Habitat Suitability of the Common Leopard (Panthera pardus) in Azad Jammu and Kashmir, Pakistan: A Dual-Model Approach Using MaxEnt and Random Forest
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
2.4. Screening of Environmental Factors
2.5. Approach to Delineating Potential Leopard Habitats
2.5.1. MaxEnt Approach
2.5.2. Random Forest (RF) Approach
3. Results
3.1. Habitat Suitability by the MaxEnt Approach
3.2. Habitat Suitability by the RF Approach
3.3. Algorithm Performance Comparison
3.4. Relative Contribution and Influence of Habitat Predictors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sheehy, J.; Taylor, C.M.; McCann, K.S.; Norris, D.R. Optimal Conservation Planning for Migratory Animals: Integrating Demographic Information across Seasons. Conserv. Lett. 2010, 3, 192–202. [Google Scholar] [CrossRef]
- Aryal, A.; Raubenheimer, D.; Sathyakumar, S.; Poudel, B.S.; Ji, W.; Kunwar, K.J.; Kok, J.; Kohshima, S.; Brunton, D. Conservation strategy for brown bear and its habitat in Nepal. Diversity 2012, 4, 301–317. [Google Scholar] [CrossRef]
- Andreychev, A.V.; Zhalilov, A.B.; Kuznetsov, V.A. The state of local steepe woodchuck (Marmota bobak) populations in the Republic of Mordovia. Zool. Zhurnal 2015, 94, 723–730. [Google Scholar] [CrossRef]
- Awan, M.N.; Yaqub, A.; Kamran, M. Survey of Human-Leopard (Panthera pardus) Conflict in Ayubia National Park, Pakistan. J. Bioresour. Manag. 2020, 7, 39–46. [Google Scholar] [CrossRef]
- Kabir, M.; Ghoddousi, A.; Awan, M.S.; Awan, M.N. Assessment of Human–Leopard Conflict in Machiara National Park, Azad Jammu and Kashmir, Pakistan. Eur. J. Wildl. Res. 2014, 60, 291–296. [Google Scholar] [CrossRef]
- Carter, N.; Jasny, M.; Gurung, B.; Liu, J. Impacts of People and Tigers on Leopard Spatiotemporal Activity Patterns in a Global Biodiversity Hotspot. Glob. Ecol. Conserv. 2015, 3, 149–162. [Google Scholar] [CrossRef]
- Muleta Gurmessa, M.; Badasa Moisa, M.; Jira Tesso, G.; Geleta Erena, M. Impacts of Land Use Land Cover Change on Leopard (Panthera pardus) Habitat Suitability and Its Effects on Human Wildlife Conflict in Hirkiso Forest, Sibu Sire District, Western Ethiopia. All Earth 2024, 36, 1–24. [Google Scholar] [CrossRef]
- Lovari, S.; Ventimiglia, M.; Minder, I. Food Habits of Two Leopard Species, Competition, Climate Change and Upper Treeline: A Way to the Decrease of an Endangered Species? Ethol. Ecol. Evol. 2013, 25, 305–318. [Google Scholar] [CrossRef]
- Zahoor, B.; Liu, X.; Ahmad, B.; Kumar, L.; Songer, M. Impact of Climate Change on Asiatic Black Bear (Ursus thibetanus) and Its Autumn Diet in the Northern Highlands of Pakistan. Glob. Change Biol. 2021, 27, 4294–4306. [Google Scholar] [CrossRef]
- Li, J.; Xue, Y.; Hacker, C.E.; Zhang, Y.; Li, Y.; Cong, W.; Jin, L.; Li, G.; Wu, B.; Li, D.; et al. Projected Impacts of Climate Change on Snow Leopard Habitat in Qinghai Province, China. Ecol. Evol. 2021, 11, 17202–17218. [Google Scholar] [CrossRef]
- Li, J.; McCarthy, T.M.; Wang, H.; Weckworth, B.V.; Schaller, G.B.; Mishra, C.; Lu, Z.; Beissinger, S.R. Climate Refugia of Snow Leopards in High Asia. Biol. Conserv. 2016, 203, 188–196. [Google Scholar] [CrossRef]
- Poudel, S.; Twining, J.P.; Stedman, R.C.; Ghimire, S.K.; Fuller, A.K. Ecological and Anthropogenic Drivers of Leopard (Panthera pardus fusca) Attack Occurrence on Humans in Nepal. People Nat. 2023, 5, 1977–1988. [Google Scholar] [CrossRef]
- Naha, D.; Dash, S.K.; Chettri, A.; Chaudhary, P.; Sonker, G.; Heurich, M.; Rawat, G.S.; Sathyakumar, S. Landscape Predictors of Human–Leopard Conflicts within Multi-Use Areas of the Himalayan Region. Sci. Rep. 2020, 10, 11129. [Google Scholar] [CrossRef] [PubMed]
- Nyhus, P.J. Human–Wildlife Conflict and Coexistence. Annu. Rev. Environ. Resour. 2016, 41, 143–171. [Google Scholar] [CrossRef]
- Treves, A.; Karanth, K.U. Human-Carnivore Conflict and Perspectives on Carnivore Management Worldwide. Conserv. Biol. 2003, 17, 1491–1499. [Google Scholar] [CrossRef]
- Redpath, S.M.; Young, J.; Evely, A.; Adams, W.M.; Sutherland, W.J.; Whitehouse, A.; Amar, A.; Lambert, R.A.; Linnell, J.D.C.; Watt, A.; et al. Understanding and Managing Conservation Conflicts. Trends Ecol. Evol. 2013, 28, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Lynam, A.J.; Rabinowitz, A.; Myint, T.; Maung, M.; Latt, K.T.; Po, S.H.T. Estimating Abundance with Sparse Data: Tigers in Northern Myanmar. Popul. Ecol. 2009, 51, 115–121. [Google Scholar] [CrossRef]
- Miller, J.R.B.; Jhala, Y.V.; Jena, J.; Schmitz, O.J. Landscape-scale Accessibility of Livestock to Tigers: Implications of Spatial Grain for Modeling Predation Risk to Mitigate Human–Carnivore Conflict. Ecol. Evol. 2015, 5, 1354–1367. [Google Scholar] [CrossRef]
- Patterson, B.D.; Kasiki, S.M.; Selempo, E.; Kays, R.W. Livestock Predation by Lions (Panthera leo) and Other Carnivores on Ranches Neighboring Tsavo National ParkS, Kenya. Biol. Conserv. 2004, 119, 507–516. [Google Scholar] [CrossRef]
- Miller, J.R.B. Mapping Attack Hotspots to Mitigate Human–Carnivore Conflict: Approaches and Applications of Spatial Predation Risk Modeling. Biodivers. Conserv. 2015, 24, 2887–2911. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Farashi, A.; Rashki, A. Habitat Suitability of Persian Leopard (Panthera pardus saxicolor) in Iran in Future. Environ. Earth Sci. 2017, 76, 697. [Google Scholar] [CrossRef]
- Rostro-García, S.; Kamler, J.F.; Ash, E.; Clements, G.R.; Gibson, L.; Lynam, A.J.; McEwing, R.; Naing, H.; Paglia, S. Endangered Leopards: Range Collapse of the Indochinese Leopard (Panthera pardus delacouri) in Southeast Asia. Biol. Conserv. 2016, 201, 293–300. [Google Scholar] [CrossRef]
- Kabir, M.; Awan, M.S.; Anwar, M. Distribution Range and Population Status of Common Leopard (Panthera pardus) in and Around Machiara National Park, Azad Jammu and Kashmir. Int. J. Conserv. Sci. 2013, 4, 107. [Google Scholar]
- Stein, A.B.; Athreya, V.; Gerngross, P.; Balme, G.; Henschel, P.; Karanth, U.; Miquelle, D.; Rostro-Garcia, S.; Kamler, J.F.; Laguardia, A.; et al. The IUCN Red List of Threatened Species; E.T15954A163991139; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2020. [Google Scholar]
- Sheikh, M.K.; Molur, S. Status and Red List of Pakistan’s Mammals Based on the Pakistan Mammal Conservation Assessment & Management; Plan 312; IUCN Pakistan: Islamabad, Pakistan, 2004. [Google Scholar]
- Di Sora, N.; Mannu, R.; Rossini, L.; Contarini, M.; Gallego, D.; Speranza, S. Using Species Distribution Models (SDMs) to Estimate the Suitability of European Mediterranean Non-Native Area for the Establishment of Toumeyella parvicornis (Hemiptera: Coccidae). Insects 2023, 14, 46. [Google Scholar] [CrossRef]
- Ahmed, R.; Huang, W.; Dong, Y.; Guo, J.; Dildar, Z.; Rahman, Z.U.; Zhang, Y.; Zhang, X.; Du, B.; Yue, F. Assessment of Habitat Suitability for Oedaleus decorus asiaticus Using MaxEnt and Frequency Ratio Model in Xilingol League, China. Remote Sens. 2025, 17, 846. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.P.H.; Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Akrim, F.; Kellner, K.F.; Mahmood, T.; Waseem, M.; Zangi, I.; Qasim, S.; Aslam, A.; Hashmi, S.A.; Shoukat, H.B.; Raqeeb, M.; et al. Habitat Suitability of Common Leopard in Northern Pakistan. Ecosphere 2025, 16, e70218. [Google Scholar] [CrossRef]
- Baral, K.; Adhikari, B.; Bhandari, S.; Kunwar, R.M.; Sharma, H.P.; Aryal, A.; Ji, W. Impact of Climate Change on Distribution of Common Leopard (Panthera pardus) and Its Implication on Conservation and Conflict in Nepal. Heliyon 2023, 9, e12807. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Evans, J.S.; Murphy, M.A.; Holden, Z.A.; Cushman, S.A. Modeling Species Distribution and Change Using Random Forest. In Predictive Species and Habitat Modeling in Landscape Ecology; Drew, C.A., Wiersma, Y.F., Huettmann, F., Eds.; Springer: New York, NY, USA, 2011; pp. 139–159. ISBN 978-1-4419-7389-4. [Google Scholar]
- Swanepoel, L.H.; Lindsey, P.; Somers, M.J.; Van Hoven, W.; Dalerum, F. Extent and Fragmentation of Suitable Leopard Habitat in South Africa. Anim. Conserv. 2013, 16, 41–50. [Google Scholar] [CrossRef]
- Maharjan, B.; Shahnawaz, D.; Thapa, T.B.; Man Shrestha, P. Geo-Spatial Analysis of Habitat Suitability for Common Leopard (Panthera pardus linnaeus, 1758) in Shivapuri Nagarjun National Park, Nepal. Environ. Ecol. Res. 2017, 5, 117–128. [Google Scholar] [CrossRef]
- Balme, G.A.; Slotow, R.; Hunter, L.T.B. Edge Effects and the Impact of Non-protected Areas in Carnivore Conservation: Leopards in the Phinda–Mkhuze Complex, South Africa. Anim. Conserv. 2010, 13, 315–323. [Google Scholar] [CrossRef]
- Jacobson, A.P.; Gerngross, P.; Lemeris, J.R., Jr.; Schoonover, R.F.; Anco, C.; Breitenmoser-Würsten, C.; Durant, S.M.; Farhadinia, M.S.; Henschel, P.; Kamler, J.F.; et al. Leopard (Panthera pardus) Status, Distribution, and the Research Efforts across Its Range. PeerJ 2016, 4, e1974. [Google Scholar] [CrossRef]
- Marker, L.L.; Dickman, A.J. Factors Affecting Leopard (Panthera pardus) Spatial Ecology, with Particular Reference to Namibian Farmlands. S. Afr. J. Wildl. Res. 24-Mon. Delayed Open Access 2005, 35, 105–115. [Google Scholar]
- Ishtiaq, M.; Sardar, T.; Hussain, I.; Maqbool, M.; Mazhar, M.W.; Parveen, A.; Ajaib, M.; Bhatti, K.H.; Hussain, T.; Gul, A.; et al. Traditional Ethnobotanical Knowledge of Important Local Plants in Sudhnoti, Azad Kashmir, Pakistan. Sci. Rep. 2024, 14, 22165. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.F.; Khan, I.A. Spatiotemporal Land Use Land Cover Change Analysis and Erosion Risk Mapping of Azad Jammu and Kashmir, Pakistan. Egypt. J. Remote Sens. Space Sci. 2014, 17, 209–229. [Google Scholar] [CrossRef]
- Shaheen, H.; Aziz, S.; Nasar, S.; Waheed, M.; Manzoor, M.; Siddiqui, M.H.; Alamri, S.; Haq, S.M.; Bussmann, R.W. Distribution Patterns of Alpine Flora for Long-Term Monitoring of Global Change along a Wide Elevational Gradient in the Western Himalayas. Glob. Ecol. Conserv. 2023, 48, e02702. [Google Scholar] [CrossRef]
- Azad Jammu and Kashmir at a Glance; Planning & Development Department of AJK Government: Islamabad, Pakistan, 2017.
- Abdullah, A.; Abbasi, M.S.; Ali, A.; Saeed, M.W.; Sayed, M.; Qazi, A.G. Residential Solid Waste Generation and Classification Study of Ten Headquarter Cities of Azad Jammu & Kashmir, Pakistan. J. Mater. Cycles Waste Manag. 2021, 23, 2065–2075. [Google Scholar] [CrossRef]
- Hassan, I.; Javed, M.A.; Asif, M.; Luqman, M.; Rashid, S.; Ahmad, A.; Akhtar, S.; Hussain, B. Weighted Overlay Based Land Suitability Analysis of Agriculture Land in Azad Jammu and Kashmir Using Gis and Ahp. Pak. J. Agric. Sci. 2020, 57, 1509–1519. [Google Scholar]
- Khan, Z.M. Protected Areas of Pakistan: Wildlife of Some Selected National Parks: A review. Can. J. Pure Appl. Sci. 2023, 17, 5621–5636. [Google Scholar]
- Wilson, G.J.; Delahay, R.J. A Review of Methods to Estimate the Abundance of Terrestrial Carnivores Using Field Signs and Observation. Wildl. Res. 2001, 28, 151. [Google Scholar] [CrossRef]
- Arandjelovic, M.; Head, J.; Rabanal, L.I.; Schubert, G.; Mettke, E.; Boesch, C.; Robbins, M.M.; Vigilant, L. Non-Invasive Genetic Monitoring of Wild Central Chimpanzees. PLoS ONE 2011, 6, e14761. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, F.; Burgess, N.D.; Balmford, A. Monitoring Matters: Examining the Potential of Locally-Based Approaches. Biodivers. Conserv. 2005, 14, 2507–2542. [Google Scholar] [CrossRef]
- Karanth, K.K.; Nichols, J.D.; Karanth, K.U.; Hines, J.E.; Christensen, N.L. The Shrinking Ark: Patterns of Large Mammal Extinctions in India. Proc. R. Soc. B 2010, 277, 1971–1979. [Google Scholar] [CrossRef]
- Baskaran, N.; Boominathan, D. Road Kill of Animals by Highway Traffic in the Tropical Forests of Mudumalai Tiger Reserve, Southern India. J. Threat. Taxa 2010, 2, 753–759. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Bujang, M.A.; Baharum, N. A Simplified Guide to Determination of Sample Size Requirements for Estimating the Value of Intraclass Correlation Coefficient: A Review. Arch. Orofac. Sci. 2017, 12, 1–11. [Google Scholar]
- Zhang, X.; Huang, W.; Ye, H.; Lu, L. Study on the Identification of Habitat Suitability Areas for the Dominant Locust Species Dasyhippus Barbipes in Inner Mongolia. Remote Sens. 2023, 15, 1718. [Google Scholar] [CrossRef]
- Ahmed, N.; Firoze, A.; Rahman, R.M. Machine Learning for Predicting Landslide Risk of Rohingya Refugee Camp Infrastructure. J. Inf. Telecommun. 2020, 4, 175–198. [Google Scholar] [CrossRef]
- As’ary, M.; Setiawan, Y.; Rinaldi, D. Analysis of Changes in Habitat Suitability of the Javan Leopard (Panthera pardus melas, Cuvier 1809) on Java Island, 2000–2020. Diversity 2023, 15, 529. [Google Scholar] [CrossRef]
- Kabir, M.; Hameed, S.; Ali, H.; Bosso, L.; Din, J.U.; Bischof, R.; Redpath, S.; Nawaz, M.A. Habitat Suitability and Movement Corridors of Grey Wolf (Canis lupus) in Northern Pakistan. PLoS ONE 2017, 12, e0187027. [Google Scholar] [CrossRef]
- Kittle, A.M.; Watson, A.C.; Kumara, P.H.S.C.; Sandanayake, S.D.K.C.; Sanjeewani, H.K.N.; Fernando, T.S.P. Notes on the Diet and Habitat Selection of the Sri Lankan Leopard Panthera Pardus Kotiya (Mammalia: Felidae) in the Central Highlands of Sri Lanka. J. Threat. Taxa 2014, 6, 6214–6221. [Google Scholar] [CrossRef]
- Odden, M.; Athreya, V.; Rattan, S.; Linnell, J.D.C. Adaptable Neighbours: Movement Patterns of GPS-Collared Leopards in Human Dominated Landscapes in India. PLoS ONE 2014, 9, e112044. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, B.; Songer, M.; Liu, X.; Huang, Q.; Dai, Y. Identifying Stable and Overlapping Habitats for a Predator (Common Leopard) and Prey Species (Himalayan Grey Goral & Himalayan Grey Langur) in Northern Pakistan. Glob. Ecol. Conserv. 2023, 43, e02418. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W.; Han, Y.; Zhou, T. Predicting the Impact of Climate Change on the Distribution of North China Leopards (Panthera pardus japonensis) in Gansu Province Using MaxEnt Modeling. Biology 2025, 14, 126. [Google Scholar] [CrossRef]
- Ngoprasert, D.; Lynam, A.J.; Gale, G.A. Human Disturbance Affects Habitat Use and Behaviour of Asiatic Leopard Panthera Pardus in Kaeng Krachan National Park, Thailand. Oryx 2007, 41, 343–351. [Google Scholar] [CrossRef]
- Battin, J. When Good Animals Love Bad Habitats: Ecological Traps and the Conservation of Animal Populations. Conserv. Biol. 2004, 18, 1482–1491. [Google Scholar] [CrossRef]
- Karki, J.B.; Jnawali, S.R.; Gurung, G.; Pandey, M.B.; Upadhyay, G.P. Tiger Conservation Initiatives in Nepal. Initiat. 1970, 4, 56–68. [Google Scholar] [CrossRef]
- Hilty, J.; Worboys, G.L.; Keeley, A.; Woodley, S.; Lausche, B.J.; Locke, H.; Carr, M.; Pulsford, I.; Pittock, J.; White, J.W.; et al. Guidelines for Conserving Connectivity Through Ecological Networks and Corridors; Groves, C., Ed.; IUCN, International Union for Conservation of Nature: Gland, Switzerland, 2020; ISBN 978-2-8317-2052-4. [Google Scholar]
- Cong, W.; Li, J.; Zhang, Y.; Huang, T.; Gao, S.; Yu, J.; Zhang, Y.; Li, D. Snow Leopard Habitat Vulnerability Assessment under Climate Change and Connectivity Corridor in Xinjiang Uygur Autonomous Region, China. Sci. Rep. 2025, 15, 14583. [Google Scholar] [CrossRef]
- Dickman, A.; Marchini, S.; Manfredo, M. The Human Dimension in Addressing Conflict with Large Carnivores. In Key Topics in Conservation Biology 2; Macdonald, D.W., Willis, K.J., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 110–126. ISBN 978-0-470-65876-5. [Google Scholar]
- Goodrich, J.M.; Seryodkin, I.; Miquelle, D.G.; Bereznuk, S.L. Conflicts between Amur (Siberian) Tigers and Humans in the Russian Far East. Biol. Conserv. 2011, 144, 584–592. [Google Scholar] [CrossRef]
- Bauer, H.; De Iongh, H.; Sogbohossou, E. Assessment and Mitigation of Human-Lion Conflict in West and Central Africa. Mammalia 2010, 74, 363–367. [Google Scholar] [CrossRef]
- Chapron, G.; Kaczensky, P.; Linnell, J.D.C.; Von Arx, M.; Huber, D.; Andrén, H.; López-Bao, J.V.; Adamec, M.; Álvares, F.; Anders, O.; et al. Recovery of Large Carnivores in Europe’s Modern Human-Dominated Landscapes. Science 2014, 346, 1517–1519. [Google Scholar] [CrossRef]
- Treves, A.; Wallace, R.B.; White, S. Participatory Planning of Interventions to Mitigate Human–Wildlife Conflicts. Conserv. Biol. 2009, 23, 1577–1587. [Google Scholar] [CrossRef]
- Ibisch, P.L.; Hoffmann, M.T.; Kreft, S.; Pe’er, G.; Kati, V.; Biber-Freudenberger, L.; DellaSala, D.A.; Vale, M.M.; Hobson, P.R.; Selva, N. A Global Map of Roadless Areas and Their Conservation Status. Science 2016, 354, 1423–1427. [Google Scholar] [CrossRef]
Variable and Description | Abbreviation | Unit | Data Source |
---|---|---|---|
Mean Annual Temperature | Bio1 | °C | Worldclim |
Mean Diurnal Range (i.e., mean of monthly (max. temp.–min. temp.)) | Bio2 | °C | Worldclim |
Mean Annual Temperature Range (i.e., bio2/bio7×100) | Bio3 | °C | Worldclim |
Temperature Seasonality | Bio4 | °C | Worldclim |
Max. Temperature of Warmest Month | Bio5 | °C | Worldclim |
Min Temperature of Coldest Month | Bio6 | °C | Worldclim |
Annual Temperature Range (i.e., bio5–bio6) | Bio7 | °C | Worldclim |
Mean Temperature of Wettest Quarter | Bio8 | °C | Worldclim |
Mean Temperature of Driest Quarter | Bio9 | °C | Worldclim |
Mean Temperature of Warmest Quarter | Bio10 | °C | Worldclim |
Mean Temperature of Coldest Quarter | Bio11 | °C | Worldclim |
Annual Precipitation | Bio12 | mm | Worldclim |
Precipitation Level in Wettest Month | Bio13 | mm | Worldclim |
Precipitation Level in Driest Month | Bio14 | mm | Worldclim |
Precipitation Seasonality (i.e., coefficient of variation) | Bio15 | % | Worldclim |
Precipitation Level in Wettest Quarter | Bio16 | mm | Worldclim |
Precipitation Level in Driest Quarter | Bio17 | mm | Worldclim |
Precipitation Level in Warmest Quarter | Bio18 | mm | Worldclim |
Precipitation Level Coldest Quarter | Bio19 | mm | Worldclim |
Specific humidity | SH | g/kg | FLDAS |
Fractional Vegetation Coverage | FVC | % | MOD13A2 |
Land cover | LC | categorical | MCD12Q1.061 |
Elevation | Elevation | m | GDEM V2/3 |
Slope | Slope | ° | Calculation in ArcGIS |
Aspect | Aspect | ° | Calculation in ArcGIS |
Distance to road | Dist_road | Km | The Humanitarian Data Exchange |
Population Density | PD | km | The Humanitarian Data Exchange |
Distance to the river | Dist_iver | m | HYDROSHEDS |
Environmental Variable | Category | Suitability Score |
---|---|---|
LC | Mixed forests | 0.83 |
LC | cropland-natural vegetation mosaics | 0.71 |
LC | Woody savannas | 0.67 |
LC | savannas | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dildar, Z.; Huang, W.; Ahmed, R.; Khalid, Z. Habitat Suitability of the Common Leopard (Panthera pardus) in Azad Jammu and Kashmir, Pakistan: A Dual-Model Approach Using MaxEnt and Random Forest. Environments 2025, 12, 203. https://doi.org/10.3390/environments12060203
Dildar Z, Huang W, Ahmed R, Khalid Z. Habitat Suitability of the Common Leopard (Panthera pardus) in Azad Jammu and Kashmir, Pakistan: A Dual-Model Approach Using MaxEnt and Random Forest. Environments. 2025; 12(6):203. https://doi.org/10.3390/environments12060203
Chicago/Turabian StyleDildar, Zeenat, Wenjiang Huang, Raza Ahmed, and Zeeshan Khalid. 2025. "Habitat Suitability of the Common Leopard (Panthera pardus) in Azad Jammu and Kashmir, Pakistan: A Dual-Model Approach Using MaxEnt and Random Forest" Environments 12, no. 6: 203. https://doi.org/10.3390/environments12060203
APA StyleDildar, Z., Huang, W., Ahmed, R., & Khalid, Z. (2025). Habitat Suitability of the Common Leopard (Panthera pardus) in Azad Jammu and Kashmir, Pakistan: A Dual-Model Approach Using MaxEnt and Random Forest. Environments, 12(6), 203. https://doi.org/10.3390/environments12060203