Next Issue
Volume 5, December
Previous Issue
Volume 5, June

Brain Sci., Volume 5, Issue 3 (September 2015) – 6 articles , Pages 258-386

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Article
Emotion Regulation in Adolescent Males with Attention-Deficit Hyperactivity Disorder: Testing the Effects of Comorbid Conduct Disorder
Brain Sci. 2015, 5(3), 369-386; https://doi.org/10.3390/brainsci5030369 - 07 Sep 2015
Cited by 7 | Viewed by 3091
Abstract
Although attention-deficit hyperactivity disorder (ADHD) has been linked to emotion dysregulation, few studies have experimentally investigated this whilst controlling for the effects of comorbid conduct disorder (CD). Economic decision-making games that assess how individuals respond to offers varying in fairness have been used [...] Read more.
Although attention-deficit hyperactivity disorder (ADHD) has been linked to emotion dysregulation, few studies have experimentally investigated this whilst controlling for the effects of comorbid conduct disorder (CD). Economic decision-making games that assess how individuals respond to offers varying in fairness have been used to study emotion regulation. The present study compared adolescent boys with ADHD (n = 90), ADHD + CD (n = 94) and typical controls (n = 47) on the Ultimatum Game and examined the contribution of ADHD and CD symptom scores and callous and unemotional traits to acceptance levels of unfair offers. There were no significant differences in acceptance rates of fair and highly unfair offers between groups, and only boys with ADHD did not significantly differ from the controls. However, the subgroup of boys with ADHD and additional high levels of aggressive CD symptoms rejected significantly more ambiguous (i.e., moderately unfair) offers than any other subgroup, suggesting impaired emotion regulation in those with ADHD and aggressive CD. Correlations within the CD group showed that the rejection rate to moderately unfair offers was predicted by aggressive CD symptom severity, but not callous and unemotional traits. These findings highlight the fact that ADHD is a heterogeneous condition from an emotion regulation point of view. Full article
(This article belongs to the Special Issue Emotion, Cognition and Behavior)
Show Figures

Figure 1

Article
Facial Feedback Affects Perceived Intensity but Not Quality of Emotional Expressions
Brain Sci. 2015, 5(3), 357-368; https://doi.org/10.3390/brainsci5030357 - 26 Aug 2015
Cited by 10 | Viewed by 2942
Abstract
Motivated by conflicting evidence in the literature, we re-assessed the role of facial feedback when detecting quantitative or qualitative changes in others’ emotional expressions. Fifty-three healthy adults observed self-paced morph sequences where the emotional facial expression either changed quantitatively (i.e., sad-to-neutral, [...] Read more.
Motivated by conflicting evidence in the literature, we re-assessed the role of facial feedback when detecting quantitative or qualitative changes in others’ emotional expressions. Fifty-three healthy adults observed self-paced morph sequences where the emotional facial expression either changed quantitatively (i.e., sad-to-neutral, neutral-to-sad, happy-to-neutral, neutral-to-happy) or qualitatively (i.e. from sad to happy, or from happy to sad). Observers held a pen in their own mouth to induce smiling or frowning during the detection task. When morph sequences started or ended with neutral expressions we replicated a congruency effect: Happiness was perceived longer and sooner while smiling; sadness was perceived longer and sooner while frowning. Interestingly, no such congruency effects occurred for transitions between emotional expressions. These results suggest that facial feedback is especially useful when evaluating the intensity of a facial expression, but less so when we have to recognize which emotion our counterpart is expressing. Full article
(This article belongs to the Special Issue Emotion, Cognition and Behavior)
Show Figures

Figure 1

Review
The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces
Brain Sci. 2015, 5(3), 318-356; https://doi.org/10.3390/brainsci5030318 - 10 Aug 2015
Cited by 19 | Viewed by 3135
Abstract
Individuals with severe neuromuscular impairments face many challenges in communication and manipulation of the environment. Brain-computer interfaces (BCIs) show promise in presenting real-world applications that can provide such individuals with the means to interact with the world using only brain waves. Although there [...] Read more.
Individuals with severe neuromuscular impairments face many challenges in communication and manipulation of the environment. Brain-computer interfaces (BCIs) show promise in presenting real-world applications that can provide such individuals with the means to interact with the world using only brain waves. Although there has been a growing body of research in recent years, much relates only to technology, and not to technology in use—i.e., real-world assistive technology employed by users. This review examined the literature to highlight studies that implicate the human factors and ergonomics (HFE) of P300-based BCIs. We assessed 21 studies on three topics to speak directly to improving the HFE of these systems: (1) alternative signal evocation methods within the oddball paradigm; (2) environmental interventions to improve user performance and satisfaction within the constraints of current BCI systems; and (3) measures and methods of measuring user acceptance. We found that HFE is central to the performance of P300-based BCI systems, although researchers do not often make explicit this connection. Incorporation of measures of user acceptance and rigorous usability evaluations, increased engagement of disabled users as test participants, and greater realism in testing will help progress the advancement of P300-based BCI systems in assistive applications. Full article
Show Figures

Figure 1

Article
Identification and Characterization of GABAergic Projection Neurons from Ventral Hippocampus to Amygdala
Brain Sci. 2015, 5(3), 299-317; https://doi.org/10.3390/brainsci5030299 - 31 Jul 2015
Cited by 14 | Viewed by 4360
Abstract
GABAergic local circuit neurons are critical for the network activity and functional interaction of the amygdala and hippocampus. Previously, we obtained evidence for a GABAergic contribution to the hippocampal projection into the basolateral amygdala. Using fluorogold retrograde labeling, we now demonstrate that this [...] Read more.
GABAergic local circuit neurons are critical for the network activity and functional interaction of the amygdala and hippocampus. Previously, we obtained evidence for a GABAergic contribution to the hippocampal projection into the basolateral amygdala. Using fluorogold retrograde labeling, we now demonstrate that this projection indeed has a prominent GABAergic component comprising 17% of the GABAergic neurons in the ventral hippocampus. A majority of the identified GABAergic projection neurons are located in the stratum oriens of area CA1, but cells are also found in the stratum pyramidale and stratum radiatum. We could detect the expression of different markers of interneuron subpopulations, including parvalbumin and calbindin, somatostatin, neuropeptide Y, and cholecystokinin in such retrogradely labeled GABA neurons. Thus GABAergic projection neurons to the amygdala comprise a neurochemically heterogeneous group of cells from different interneuron populations, well situated to control network activity patterns in the amygdalo-hippocampal system. Full article
Show Figures

Figure 1

Review
Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains
Brain Sci. 2015, 5(3), 275-298; https://doi.org/10.3390/brainsci5030275 - 29 Jul 2015
Cited by 27 | Viewed by 4676
Abstract
Dystrophin-glycoprotein complex (DGC) is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin) of a muscle fiber to the extracellular matrix (ECM). Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies), and limb-girdle muscular [...] Read more.
Dystrophin-glycoprotein complex (DGC) is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin) of a muscle fiber to the extracellular matrix (ECM). Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies), and limb-girdle muscular dystrophies (sarcoglycanopathies), are caused by mutations in the different DGC components. Although many early studies indicated DGC plays a crucial mechanical role in maintaining the structural integrity of skeletal muscle, recent studies identified novel roles of DGC. Beyond a mechanical role, these DGC members play important signaling roles and act as a scaffold for various signaling pathways. For example, neuronal nitric oxide synthase (nNOS), which is localized at the muscle membrane by DGC members (dystrophin and syntrophins), plays an important role in the regulation of the blood flow during exercise. DGC also plays important roles at the neuromuscular junction (NMJ) and in the brain. In this review, we will focus on recently identified roles of DGC particularly in exercise and the brain. Full article
(This article belongs to the Special Issue Exercise and Brain Function)
Show Figures

Figure 1

Review
Early Life Stress, Nicotinic Acetylcholine Receptors and Alcohol Use Disorders
Brain Sci. 2015, 5(3), 258-274; https://doi.org/10.3390/brainsci5030258 - 30 Jun 2015
Cited by 13 | Viewed by 4381
Abstract
Stress is a major driving force in alcohol use disorders (AUDs). It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and [...] Read more.
Stress is a major driving force in alcohol use disorders (AUDs). It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc) following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs) play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD. Full article
(This article belongs to the Special Issue Addiction and Neuroadaptation)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop