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Abstract: The common leopard (Panthera pardus) in Azad Jammu and Kashmir (AJ and K),
Pakistan, is increasingly threatened by habitat fragmentation and climate change. This
study employs a dual-model approach, integrating Maximum Entropy (MaxEnt) and Ran-
dom Forest algorithms with multi-source remote sensing data to evaluate leopard habitat
suitability. Our analysis identifies land cover (LC), fractional vegetation cover (FVC),
elevation, temperature seasonality (bio4), and distance to roads (Dist_road) as the most
influential habitat predictors. Leopards exhibit a strong preference for mixed forests at
elevations between 1000 and 3000 m, with a suitability index of 0.83. The study identifies
several unsuitable conditions including: road proximity (<0.08 km), low elevation zones
(<1000 m), areas with high temperature seasonality (bio4 > 8 ◦C), and non-forested land
cover types. MaxEnt demonstrated superior habitat prediction accuracy over Random
Forest (AUC = 0.912 vs. 0.827). The results highlight a distinct north-to-south suitability gra-
dient, with optimal habitats concentrated in the northern districts (Muzaffarabad, Hattian,
Neelum, Bagh, Haveli, Poonch, Sudhnutti) and declining suitability in human-dominated
southern areas. Based on these findings, this study underscores the urgency of targeted
conservation efforts in the northern districts of AJ and K, where optimal leopard habitats
are identified. The findings emphasize the need for habitat connectivity and protection
measures to mitigate the impacts of habitat fragmentation and climate change. Future
conservation strategies should prioritize the preservation of mixed forests and the estab-
lishment of buffer zones around roads to ensure the long-term survival of the common
leopard in this region.

Keywords: common leopard; MaxEnt; random forest (RF) approach; habitat suitability;
habitat predictors; remote sensing

1. Introduction
Adequate habitats support wildlife populations, offering vital resources such as food,

shelter, and breeding grounds [1]. Based on these habitat criteria, stable or vulnerable pop-
ulations of wild animals are formed [2,3]. However, human-induced activities—including
deforestation, habitat fragmentation, poaching, and land-use modifications—have signifi-
cantly degraded the natural habitats of the common leopard, as well as its prey base [4–7].
Moreover, large-bodied species with slow reproductive rates, such as the common leopard,
are particularly vulnerable to the adverse consequences of climate change [8,9]. Rising
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temperatures and shifting ecological conditions may reduce suitable habitats, alter forest
boundaries, and diminish prey availability [10,11]. As habitats shrink and become more
fragmented, prey populations may decline, which can further influence the spatial distri-
bution of the common leopard by reducing the availability of food resources [12]. Such
ecological disruptions could exacerbate food shortages, potentially intensifying conflicts
between leopards and humans [13].

Conflicts between humans and large carnivores have become increasingly prevalent
across various regions [14], posing significant challenges for communities coexisting with
these predators [15]. Prolonged negative interactions can escalate tensions among con-
servation stakeholders, potentially undermining public support for wildlife protection
initiatives [16]. Ecological studies by Lynam et al. (2009), Miller et al. (2015), and Patterson
et al. (2004) reveal that large felids (Panthera sp.)—particularly tigers (Panthera tigris), leop-
ards (Panthera pardus), and lions (Panthera leo)—are involved in human-wildlife conflicts at
rates exceeding their relative abundance [17–19]. Notably, a total of 312 attacks claiming
433 head of stock by lions were examined [19,20].

The common leopard (P. pardus) is a highly adaptable yet threatened felid with the
broadest geographic range among large cats, spanning Africa (estimated population:
250,000–750,000) and Asia (estimated population: 12,000–14,000), though precise num-
bers remain uncertain due to their wide distribution and elusive nature [21,22]. In Pakistan,
this species inhabits fragmented landscapes, including the highlands of Balochistan and
Sindh, as well as the montane forests of Punjab, Khyber Pakhtunkhwa (KP), and Azad
Jammu and Kashmir (AJ and K) [23]. Notably, AJ and K’s rugged terrain serves as a critical
stronghold for the species, though habitat fragmentation poses increasing threats to its
long-term survival [5]. Globally, the common leopard is classified as Vulnerable on the
IUCN Red List [24]; but its status in Pakistan is more severe, being considered Critically
Endangered nationally due to habitat degradation and fragmentation, prey depletion,
retaliatory killings, overexploitation, and poaching for illegal wildlife trade; in Pakistan,
the population density is estimated at 6–9 individuals per 135.32 km2 [23,25].

Species Distribution Models (SDMs) are critical tools for assessing habitat suitabil-
ity under changing environmental conditions [26]. These models correlate species oc-
currence data with ecological variables to predict potential habitats using statistical and
machine-learning algorithms [27,28]. Common SDM approaches include Maximum En-
tropy (MaxEnt), Generalized Linear Models (GLMs), Random Forests (RFs), GARP, and
BIOCLIM [29]. While MaxEnt is particularly effective for rare species like the common
leopard due to its ability to handle small sample sizes and complex environmental rela-
tionships [30–32], RF offers distinct advantages for habitat modelling in heterogeneous
landscapes like AJ and K. The RF algorithm, an ensemble machine learning method, excels
at handling high-dimensional datasets by constructing multiple decision trees and aggre-
gating their predictions [33]. This method is especially effective at identifying nonlinear
connections between environmental factors and automatically determining their signif-
icance [34], which makes it ideal for examining the intricate interactions among terrain,
vegetation, and human-related elements that influence species distribution [35]. Environ-
mental factors affect leopard distribution in various ways across different regions. Previous
studies have analyzed habitat suitability in specific areas using anthropogenic factors and
the MaxEnt model [36]. For instance, researchers have utilized MaxEnt to evaluate poten-
tial leopard habitats by considering elevation, road density, settlement density, and land
cover [31,37]. Furthermore, some studies have investigated the influence of forest type,
prey availability, terrain ruggedness, and human activity on leopard presence [6,38–40].
For accurate habitat predictions, it is crucial to select environmental variables based on
regional conditions [26]. However, limited research systematically analyses how different
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factors shape leopard distribution. Therefore, further studies are needed to monitor leop-
ard potential habitat and evaluate the environmental drivers affecting their survival and
movement patterns.

This study employs an integrated modelling approach combining Maximum Entropy
(MaxEnt) and Random Forest (RF) methods with multi-source remote sensing data and
verified leopard presence records across Azad Jammu and Kashmir (AJ and K) to assess
habitat suitability. The research addresses four primary objectives: (1) to model the spatial
distribution of the common leopard (P. pardus) throughout AJ and K’s diverse landscapes;
(2) to identify key habitat factors driving leopard distribution patterns and quantify their
relative ecological importance; (3) to evaluate the predictive performance of both MaxEnt
and RF approaches in identifying suitable leopard habitats; and (4) to delineate and map
priority conservation areas supporting viable leopard populations in the region. These
findings will provide wildlife managers and policymakers with critical tools for proactive
conservation planning and habitat protection strategies for the common leopard.

2. Materials and Methods
2.1. Study Area

Azad Jammu and Kashmir (AJ and K), located in the northern part of Pakistan (32–36◦ N,
73–75◦ E), encompasses a rugged, mountainous landscape spanning approximately
13,297 km2 [41]. The region is part of the broader Himalayan biodiversity hotspot, having
71 species of mammals and is characterized by dramatic elevation gradients (232–5432 m
above sea level; Figure 1B), fostering diverse ecosystems ranging from subtropical broadleaf
forests to alpine meadows [42,43]. Administratively divided into ten districts (Figure 1A),
AJK exhibits distinct geographic zones: the relatively flat southern districts (Bhimber, Mir-
pur, Kotli) contrast sharply with the rugged northern districts (Poonch, Bagh, Muzaffarabad,
Haveli, Hattian, Sudhnoti, Neelum) dominated by high mountain peaks [44]. Climatic
conditions range from dry subtropical in the south (summer temperatures reaching 45 ◦C)
to moist temperate in the north (winter averages of 4–7 ◦C), with annual precipitation
varying between 1000 and 2000 mm [45]. The Jhelum, Neelum, and Poonch river systems
sustain agriculture on terraced slopes [46], while 20 protected areas—comprising 8 National
Parks, 1 Wildlife Sanctuary, and 11 Game Reserves [47]—strive to conserve biodiversity
amid growing environmental pressures.

2.2. Data Collection

Presence data for the common leopard (Panthera pardus) were systematically com-
piled across Azad Jammu and Kashmir (AJ and K) from 2018 to 2023 using an integrative,
incident-driven and participatory approach. Rather than implementing predefined transect
surveys, data collection was generated by reports of leopard-related incidents—primarily
livestock depredation (goats, sheep, cattle) and retaliatory killings—gathered through local
informants, field officers, and official records from the AJ and K Wildlife Department. Each
incident report was cross-verified through multiple sources, including interviews with local
herders, community elders, wildlife officials, and media reports to ensure data reliability.
Only reports confirmed by at least two independent sources were retained. Field teams then
visited these locations to conduct focused observations. At each site, the precise location of
leopard occurrence was recorded using a handheld GPS device (GARMIN GPS MAP 72H)
with ±7 m spatial accuracy. Indirect field signs including scat, pugmarks, scratch marks,
and territorial markings were identified using established field protocols and illustrated
guides during our field visit when conducted focused observations [48,49]. Observations
were validated through consultation with local wildlife experts and community knowl-
edge to reduce the risk of misidentification. Structured interviews were conducted with
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eyewitnesses and livestock owners to collect supplementary data on depredation events,
retaliation, and historical sightings. Media reports, including local newspapers and online
platforms, were reviewed to extract additional location-specific information and verify
reported events [50]. This multi-year, cross-seasonal dataset resulted in the identification of
70 distinct, geo-referenced leopard presence points across diverse landscapes of AJ and K.
This approach, though opportunistic, aligns with best practices for large carnivore surveys
in resource-constrained, human-dominated landscapes, and provides a sufficiently accurate
dataset for habitat suitability modelling [51,52].

 

Figure 1. (A) Location of the study area; (B) Elevation of the study area; (C) Leopard points in the
study area.
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Climatic variables included 19 bioclimatic parameters (Bio1–Bio19), sourced from
WorldClim 2.1 (https://www.worldclim.org, accessed on 27 March 2024) at 1 km resolution.
These variables were derived from long-term monthly temperature and precipitation
records. Additionally, specific humidity data were obtained from the Famine Early Warning
Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) dataset, accessed
via Google Earth Engine (29 March 2024) at an 11,132 km resolution.

Vegetation and land cover data were sourced from MODIS products. Fractional
Vegetation Coverage (FVC) was calculated using the Normalized Difference Vegetation
Index (NDVI) from the MOD13A2.061 product (1 km resolution, Google Earth Engine,
accessed on 9 April 2024). The land cover classification was derived from the MCD12Q1.061
dataset (500 m resolution, Google Earth Engine, accessed on 25 March 2024).

Topographic variables, including elevation (Digital Elevation Model, DEM), were
obtained from the GDEM V2 and V3 datasets (Geospatial Data Cloud: https://www.
gscloud.cn, accessed on 23 March 2024), which provide higher accuracy than previous
versions. Using ArcGIS spatial analyst tools, we processed the DEM to generate slope and
aspect layers.

Anthropogenic factors, including distance to roads and population density data were
sourced from The Humanitarian Data Exchange (https://data.humdata.org, accessed on
9 April 2025) at 1 km resolution. Hydrological factor, distance to rivers was extracted from
the HYDROSHEDS database (https://www.hydrosheds.org, accessed on 25 March 2025)
at an original resolution of 500 m and subsequently resampled to 1 km.

All datasets were standardized to a 1 km resolution to align with the bioclimatic
variables, ensuring uniformity in spatial scale for model accuracy.

2.3. Data Analysis

The analytical framework for this study (Figure 2), involved a comprehensive ap-
proach to identifying key habitat predictors for the common leopard. We initiated the
process by meticulously selecting ecologically relevant environmental variables from di-
verse data sources. These selections were further supplemented by field observations
conducted within the leopard’s known distribution range. All spatial datasets were stan-
dardized using a Python-based geo-processing script in ArcGIS 10.8 to ensure uniformity
and comparability, aligning coordinate systems and spatial resolutions. Environmental
variables were obtained or resampled to a 1 km2 resolution through nearest-neighbor inter-
polation, maintaining consistency across datasets. A Pearson correlation analysis was then
conducted to identify the most significant habitat predictors for common leopard distribu-
tion, eliminating redundant variables while retaining 28 ecologically meaningful factors.
Habitat suitability modelling was subsequently performed using two robust algorithms:
Maximum Entropy (MaxEnt) and Random Forest (RF). The performance of these models
was rigorously evaluated through Receiver Operating Characteristic (ROC) curves and the
Area under the Curve (AUC) metric. Following the modelling process, a classification was
executed to delineate suitable habitat areas. Finally, a variable contribution analysis was
conducted to determine each environmental factor’s relative importance in shaping the
leopard’s distribution patterns across the study landscape.

2.4. Screening of Environmental Factors

To mitigate multicollinearity effects that could compromise model performance [53],
we conducted comprehensive correlation diagnostics using R’s corrplot package, gen-
erating a full correlation matrix of all candidate environmental variables. Applying a
conservative threshold (|r| < 0.7) based on Pearson’s correlation coefficient [54], we sys-
tematically excluded intercorrelated predictors while preserving ecologically meaningful

https://www.worldclim.org
https://www.gscloud.cn
https://www.gscloud.cn
https://data.humdata.org
https://www.hydrosheds.org
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covariates. Among the 28 factors (Table 1), 13 factors were selected for Analysis: climatic
variables (Bio3, Bio4, Bio8, Bio19, specific humidity [SH]); vegetation metrics (Fractional
Vegetation Cover [FVC]); topographic features (Elevation, Slope, Aspect); land cover (LC);
and anthropogenic factors (Distance to Roads [Dist_road], Distance to Rivers [Dist_river],
Population Density [PD]).

 

Figure 2. Analysis process. The first blue box integrates field survey data with environmental
variables, serving as the foundational input for our analysis. The second box encompasses the
modeling procedure, including accuracy assessment and final output generation. Blue arrows between
components visually depict the sequential workflow and analytical progression.

Table 1. Environmental factors. Altogether, there are 28 factors.

Variable and Description Abbreviation Unit Data Source

Mean Annual Temperature Bio1 ◦C Worldclim
Mean Diurnal Range (i.e., mean of monthly

(max. temp.–min. temp.)) Bio2 ◦C Worldclim

Mean Annual Temperature Range (i.e., bio2/bio7×100) Bio3 ◦C Worldclim
Temperature Seasonality Bio4 ◦C Worldclim

Max. Temperature of Warmest Month Bio5 ◦C Worldclim
Min Temperature of Coldest Month Bio6 ◦C Worldclim

Annual Temperature Range (i.e., bio5–bio6) Bio7 ◦C Worldclim
Mean Temperature of Wettest Quarter Bio8 ◦C Worldclim
Mean Temperature of Driest Quarter Bio9 ◦C Worldclim

Mean Temperature of Warmest Quarter Bio10 ◦C Worldclim
Mean Temperature of Coldest Quarter Bio11 ◦C Worldclim

Annual Precipitation Bio12 mm Worldclim
Precipitation Level in Wettest Month Bio13 mm Worldclim
Precipitation Level in Driest Month Bio14 mm Worldclim

Precipitation Seasonality (i.e., coefficient of variation) Bio15 % Worldclim
Precipitation Level in Wettest Quarter Bio16 mm Worldclim
Precipitation Level in Driest Quarter Bio17 mm Worldclim

Precipitation Level in Warmest Quarter Bio18 mm Worldclim
Precipitation Level Coldest Quarter Bio19 mm Worldclim

Specific humidity SH g/kg FLDAS
Fractional Vegetation Coverage FVC % MOD13A2

Land cover LC categorical MCD12Q1.061
Elevation Elevation m GDEM V2/3

Slope Slope ◦ Calculation in ArcGIS
Aspect Aspect ◦ Calculation in ArcGIS

Distance to road Dist_road Km The Humanitarian Data Exchange
Population Density PD km The Humanitarian Data Exchange
Distance to the river Dist_iver m HYDROSHEDS
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2.5. Approach to Delineating Potential Leopard Habitats
2.5.1. MaxEnt Approach

This powerful machine-learning approach utilizes presence-only occurrence records
and environmental covariates to optimize probabilistic habitat suitability maps through
maximum entropy [53]. The MaxEnt algorithm, based on information theory, estimates
probability distributions by maximizing entropy (uncertainty), subject to environmental
constraints [30]. This approach yields the most probable distribution given available data
while avoiding unsupported assumptions. The mathematical formulation follows [55]:

Pw(y|x) =
1

Zw(x)
exp

(
n

∑
i=1

wi fi(x, y)

)
(1)

Zw(x) = ∑
y

exp

(
n

∑
i=1

wi fi(x, y)

)
(2)

where x represents environmental predictors, y indicates leopard occurrence locations,
fi(x, y) are feature functions, wi are feature weights, n represents the number of datasets,
and Pw(y|x) estimates the occurrence probability of leopard. We implemented a boot-
strapping procedure with 50 iterations to ensure model robustness, randomly partitioning
data into training (70%) and testing (30%) subsets while maintaining spatial stratification.
All model parameters remained at default settings unless otherwise specified. We eval-
uated predictive performance through receiver operating characteristic (ROC) analysis,
calculating the Area under the curve (AUC) as a threshold-independent accuracy metric.
Permutation tests assessed variable importance, with relative contributions expressed as
percentage influences on model entropy.

The MaxEnt framework proved particularly suitable for our study due to its ca-
pacity to model complex species-environment relationships, effectiveness with limited
occurrence records, the ability to incorporate diverse environmental covariates, and
production of continuous, interpretable probability surfaces. It demonstrated reliabil-
ity in ecological applications [27]. This methodology enabled a comprehensive habi-
tat suitability assessment while accounting for potential spatial autocorrelation and
sampling bias inherent in presence-only data. The MaxEnt software (version 3.4.1) is
available at the American Museum of Natural History’s biodiversity informatics portal
[https://biodiversityinformatics.amnh.org/open_source/maxent/] (accessed on 27 De-
cember 2024).

2.5.2. Random Forest (RF) Approach

This approach addresses limitations of single decision trees by introducing two key
randomization techniques during model training: (1) bootstrap sampling of observations
(bootstrapping) and (2) random feature subspace selection (feature bagging). The result-
ing model diversity effectively mitigates overfitting while capturing complex ecological
relationships [34].

Our implementation specifically utilized 500 constituent decision trees (n_estimators = 500)
with balanced class weighting to account for potential uneven class distributions in the oc-
currence data. This configuration optimizes model sensitivity to minority classes, a critical
consideration in ecological datasets where presence points are often limited compared to
background samples [35]. The ensemble prediction combines outputs from all individual

https://biodiversityinformatics.amnh.org/open_source/maxent/
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trees through majority voting for classification tasks or averaging for probabilistic outputs,
mathematically represented as [56]:

ŷ =
1
T

T

∑
t=1

ht(x) (3)

where ŷ is final predicted probability, T is the total number of trees, ht(x) is the prediction
of the t-th tree.

3. Results
3.1. Habitat Suitability by the MaxEnt Approach

The analysis of habitat suitability for the common leopard (P. pardus) in Azad Jammu
and Kashmir (AJ and K), Pakistan, using both Maximum Entropy (MaxEnt) and Random
Forest (RF) modelling approaches, has yielded insightful results. The final maps (Figure 3)
illustrate the spatial distribution of suitable habitats across the study area, categorized into
three classes: less suitable, moderately suitable, and most suitable [27,57,58].

Figure 3. (A) Habitat suitability of the common leopard (Panthera pardus) by MaxEnt; (B) Habitat
suitability of the common leopard (Panthera pardus) by RF approach.

The MaxEnt model, known for its robustness with presence-only data, identified
areas with varying degrees of habitat suitability. According to the model, 54% of the
study area was classified as less suitable, 32% as moderately suitable, and 14% as most
suitable—demonstrating a more refined distinction in habitat classes compared to RF.
The model output (Figure 3A) reveals a clear north-to-south gradient in suitability, with
the highest concentration of suitable habitat in the mountainous northern districts of
Muzaffarabad, Hattian, Neelum, Bagh, Haveli, and Poonch. These regions are characterized
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by rugged terrain, dense forests, and minimal human disturbance, making them ideal for
leopard persistence. Conversely, the southern parts of AJ and K, where human settlements
and agricultural lands dominate, were predominantly classified as less suitable. This
spatial overlap between low suitability zones and human activity highlights potential
hotspots for human-leopard conflict, as leopards may venture into these areas due to
habitat fragmentation or prey scarcity. Habitat fragmentation can lead to isolated patches
of suitable habitat, forcing leopards to move through less suitable areas, including those
near human settlements, in search of prey or mates. Additionally, prey species may also be
forced into these less suitable areas due to habitat loss, attracting leopards to follow. While
the overall occurrence probability of leopards in these areas is low, the need for movement
between patches can increase the likelihood of encounters with humans.

3.2. Habitat Suitability by the RF Approach

The Random Forest (RF) model, while effective in handling complex variable inter-
actions, produced a slightly less precise suitability map (Figure 3B). It classified 53% of
the area as less suitable, 30% as moderately suitable, and 17% as most suitable, showing a
broader distribution of highly suitable zones—a possible indication of overfitting. Unlike
the MaxEnt model, the RF map shows a more subtle patch structure rather than a distinct
north-to-south gradient, with the most suitable habitats scattered across Muzaffarabad,
Hattian, Bagh, Haveli, Poonch, Sudhnutti, and Kotli. However, MaxEnt’s results were
more ecologically coherent, particularly in aligning with known leopard preferences for
undisturbed forested areas. The RF model’s inclusion of marginally suitable zones in
the central highlands (e.g., Sudhnutti and Kotli) suggests higher fragmentation, which
could increase encounter rates between leopards and humans. This reinforces the need
for targeted conflict mitigation in transitional zones between suitable habitats and human-
dominated landscapes.

3.3. Algorithm Performance Comparison

Receiver Operating Characteristic (ROC) curve analysis revealed distinct predictive
capabilities between the two modelling approaches (Figure 4). MaxEnt demonstrated
superior performance (AUC = 0.912), indicating excellent habitat discrimination, while
Random Forest showed good predictive ability (AUC = 0.827). The notable 0.085 difference
in AUC values suggests MaxEnt’s presence-only modelling framework better captures the
ecological relationships governing leopard distribution in our study area. RF’s slightly
lower performance, while still reliable, likely reflects its different handling of environmental
variables and greater sensitivity to parameter optimization. These results emphasize how
algorithm selection significantly influences habitat suitability predictions for wide-ranging
carnivores, with MaxEnt proving particularly effective for this conservation application.

3.4. Relative Contribution and Influence of Habitat Predictors

To minimize multicollinearity effects, our final analysis retained only predictor vari-
ables exhibiting Pearson’s correlation coefficients <0.7 (Figure 5). The analysis identified
five key variables with the strongest influence on leopard occurrence in AJ and K across
both modelling approaches: Land Cover (LC), Fractional Vegetation Cover (FVC), Eleva-
tion, Temperature Seasonality (bio4), and Distance to Roads (Dist_road) (Figure 6). While
these factors demonstrated consistent predictive importance in both models, their relative
contributions varied significantly between methods. In the Maxent model, LC showed
the highest contribution (42.5%), followed by FVC (18.9%), Elevation (7.4%), bio4 (6.95%),
and Dist_road (6.3%). The Random Forest model produced a different weighting pattern,
with Elevation emerging as the most influential factor (28.3%), followed by LC (21.7%),
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Dist_road (11.8%), FVC (14.8%), and bio4 (8.7%). These differential weightings between
modelling approaches are visually presented in Figure 6.

Figure 4. Performance Comparison of MaxEnt and RF Approaches.

Figure 5. Correlation Matrix of Environmental Factors Affecting Leopard Habitat Suitability in the AJ
and K. A value of −1 indicates a perfect negative correlation, 1 indicates a perfect positive correlation,
and 0 indicates no correlation.
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Figure 6. Contribution of Environmental factors across MaxEnt and RF Approaches.

According to the MaxEnt, the leopard shows maximum habitat suitability in densely
vegetated areas (FVC > 0.7), particularly forests, thickets, and shrublands that provide
optimal cover and hunting opportunities. Elevation analysis revealed peak suitability
in mid-altitude ranges (1000–3000 m), with the most favorable conditions occurring at
approximately 2000 m elevation, corresponding to temperate forest ecosystems and rugged
terrain features. Temperature seasonality (bio4) significantly influenced habitat selection,
with optimal conditions occurring in areas with moderate seasonal variation (bio4 7–8 ◦C).
These zones likely support stable prey populations and consistent resource availability,
typical of deciduous forests and savanna-woodland ecotones. Notably, habitat suitability
decreased substantially in areas with either low seasonality (bio4 < 7 ◦C), such as equatorial
rainforests, or high seasonality (bio4 > 8 ◦C) characterized by extreme temperature fluctua-
tions. The analysis revealed a pronounced negative relationship between road proximity
and habitat suitability. Leopards exhibited significantly lower suitability scores near roads,
with optimal conditions only occurring beyond 0.08 km from roadways. This pattern
suggests strong avoidance behavior, likely driven by multiple disturbance factors, includ-
ing noise pollution, vehicular traffic, and increased human activity. The most dramatic
improvement in habitat quality occurred within the 0.04–0.08 km buffer zone, indicating a
critical threshold distance for minimizing anthropogenic impacts.

The land cover assessment revealed four key habitat types supporting leopard per-
sistence in the study area. Mixed forests emerged as the most suitable habitat (suitability
index = 0.83), characterized by a balanced deciduous-evergreen composition (40–60% each)
and dense canopy cover (>60% at >2 m height). This was followed by cropland-natural
vegetation mosaics (0.71), where small-scale cultivation (40–60%) coexists with natural
woody and herbaceous vegetation. Woody savannas (30–60% tree cover at >2 m) showed
moderate suitability (0.67), while savannas (10–30% tree cover) represented marginal habi-
tat (0.39). The descending suitability gradient from mixed forests to savannas underscores
the leopard’s dependence on structurally complex vegetation that provides adequate cover
and hunting opportunities (Table 2).
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Table 2. Habitat suitability assessment based on land cover (LC).

Environmental Variable Category Suitability Score

LC Mixed forests 0.83
LC cropland-natural vegetation mosaics 0.71
LC Woody savannas 0.67
LC savannas 0.39

4. Discussion
Our study provides critical insights into the habitat suitability and conservation needs

of the critically endangered common leopard (P. pardus) in Azad Jammu and Kashmir
(AJ and K), Pakistan. The integrated modelling approach combining Maximum Entropy
(MaxEnt) and Random Forest (RF) algorithms revealed several key findings with important
implications for leopard conservation in this Himalayan region.

The habitat suitability models consistently identified land cover (LC), fractional vege-
tation cover (FVC), elevation, temperature seasonality (bio4), and distance to roads as the
most influential factors determining leopard distribution. The strong preference for mixed
forests (suitability index = 0.83) with dense canopy cover (>60%) confirms the species’
reliance on structurally complex vegetation for hunting and refuge [32]. Interestingly, the
moderate suitability of cropland-vegetation mosaics (0.71) demonstrates leopards’ behav-
ioral plasticity in utilizing human-modified landscapes, a phenomenon also observed in
other Asian populations [59,60]. The elevation analysis revealed optimal habitat condi-
tions between 1000 and 3000 m, consistent with leopard distribution patterns throughout
northern Pakistan [31,61]. This mid-altitude zone likely provides an optimal balance of
prey availability, thermal cover, and reduced human disturbance. Temperature seasonality
(bio4 = 7–8 ◦C) emerged as another critical factor, potentially influencing habitat quality
through its effects on prey populations and vegetation phenology [62]. The pronounced
avoidance of areas near roads (<0.08 km) underscores the significant impact of anthro-
pogenic disturbance on leopard habitat selection [63], creating potential ecological traps in
fragmented landscapes [64].

Our findings highlight four critical interventions for leopard conservation in Azad
Jammu and Kashmir. First, core habitats in the northern districts (Muzaffarabad, Hattian)
require enhanced protection through increased patrolling, anti-poaching measures, and
community-based monitoring, as these areas exhibit the highest habitat suitability and
are vital for population persistence [5]. Similar strategies have proven effective for other
large felids, such as tigers (Panthera tigris) in Nepal, where protected areas with community
engagement have significantly reduced poaching and habitat encroachment [65]. Second,
restoring habitat connectivity in the fragmented southern landscapes, particularly in the
central highlands, is essential to maintain ecological corridors and mitigate genetic iso-
lation [66]. This aligns with studies on snow leopards (Panthera uncia) in the Himalayas,
where habitat corridors have been prioritized to counteract fragmentation caused by human
activities [67]. Third, targeted conflict mitigation strategies—including community-led
early warning systems, livestock insurance programs, and predator-proof corrals—should
be prioritized in transitional zones to reduce human-leopard encounters, an approach
proven to decrease retaliatory killings by up to 63% in similar regions [68,69]. Comparable
measures have successfully reduced human-lion (Panthera leo) conflicts in Africa, where
compensation programs and community involvement have lowered predation rates and
improved coexistence [70]. Finally, habitat suitability maps must inform land-use policies to
prevent further fragmentation, with strict regulations on infrastructure development near
critical habitats [71,72] and enforced buffer zones along high-risk roads, which are known
to increase leopard mortality by 40% when constructed within 1 km of core habitats [73].
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Together, these measures provide a comprehensive framework for balancing ecological
preservation and sustainable development in AJ and K.

While our integrated modelling framework advances leopard conservation planning in
AJ and K, we recognize several opportunities for refinement. First, our analysis used current
climatic conditions without accounting for projected climate change impacts, which may
alter temperature seasonality (bio4) and shift elevation habitat suitability in the Himalayas.
Second, combining MaxEnt’s presence-only data with Random Forest’s generated pseudo-
absences could be enhanced through systematic camera-trap monitoring and ground-
validated absence records. Third, the absence of prey density data represents a critical
knowledge gap for understanding habitat carrying capacity. Additionally, we acknowledge
that forest cover alone is unlikely to be the best proxy for good habitat, as understory and
ground cover are also essential for stalking predators such as leopards to hunt successfully.
Future studies should integrate CMIP6 climate projections with prey monitoring to assess
long-term habitat viability under changing environmental conditions. We recommend
incorporating detailed vegetation structure data to better capture the complexities of
leopard habitat requirements. Despite these limitations, our models provide a robust
baseline for identifying priority habitats and could play a key role in developing climate-
adaptive management strategies to mitigate future impacts on leopards in this vulnerable
Himalayan ecosystem.

5. Conclusions
This work advances leopard conservation in AJ and K, Pakistan, through a compre-

hensive habitat suitability assessment using complementary MaxEnt and RF frameworks.
The results demonstrate that land cover, fractional vegetation cover, elevation, temperature
seasonality, and distance to roads are the most influential factors shaping leopard distribu-
tion. Leopards in this region prefer mixed forests at elevations between 1000 and 3000 m,
as evidenced by a suitability index of 0.83. Conversely, areas with road proximity less than
0.08 km, low elevation zones below 1000 m, high temperature seasonality (bio4 > 8 ◦C),
and non-forested land cover types are identified as unsuitable for leopards.

The MaxEnt model demonstrated superior habitat prediction accuracy compared to
the Random Forest model, with an AUC score of 0.912 versus 0.827. The analysis reveals a
distinct north-to-south gradient in habitat suitability, with optimal habitats concentrated
in the northern districts of Muzaffarabad, Hattian, Neelum, Bagh, Haveli, Poonch, and
Sudhnutti. In contrast, the southern areas, which are more human-dominated, exhibit
declining suitability for leopards. These findings underscore the urgent need for targeted
conservation strategies, particularly in the northern high-suitability zones, to mitigate
the escalating threats of habitat fragmentation and climate change. Future conservation
strategies should focus on preserving mixed forests and establishing buffer zones around
roads to ensure the long-term survival of the common leopard in this region. By addressing
these critical factors, we can contribute to the sustainable conservation of this species and
its habitat.
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