295; https://doi.org/10.3390/jfb15100295 - 3 Oct 2024
Viewed by 746
Abstract
Cyanobacteria, commonly known as blue-green algae, are prevalent in freshwater systems and have gained interest for their potential in medical applications, particularly in skin regeneration. Among these, Synechococcus sp. strain PCC 7002 stands out because of its rapid proliferation and capacity to be [...] Read more.
Cyanobacteria, commonly known as blue-green algae, are prevalent in freshwater systems and have gained interest for their potential in medical applications, particularly in skin regeneration. Among these, Synechococcus sp. strain PCC 7002 stands out because of its rapid proliferation and capacity to be genetically modified to produce growth factors. This study investigates the safety of Synechococcus sp. PCC 7002 when used in scaffolds for skin regeneration, focusing on systemic inflammatory responses in a murine model. We evaluated the following three groups: scaffolds colonized with genetically engineered bacteria producing hyaluronic acid, scaffolds with wild-type bacteria, and control scaffolds without bacteria. After seven days, we assessed systemic inflammation by measuring changes in cytokine profiles and lymphatic organ sizes. The results showed no significant differences in spleen, thymus, and lymph node weights, indicating a lack of overt systemic toxicity. Blood cytokine analysis revealed elevated levels of IL-6 and IL-1β in scaffolds with bacteria, suggesting a systemic inflammatory response, while TNF-α levels remained unaffected. Proteome profiling identified distinct cytokine patterns associated with bacterial colonization, including elevated inflammatory proteins and products, indicative of acute inflammation. Conversely, control scaffolds exhibited protein profiles suggestive of a rejection response, characterized by increased levels of cytokines involved in T and B cell activation. Our findings suggest that Synechococcus sp. PCC 7002 does not appear to cause significant systemic toxicity, supporting its potential use in biomedical applications. Further research is necessary to explore the long-term effects and clinical implications of these responses. Full article
(This article belongs to the Special Issue Scaffold for Tissue Engineering)
Show Figures

Figure 1

17 pages, 9347 KiB  
Article
Nanofat Improves Vascularization and Tissue Integration of Dermal Substitutes without Affecting Their Biocompatibility
by Francesca Bonomi, Ettore Limido, Andrea Weinzierl, Emmanuel Ampofo, Yves Harder, Michael D. Menger and Matthias W. Laschke
J. Funct. Biomater. 2024, 15(10), 294; https://doi.org/10.3390/jfb15100294 - 3 Oct 2024
Viewed by 698
Abstract
Dermal substitutes require sufficient tissue integration and vascularization to be successfully covered with split-thickness skin grafts. To rapidly achieve this, we provide the proof of principle for a novel vascularization strategy with high translational potential. Nanofat was generated from subcutaneous adipose tissue of [...] Read more.
Dermal substitutes require sufficient tissue integration and vascularization to be successfully covered with split-thickness skin grafts. To rapidly achieve this, we provide the proof of principle for a novel vascularization strategy with high translational potential. Nanofat was generated from subcutaneous adipose tissue of green fluorescence protein (GFP)+ C57BL/6J donor mice and seeded onto small samples (4 mm in diameter) of the clinically approved dermal substitute Integra®. These samples and non-seeded controls were then implanted into full-thickness skin defects in the dorsal skinfold chamber of C57BL/6J wild-type mice and analyzed by intravital fluorescence microscopy, histology and immunohistochemistry over a 14-day period. Nanofat-seeded dermal substitutes exhibited an accelerated vascularization, as indicated by a significantly higher functional microvessel density on days 10 and 14 when compared to controls. This was primarily caused by the reassembly of GFP+ microvascular fragments inside the nanofat into microvascular networks. The improved vascularization promoted integration of the implants into the surrounding host tissue, which finally exhibited an increased formation of a collagen-rich granulation tissue. There were no marked differences in the inflammatory host tissue reaction to nanofat-seeded and control implants. These findings demonstrate that nanofat significantly improves the in vivo performance of dermal substitutes without affecting their biocompatibility. Full article
Show Figures

Figure 1

15 pages, 8787 KiB  
Article
Randomized Clinical Trial: Bone Bioactive Liquid Improves Implant Stability and Osseointegration
by Ashraf Al Madhoun, Khaled Meshal, Neus Carrió, Eduard Ferrés-Amat, Elvira Ferrés-Amat, Miguel Barajas, Ana Leticia Jiménez-Escobar, Areej Said Al-Madhoun, Alaa Saber, Yazan Abou Alsamen, Carles Marti and Maher Atari
J. Funct. Biomater. 2024, 15(10), 293; https://doi.org/10.3390/jfb15100293 - 1 Oct 2024
Viewed by 1437
Abstract
Implant stability can be compromised by factors such as inadequate bone quality and infection, leading to potential implant failure. Ensuring implant stability and longevity is crucial for patient satisfaction and quality of life. In this multicenter, randomized, double-blind clinical trial, we assessed the [...] Read more.
Implant stability can be compromised by factors such as inadequate bone quality and infection, leading to potential implant failure. Ensuring implant stability and longevity is crucial for patient satisfaction and quality of life. In this multicenter, randomized, double-blind clinical trial, we assessed the impact of a bone bioactive liquid (BBL) on the Galaxy TS implant’s performance, stability, and osseointegration. We evaluated the impact stability, osseointegration, and pain levels using initial stability quotient (ISQ) measurements, CBCT scans, and pain assessment post-surgery. Surface analysis was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). In vitro studies examined the BBL’s effects on dental pulp pluripotent stem cells’ (DPPSCs’) osteogenesis and inflammation modulation in human macrophages. All implants successfully osseointegrated, as demonstrated by the results of our clinical and histological studies. The BBL-treated implants showed significantly lower pain scores by day 7 (p < 0.00001) and improved stability by day 30 (ISQ > 62.00 ± 0.59, p < 8 × 10−7). By day 60, CBCT scans revealed an increased bone area ratio in BBL-treated implants. AFM images demonstrated the BBL’s softening and wettability effect on implant surfaces. Furthermore, the BBL promoted DPPSCs’ osteogenesis and modulated inflammatory markers in human primary macrophages. This study presents compelling clinical and biological evidence that BBL treatment improves Galaxy TS implant stability, reduces pain, and enhances bone formation, possibly through surface tension modulation and immunomodulatory effects. This advancement holds promise for enhancing patient outcomes and implant longevity. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

11 pages, 1843 KiB  
Article
The Effect of Erosive Media on the Mechanical Properties of CAD/CAM Composite Materials
by Marwa M. Alnsour, Rasha A. Alamoush, Nikolaos Silikas and Julian D. Satterthwaite
J. Funct. Biomater. 2024, 15(10), 292; https://doi.org/10.3390/jfb15100292 - 1 Oct 2024
Viewed by 640
Abstract
This study aimed to investigate the effect of acidic media storage (gastric acid and Coca-Cola) on the mechanical properties of CAD/CAM materials. Three types of materials were tested: a polymer-infiltrated ceramic network (PICN) (Vita Enamic (En), VITA Zahnfabrik, Germany), a resin composite block [...] Read more.
This study aimed to investigate the effect of acidic media storage (gastric acid and Coca-Cola) on the mechanical properties of CAD/CAM materials. Three types of materials were tested: a polymer-infiltrated ceramic network (PICN) (Vita Enamic (En), VITA Zahnfabrik, Germany), a resin composite block (RCB) (Cerasmart (Cs), GC Corp, Japan), and a conventional resin-based composite (Gradia direct (Gr), GC Corp, Japan), which was used as a control. Beam-shaped specimens of each material, with dimensions of 16 mm × 4 mm × 1.5 mm, were prepared (90 in total). The specimens were divided into subgroups (10 each) and stored for 96 h in either gastric acid, Coca-Cola, or distilled water. Flexural strength and elastic modulus were evaluated using a three-point flexural strength test with acoustic emission (AE) monitoring. Vickers microhardness was measured before and after storage in gastric acid and Coca-Cola. Data were statistically analysed using two-way and one-way ANOVA, the Tukey’s post hoc, and independent t-test at a significance level of 0.05. The results showed that Cs and En maintained their flexural strength and elastic modulus after acidic media exposure, while Gr experienced a significant decrease in flexural strength following gastric acid storage (p < 0.01). Initial crack detection was not possible using the AE system, impacting the determination of flexural strength. Exposure to acidic media decreased all materials’ microhardness, with Gr showing the most notable reduction (p < 0.0001). Gastric acid had a greater impact on the microhardness of all tested materials compared to Coca-Cola (p < 0.0001). In conclusion, storage in erosive media did not notably affect the flexural strength or elastic modulus of CAD/CAM composites but it did affect hardness. CAD/CAM composite blocks demonstrated superior mechanical properties compared to the conventional composite. Full article
(This article belongs to the Special Issue Latest Advances in Dental Materials)
Show Figures

Figure 1

24 pages, 1663 KiB  
Review
The Integration of Gold Nanoparticles into Dental Biomaterials as a Novel Approach for Clinical Advancement: A Narrative Review
by Saharat Jongrungsomran, Dakrong Pissuwan, Apichai Yavirach, Chaiy Rungsiyakull and Pimduen Rungsiyakull
J. Funct. Biomater. 2024, 15(10), 291; https://doi.org/10.3390/jfb15100291 - 30 Sep 2024
Viewed by 1743
Abstract
Gold nanoparticles (AuNPs) have gained significant attention in the biomedical field owing to their versatile properties. AuNPs can be customized by modifying their size, shape and surface characteristics. In recent years, extensive research has explored the integration of AuNPs into various dental materials, [...] Read more.
Gold nanoparticles (AuNPs) have gained significant attention in the biomedical field owing to their versatile properties. AuNPs can be customized by modifying their size, shape and surface characteristics. In recent years, extensive research has explored the integration of AuNPs into various dental materials, including titanium, polymethylmethacrylate (PMMA) and resin composites. This review aims to summarize the advancements in the application of modified AuNPs in dental materials and to assess their effects on related cellular processes in the dental field. Relevant articles published in English on AuNPs in association with dental materials were identified through a systematic search of the PubMed/MEDLINE, Embase, Scopus and ScienceDirect databases from January 2014 to April 2024. Future prospects for the utilization of AuNPs in the field of dentistry are surveyed. Full article
(This article belongs to the Special Issue Functional Biomaterials for Regenerative Dentistry)
Show Figures

Graphical abstract

3 pages, 1744 KiB  
Correction
Correction: Immich et al. Evaluation of Antimicrobial Properties, Cell Viability, and Metalloproteinase Activity of Bioceramic Endodontic Materials Used in Vital Pulp Therapy. J. Funct. Biomater. 2024, 15, 70
by Felipe Immich, Durvalino de Oliveira, Juliana Silva Ribeiro de Andrade, Andressa da Silva Barboza, Carlos Enrique Cuevas-Suárez, Adriana Fernandes da Silva, Wellington Luiz de Oliveira da Rosa, Álvaro Henrique Borges, Neftali Lenin Villarreal Carreno, Evandro Piva and Rafael Guerra Lund
J. Funct. Biomater. 2024, 15(10), 290; https://doi.org/10.3390/jfb15100290 - 30 Sep 2024
Viewed by 396
Abstract
Error in Figure 3 [...] Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 3

15 pages, 18857 KiB  
Article
Preparation, Mechanical Properties, and Degradation Behavior of Zn-1Fe-xSr Alloys for Biomedical Applications
by Wen Peng, Zehang Lu, Enyang Liu, Wenteng Wu, Sirong Yu and Jie Sun
J. Funct. Biomater. 2024, 15(10), 289; https://doi.org/10.3390/jfb15100289 - 30 Sep 2024
Viewed by 709
Abstract
As biodegradable materials, zinc (Zn) and zinc-based alloys have attracted wide attention owing to their great potential in biomedical applications. However, the poor strength of pure Zn and binary Zn alloys limits their wide application. In this work, a stir casting method was [...] Read more.
As biodegradable materials, zinc (Zn) and zinc-based alloys have attracted wide attention owing to their great potential in biomedical applications. However, the poor strength of pure Zn and binary Zn alloys limits their wide application. In this work, a stir casting method was used to prepare the Zn-1Fe-xSr (x = 0.5, 1, 1.5, 2 wt.%) ternary alloys, and the phase composition, microstructure, tensile properties, hardness, and degradation behavior were studied. The results indicated that the SrZn13 phase was generated in the Zn matrix when the Sr element was added, and the grain size of Zn-1Fe-xSr alloy decreased with the increase in Sr content. The ultimate tensile strength (UTS) and Brinell hardness increased with the increase in Sr content. The UTS and hardness of Zn-1Fe-2Sr alloy were 141.65 MPa and 87.69 HBW, which were 55.7% and 58.4% higher than those of Zn-1Fe alloy, respectively. As the Sr content increased, the corrosion current density of Zn-1Fe-xSr alloy increased, and the charge transfer resistance decreased significantly. Zn-1Fe-2Sr alloy had a degradation rate of 0.157 mg·cm−2·d−1, which was 118.1% higher than the degradation rate of Zn-1Fe alloy. Moreover, the degradation rate of Zn-1Fe-xSr alloy decreased significantly with the increase in immersion time. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Graphical abstract

14 pages, 3210 KiB  
Article
Evaluation of the Peri-Implant Tissues of Patients with Severe Bone Atrophy Treated with a New Short and Extra-Short Implant System—A Pilot Study
by Kely Cristina de Moraes, Geninho Thomé, Flávia Noemy Gasparini Kiatake Fontão, Carolina Accorsi Cartelli, Rosemary Adriana Chierici Marcantonio, Carolina Mendonça de Almeida Malzoni and Elcio Marcantonio Junior
J. Funct. Biomater. 2024, 15(10), 288; https://doi.org/10.3390/jfb15100288 - 29 Sep 2024
Viewed by 669
Abstract
This study aimed to assess clinical and radiographic outcomes, including implant survival, marginal bone loss, and patient satisfaction, in individuals with severe bone atrophy treated using a newly developed system of short and extra-short implants. A total of 44 implants (37 short and [...] Read more.
This study aimed to assess clinical and radiographic outcomes, including implant survival, marginal bone loss, and patient satisfaction, in individuals with severe bone atrophy treated using a newly developed system of short and extra-short implants. A total of 44 implants (37 short and 7 extra-short) were placed with immediate loading in 11 patients. The patients were followed up at between 6 and 24 months. Bone changes, keratinized mucosa, bleeding on probing, probing depth, crown-to-implant ratio, and patient satisfaction were evaluated. An implant survival and success rate of 100% was observed. The peri-implant bone condition showed no significant associations between marginal bone loss (MBL) and gingival recession. In extra-short implants, the crown-to-implant ratio did not affect MBL in the evaluated times. However, short implants showed a statistically significant inverse correlation between mesial measurement and crown-to-implant ratio (p = 0.006) and between distal measurement and crown-to-implant ratio (p = 0.004) over six months. Plaque was present in the mesiobuccal regions in 38.64% of the implants, with extra-short implants having the highest relative frequency (71.4%). Bleeding was observed in 18.9% of the short implants in the mesiolingual region and 14.3% of the extra-short implants. There was a statistically significant association between bleeding on probing in the mesiobuccal region and the type of implant (p = 0.026). The analysis of probing depth showed no difference between the types of implants. Within the limits of this study, short and extra-short implants presented similar clinical and radiographic behavior of soft and hard tissues in the evaluated times. Full article
(This article belongs to the Special Issue New Biomaterials in Periodontology and Implantology)
Show Figures

Figure 1

17 pages, 3824 KiB  
Article
Chemically Pretreated Densification of Juniper Wood for Potential Use in Osteosynthesis Bone Implants
by Laura Andze, Vadims Nefjodovs, Martins Andzs, Marite Skute, Juris Zoldners, Martins Kapickis, Arita Dubnika, Janis Locs and Janis Vetra
J. Funct. Biomater. 2024, 15(10), 287; https://doi.org/10.3390/jfb15100287 - 28 Sep 2024
Viewed by 567
Abstract
The aim of the study was to perform treatment of juniper wood to obtain wood material with a density and mechanical properties comparable to bone, thus producing a potential material for use in osteosynthesis bone implants. In the first step, partial delignification of [...] Read more.
The aim of the study was to perform treatment of juniper wood to obtain wood material with a density and mechanical properties comparable to bone, thus producing a potential material for use in osteosynthesis bone implants. In the first step, partial delignification of wood sample was obtained by Kraft cooking. The second step was extraction with ethanol, ethanol–water mixture, saline, and water to prevent the release of soluble compounds and increase biocompatibility. In the last step, the thermal densification at 100 °C for 24 h was implemented. The results obtained in the dry state are equivalent to the properties of bone. The swelling of chemically pre-treated densified wood was reduced compared to chemically untreated densified wood. Samples showed no cytotoxicity by in vitro cell assays. The results of the study showed that it is possible to obtain noncytotoxic wood samples with mechanical properties equivalent to bones by partial delignification, extraction, and densification. However, further research is needed to ensure the material’s shape stability, water resistance, and reduced swelling. Full article
(This article belongs to the Special Issue Feature Papers in Bone Biomaterials)
Show Figures

Figure 1

22 pages, 7857 KiB  
Article
Antibacterial Biocomposite Based on Chitosan/Pluronic/Agarose Noncovalent Hydrogel: Controlled Drug Delivery by Alginate/Tetracycline Beads System
by Hossein Abdollahi, Saber Amiri, Farzaneh Amiri, Somayeh Moradi and Payam Zarrintaj
J. Funct. Biomater. 2024, 15(10), 286; https://doi.org/10.3390/jfb15100286 - 28 Sep 2024
Viewed by 979
Abstract
Designing a wound dressing with controlled uptake, antibacterial, and proper biocompatibility is crucial for the appropriate wound healing process. In this study, alginate/tetracycline (Alg/TC) beads were produced and embedded into chitosan/pluronic/agarose semi-interpenetrating polymer network hydrogel, which serves as a potential biocompatible dressing for [...] Read more.
Designing a wound dressing with controlled uptake, antibacterial, and proper biocompatibility is crucial for the appropriate wound healing process. In this study, alginate/tetracycline (Alg/TC) beads were produced and embedded into chitosan/pluronic/agarose semi-interpenetrating polymer network hydrogel, which serves as a potential biocompatible dressing for treating skin wounds. The effect of pluronic content on the porosity, swelling, mechanical characteristics, and degradation of the hydrogel was investigated. Furthermore, the impact of Alg beads on TC release was subsequently examined. In the absence of Alg beads, faster release was observed. However, after incorporating beads into the hydrogels, the release was sustained. Particularly, the hydrogel containing Alg beads exhibited a nearly linear release, reaching 74% after 2 days in acidic media. The antimicrobial activity and biocompatibility of the hydrogel were also evaluated to assess the capability of the TC-loaded hydrogels for wound dressing applications. The hydrogel demonstrated efficient antibacterial features against Gram-positive and Gram-negative bacteria. Additionally, the sample behavior was evaluated against exposure to yeast. Furthermore, based on biocompatibility studies using HFF2 cells, the TC-loaded hydrogel exhibited remarkable biocompatibility. Overall, this novel composite hydrogel shows remarkable biocompatibility and antibacterial activities which can be used as a great potential wound dressing to prevent wound infections due to its effective inhibition of bacterial growth. Full article
(This article belongs to the Special Issue Advanced Biopolymers in Biomedical Application)
Show Figures

Figure 1

16 pages, 14121 KiB  
Article
Customizable Lyophilized Agent for Radiotherapy Imaging and TherapY (CLARITY)
by Michele Moreau, Debarghya China, Gnagna Sy, Kai Ding and Wilfred Ngwa
J. Funct. Biomater. 2024, 15(10), 285; https://doi.org/10.3390/jfb15100285 - 27 Sep 2024
Viewed by 668
Abstract
Smart radiotherapy biomaterials (SRBs) include seed and liquid biomaterials designed to be employed as fiducial markers during radiotherapy while also delivering therapeutic drug payloads to enhance treatment outcomes. In this study, we investigate a novel Customizable Lyophilized Agent for Radiotherapy Imaging and TherapY [...] Read more.
Smart radiotherapy biomaterials (SRBs) include seed and liquid biomaterials designed to be employed as fiducial markers during radiotherapy while also delivering therapeutic drug payloads to enhance treatment outcomes. In this study, we investigate a novel Customizable Lyophilized Agent for Radiotherapy Imaging and TherapY (CLARITY) biomaterial, which can be loaded with immunoadjuvants (anti-CD40 monoclonal antibody or Caflanone (FBL-03G)) at the point of care. The CLARITY biomaterial was investigated in an animal model of pancreatic cancer using C57BL6 mice. Mice were imaged before and at different points of time post-treatment to evaluate the potential of CLARITY biomaterial to provide imaging contrast similar to fiducials. This study also used cadavers to assess CLARITY’s potential to provide imaging contrast in humans. Results showed imaging contrast from computed tomography (CT) and magnetic resonance imaging (MRI) modalities for up to 30 days post-treatment, demonstrating potential for use as fiducials. A significant increase in survival (***, p = 0.0006) was observed for mice treated with CLARITY biomaterial loaded with immunoadjuvant for up to 10 weeks post-treatment compared to those without treatment. These initial results demonstrate the potential of CLARITY biomaterial to serve as a smart multifunctional radiotherapy biomaterial and provide the impetus for further development and optimization as a point-of-care technology for combination radiotherapy and immunotherapy. Full article
(This article belongs to the Special Issue Novel Materials for Cancer Diagnostics and Treatment)
Show Figures

Figure 1

18 pages, 2903 KiB  
Article
Evaluating the Effects of BSA-Coated Gold Nanorods on Cell Migration Potential and Inflammatory Mediators in Human Dermal Fibroblasts
by Nouf N. Mahmoud, Ayat S. Hammad, Alaya S. Al Kaabi, Hend H. Alawi, Summaiya Khatoon and Maha Al-Asmakh
J. Funct. Biomater. 2024, 15(10), 284; https://doi.org/10.3390/jfb15100284 - 26 Sep 2024
Viewed by 872
Abstract
Albumin-coated gold nanoparticles display potential biomedical applications, including cancer research, infection treatment, and wound healing; however, elucidating their interaction with normal cells remains an area with limited exploration. In this study, gold nanorods (GNR) were prepared and coated with bovine serum albumin (BSA) [...] Read more.
Albumin-coated gold nanoparticles display potential biomedical applications, including cancer research, infection treatment, and wound healing; however, elucidating their interaction with normal cells remains an area with limited exploration. In this study, gold nanorods (GNR) were prepared and coated with bovine serum albumin (BSA) to produce GNR-BSA. The functionalized nanoparticles were characterized based on their optical absorption spectra, morphology, surface charge, and quantity of attached protein. The interaction between GNR-BSA and BSA with normal cells was investigated using human dermal fibroblasts. The cytotoxicity test indicated cell viability between ~63–95% for GNR-BSA over concentrations from 30.0 to 0.47 μg/mL and ~85–98% for BSA over concentrations from 4.0 to 0.0625 mg/mL. The impact of the GNR-BSA and BSA on cell migration potential and wound healing was assessed using scratch assay, and the modulation of cytokine release was explored by quantifying a panel of cytokines using Multiplex technology. The results indicated that GNR-BSA, at 10 μg/mL, delayed the cell migration and wound healing 24 h post-treatment compared to the BSA or the control group with an average wound closure percentage of 6% and 16% at 6 and 24 h post-treatment, respectively. Multiplex analysis revealed that while GNR-BSA reduced the release of the pro-inflammatory marker IL-12 from the activated fibroblasts 24 h post-treatment, they significantly reduced the release of IL-8 (p < 0.001), and CCL2 (p < 0.01), which are crucial for the inflammation response, cell adhesion, proliferation, migration, and angiogenesis. Although GNR-BSA exhibited relatively high cell viability towards human dermal fibroblasts and promising therapeutic applications, toxicity aspects related to cell motility and migration must be considered. Full article
(This article belongs to the Special Issue Novel Biomaterials for Tissue Engineering)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop