Previous Issue
Volume 15, August
 
 

Micromachines, Volume 15, Issue 9 (September 2024) – 98 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 1951 KiB  
Article
Optimization of Non-Alloyed Backside Ohmic Contacts to N-Face GaN for Fully Vertical GaN-on-Silicon-Based Power Devices
by Youssef Hamdaoui, Sofie S. T. Vandenbroucke, Sondre Michler, Katir Ziouche, Matthias M. Minjauw, Christophe Detavernier and Farid Medjdoub
Micromachines 2024, 15(9), 1157; https://doi.org/10.3390/mi15091157 (registering DOI) - 15 Sep 2024
Abstract
In the framework of fully vertical GaN-on-Silicon device technology development, we report on the optimization of non-alloyed ohmic contacts on the N-polar n+-doped GaN face backside layer. This evaluation is made possible by using patterned TLMs (Transmission Line Model) through direct laser writing [...] Read more.
In the framework of fully vertical GaN-on-Silicon device technology development, we report on the optimization of non-alloyed ohmic contacts on the N-polar n+-doped GaN face backside layer. This evaluation is made possible by using patterned TLMs (Transmission Line Model) through direct laser writing lithography after locally removing the substrate and buffer layers in order to access the n+-doped backside layer. As deposited non-alloyed metal stack on top of N-polar orientation GaN layer after buffer layers removal results in poor ohmic contact quality. To significantly reduce the related specific contact resistance, an HCl treatment is applied prior to metallization under various time and temperature conditions. A 3 min HCl treatment at 70 °C is found to be the optimum condition to achieve thermally stable high ohmic contact quality. To further understand the impact of the wet treatment, SEM (Scanning Electron Microscopy) and XPS (X-ray Photoelectron Spectroscopy) analyses were performed. XPS revealed a decrease in Ga-O concentration after applying the treatment, reflecting the higher oxidation susceptibility of the N-polar face compared to the Ga-polar face, which was used as a reference. SEM images of the treated samples show the formation of pyramids on the N-face after HCl treatment, suggesting specific wet etching planes of the GaN crystal from the N-face. The size of the pyramids is time-dependent; thus, increasing the treatment duration results in larger pyramids, which explains the degradation of ohmic contact quality after prolonged high-temperature HCl treatment. Full article
16 pages, 4750 KiB  
Article
Corrosion Behavior and Biological Properties of ZK60/HA Composites Prepared by Laser Powder Bed Fusion
by Cijun Shuai, Cheng Chen, Zhenyu Zhao and Youwen Yang
Micromachines 2024, 15(9), 1156; https://doi.org/10.3390/mi15091156 (registering DOI) - 15 Sep 2024
Abstract
Magnesium alloy ZK60 shows great promise as a medical metal material, but its corrosion resistance in the body is inadequate. Hydroxyapatite (HA), the primary inorganic component of human and animal bones, can form chemical bonds with body tissues at the interface, promoting the [...] Read more.
Magnesium alloy ZK60 shows great promise as a medical metal material, but its corrosion resistance in the body is inadequate. Hydroxyapatite (HA), the primary inorganic component of human and animal bones, can form chemical bonds with body tissues at the interface, promoting the deposition of phosphorus products and creating a dense calcium and phosphorus layer. To enhance the properties of ZK60, HA was added to create HA/ZK60 composite materials. These composites, fabricated using the advanced technique of LPBF, demonstrated superior corrosion resistance and enhanced bone inductive capabilities compared to pristine ZK60. Notably, the incorporation of 3 wt% led to a significant reduction in bulk porosity, achieving a value of 0.8%. The Ecorr value increased from −1.38 V to −1.32 V, while the minimum Icorr value recorded at 33.9 μA·cm⁻2. Nano-HA achieved the lowest volumetric porosity and optimal corrosion resistance. Additionally, these composites significantly promoted osteogenic differentiation in bone marrow stromal cells (BMSCs), as evidenced by increased alkaline phosphatase (ALP) activity and robust calcium nodule formation, highlighting their excellent biocompatibility and osteo-inductive potential. However, when increasing the HA content to 6 wt%, the bulk porosity rose significantly to 3.3%. The Ecorr value was −1.3 V, with the Icorr value being approximately 50 μA·cm−2. This increase in porosity and weaker interfacial bonding, ultimately accelerated electrochemical corrosion. Therefore, a carefully balanced amount of HA significantly enhances the performance of the ZK60 magnesium alloy, while excessive amounts can be detrimental. Full article
(This article belongs to the Special Issue Laser Additive Manufacturing of Metallic Materials, 2nd Edition)
16 pages, 8215 KiB  
Article
Laser Direct Writing of Setaria Virids-Inspired Hierarchical Surface with TiO2 Coating for Anti-Sticking of Soft Tissue
by Qingxu Zhang, Yanyan Yang, Shijie Huo, Shucheng Duan, Tianao Han, Guang Liu, Kaiteng Zhang, Dengke Chen, Guang Yang and Huawei Chen
Micromachines 2024, 15(9), 1155; https://doi.org/10.3390/mi15091155 (registering DOI) - 15 Sep 2024
Abstract
In minimally invasive surgery, the tendency for human tissue to adhere to the electrosurgical scalpel can complicate procedures and elevate the risk of medical accidents. Consequently, the development of an electrosurgical scalpel with an anti-sticking coating is critically important. Drawing inspiration from nature, [...] Read more.
In minimally invasive surgery, the tendency for human tissue to adhere to the electrosurgical scalpel can complicate procedures and elevate the risk of medical accidents. Consequently, the development of an electrosurgical scalpel with an anti-sticking coating is critically important. Drawing inspiration from nature, we identified that the leaves of Setaria Virids exhibit exceptional non-stick properties. Utilizing this natural surface texture as a model, we designed and fabricated a specialized anti-sticking surface for electrosurgical scalpels. Employing nanosecond laser direct writing ablation technology, we created a micro-nano textured surface on the high-frequency electrosurgical scalpel that mimics the structure found on Setaria Virids leaves. Subsequently, a TiO2 coating was deposited onto the ablated scalpel surface via magnetron sputtering, followed by plasma-induced hydrophobic modification and treatment with octadecyltrichlorosilane (OTS) to enhance the surface’s affinity for silicone oil, thereby constructing a self-lubricating and anti-sticking surface. The spreading behavior of deionized water, absolute ethanol, and dimethyl silicone oil on this textured surface is investigated to confirm the effectiveness of the self-lubrication mechanism. Furthermore, the sticking force and quality are compared between the anti-sticking electrosurgical scalpel and a standard high-frequency electrosurgical scalpel to demonstrate the efficacy of the nanosecond laser-ablated micro-nano texture in preventing sticking. The findings indicate that the self-lubricating anti-sticking surface fabricated using this texture exhibits superior anti-sticking properties. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Fabrication)
Show Figures

Figure 1

12 pages, 4901 KiB  
Article
Research on the Magnetorheological Finishing Technology of a High-Steepness Optical Element Based on the Virtual-Axis and Spiral Scanning Path
by Chihao Chen, Chaoliang Guan, Meng Liu, Yifan Dai and Hao Hu
Micromachines 2024, 15(9), 1154; https://doi.org/10.3390/mi15091154 (registering DOI) - 15 Sep 2024
Abstract
Magnetorheological finishing (MRF) of aspherical optical elements usually requires the coordination between the translational axes and the oscillating axes of the machine tool to realize the processing. For aspheric optical elements whose steepness exceeds the machining stroke of the equipment, there is still [...] Read more.
Magnetorheological finishing (MRF) of aspherical optical elements usually requires the coordination between the translational axes and the oscillating axes of the machine tool to realize the processing. For aspheric optical elements whose steepness exceeds the machining stroke of the equipment, there is still no better method to achieve high-precision and high-efficiency error convergence. To solve this problem, an MRF method combining virtual-axis technology and a spiral scanning path is proposed in this paper. Firstly, the distribution law of the magnetic induction intensity inside the polishing wheel is analyzed by simulation, the stability of the removal efficiency of the removal function within the ±7 angle of the normal angle of the polishing wheel is determined, and MRF is expanded from traditional single-point processing to circular arc segment processing. Secondly, the spiral scanning path is proposed for aspherical rotational symmetric optical elements, which can reduce the requirements of the number of machine tool axes and the dynamic performance of machine tools. Finally, an aspherical fused silica optical element with a curvature radius of 400 mm, K value of −1, and aperture of 100 mm is processed. The PV value of this optical element converges from 189.2 nm to 24.85 nm, and the RMS value converges from 24.85 nm to 5.74 nm. The experimental results show that the proposed combined process has the ability to modify curved optical elements and can be applied to ultra-precision machining of high-steepness optical elements. Full article
19 pages, 6389 KiB  
Article
A Breast Tumor Monitoring Vest with Flexible UWB Antennas—A Proof-of-Concept Study Using Realistic Breast Phantoms
by Rakshita Dessai, Daljeet Singh, Marko Sonkki, Jarmo Reponen, Teemu Myllylä, Sami Myllymäki and Mariella Särestöniemi
Micromachines 2024, 15(9), 1153; https://doi.org/10.3390/mi15091153 (registering DOI) - 14 Sep 2024
Viewed by 254
Abstract
Breast cancers can appear and progress rapidly, necessitating more frequent monitoring outside of hospital settings to significantly reduce mortality rates. Recently, there has been considerable interest in developing techniques for portable, user-friendly, and low-cost breast tumor monitoring applications, enabling frequent and cost-efficient examinations. [...] Read more.
Breast cancers can appear and progress rapidly, necessitating more frequent monitoring outside of hospital settings to significantly reduce mortality rates. Recently, there has been considerable interest in developing techniques for portable, user-friendly, and low-cost breast tumor monitoring applications, enabling frequent and cost-efficient examinations. Microwave technique-based breast cancer detection, which is based on differential dielectric properties of malignant and healthy tissues, is regarded as a promising solution for cost-effective breast tumor monitoring. This paper presents the development process of the first proof-of-concept of a breast tumor monitoring vest which is based on the microwave technique. Two unique vests are designed and evaluated on realistic 3D human tissue phantoms having different breast density types. Additionally, the measured results are verified using simulations carried out on anatomically realistic voxel models of the electromagnetic simulations. The radio channel characteristics are evaluated and analyzed between the antennas embedded in the vest in tumor cases and reference cases. Both measurements and simulation results show that the proposed vest can detect tumors even if only 1 cm in diameter. Additionally, simulation results show detectability with 0.5 cm tumors. It is observed that the detectability of breast tumors depends on the frequency, antenna selection, size of the tumors, and breast types, causing differences of 0.5–30 dB in channel responses between the tumorous and reference cases. Due to simplicity and cost-efficiency, the proposed channel analysis-based breast monitoring vests can be used for breast health checks in smaller healthcare centers and for user-friendly home monitoring which can prove beneficial in rural areas and developing countries. Full article
(This article belongs to the Special Issue Biomaterials, Biodevices and Tissue Engineering, Second Edition)
Show Figures

Figure 1

18 pages, 36209 KiB  
Review
Application of Metal Halide Perovskite in Internet of Things
by Zhihao Chai, Hui Lin, Hang Bai, Yixiang Huang, Zhen Guan, Fangze Liu and Jing Wei
Micromachines 2024, 15(9), 1152; https://doi.org/10.3390/mi15091152 (registering DOI) - 14 Sep 2024
Viewed by 185
Abstract
The Internet of Things (IoT) technology connects the real and network worlds by integrating sensors and internet technology, which has greatly changed people’s lifestyles, showing its broad application prospects. However, traditional materials for the sensors and power components used in the IoT limit [...] Read more.
The Internet of Things (IoT) technology connects the real and network worlds by integrating sensors and internet technology, which has greatly changed people’s lifestyles, showing its broad application prospects. However, traditional materials for the sensors and power components used in the IoT limit its development for high-precision detection, long-term endurance, and multi-scenario applications. Metal halide perovskite, with unique advantages such as excellent photoelectric properties, an adjustable bandgap, flexibility, and a mild process, exhibits enormous potential to meet the requirements for IoT development. This paper provides a comprehensive review of metal halide perovskite’s application in sensors and energy supply modules within IoT systems. Advances in perovskite-based sensors, such as for gas, humidity, photoelectric, and optical sensors, are discussed. The application of indoor photovoltaics based on perovskite in IoT systems is also discussed. Lastly, the application prospects and challenges of perovskite-based devices in the IoT are summarized. Full article
(This article belongs to the Special Issue Prospective Outlook on Perovskite Materials and Devices)
Show Figures

Figure 1

15 pages, 7305 KiB  
Article
Contact Hole Shrinkage: Simulation Study of Resist Flow Process and Its Application to Block Copolymers
by Sang-Kon Kim
Micromachines 2024, 15(9), 1151; https://doi.org/10.3390/mi15091151 (registering DOI) - 13 Sep 2024
Viewed by 381
Abstract
For vertical interconnect access (VIA) in three-dimensional (3D) structure chips, including those with high bandwidth memory (HBM), shrinking contact holes (C/Hs) using the resist flow process (RFP) represents the most promising technology for low- [...] Read more.
For vertical interconnect access (VIA) in three-dimensional (3D) structure chips, including those with high bandwidth memory (HBM), shrinking contact holes (C/Hs) using the resist flow process (RFP) represents the most promising technology for low-k1 (where CD=k1λ/NA,CD is the critical dimension, λ is wavelength, and NA is the numerical aperture). This method offers a way to reduce dimensions without additional complex process steps and is independent of optical technologies. However, most empirical models are heuristic methods and use linear regression to predict the critical dimension of the reflowed structure but do not account for intermediate shapes. In this research, the resist flow process (RFP) was modeled using the evolution method, the finite-element method, machine learning, and deep learning under various reflow conditions to imitate experimental results. Deep learning and machine learning have proven to be useful for physical optimization problems without analytical solutions, particularly for regression and classification tasks. In this application, the self-assembly of cylinder-forming block copolymers (BCPs), confined in prepatterns of the resist reflow process (RFP) to produce small contact hole (C/H) dimensions, was described using the self-consistent field theory (SCFT). This research paves the way for the shrink modeling of the enhanced resist reflow process (RFP) for random contact holes (C/Hs) and the production of smaller contact holes. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Fabrication)
Show Figures

Graphical abstract

10 pages, 2956 KiB  
Article
Preparation and Properties Study of CsPbX3@PMMA Luminescent Resin
by Xinqiang Ma, Shengying Fan, Wenwen Yang, Jiajie Wei, Xiaolei Wang, Jincheng Ni, Wei Cheng and Qinhe Zhang
Micromachines 2024, 15(9), 1150; https://doi.org/10.3390/mi15091150 - 13 Sep 2024
Viewed by 223
Abstract
Perovskite as an emerging semiconductor luminescent material has attracted widespread attention due to its simple preparation, high luminescence quantum yield, high color purity, tunable spectrum, and ability to cover the entire visible light band. However, due to the influence of water or other [...] Read more.
Perovskite as an emerging semiconductor luminescent material has attracted widespread attention due to its simple preparation, high luminescence quantum yield, high color purity, tunable spectrum, and ability to cover the entire visible light band. However, due to the influence of water or other highly polar solvents, oxygen, temperature, and radiation, perovskite nanocrystals will aggregate or collapse in the lattice, eventually leading to luminescence quenching. This study starts from the postprocessing of perovskite, uses methyl methacrylate as the monomer and TPO as the photoinitiator, and encapsulates the perovskite powder prepared by the hot injection method through ultraviolet light initiation. A method is proposed to improve the luminescence and crystal structure stability of perovskite. By eliminating the influence of environmental factors on perovskite nanocrystals through the dense structure formed by organic polymers, the resistance of perovskite to strong polar solvents such as water will be greatly improved, and it has great potential in the protection of perovskite. Finally, by changing the proportion of halogen elements in the perovskite resin to change the color of the luminescent resin, a fluorescent coating emitting light in all visible light bands is prepared. Fluorescent coatings are widely used in life and industry fields such as plastics, sol, and paper. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing)
Show Figures

Figure 1

3 pages, 163 KiB  
Editorial
Editorial for the Special Issue on Methodology, Microfabrication and Applications of Advanced Sensing and Smart Systems
by Luyu Jia, Shanling Ji, Yuze Gao, Haiying Wen and Jianxiong Zhu
Micromachines 2024, 15(9), 1149; https://doi.org/10.3390/mi15091149 - 13 Sep 2024
Viewed by 210
Abstract
Smart sensing and advanced systems have played crucial roles in the modern industrialization of society, which has led to many sensors being used in fabrication methodologies for various applications, such as in medical equipment [...] Full article
11 pages, 3101 KiB  
Article
Influence of the Bias Voltage on Effective Electron Velocity in AlGaN/GaN High Electron Mobility Transistors
by Guangyuan Jiang, Peng Cui, Chen Fu, Yuanjie Lv, Ming Yang, Qianding Cheng, Yang Liu and Guangyuan Zhang
Micromachines 2024, 15(9), 1148; https://doi.org/10.3390/mi15091148 - 13 Sep 2024
Viewed by 279
Abstract
The small-signal S parameters of the fabricated double-finger gate AlGaN/GaN high electron mobility transistors (HEMTs) were measured at various direct current quiescent operating points (DCQOPs). Under active bias conditions, small-signal equivalent circuit (SSEC) parameters such as Rs and Rd, and [...] Read more.
The small-signal S parameters of the fabricated double-finger gate AlGaN/GaN high electron mobility transistors (HEMTs) were measured at various direct current quiescent operating points (DCQOPs). Under active bias conditions, small-signal equivalent circuit (SSEC) parameters such as Rs and Rd, and intrinsic parameters were extracted. Utilizing fT and the SSEC parameters, the effective electron velocity (νeeff) and intrinsic electron velocity (νeint) corresponding to each gate bias (VGS) were obtained. Under active bias conditions, the influence mechanism of VGS on νeeff was systematically studied, and an expression was established that correlates νeeff, νeint, and bias-dependent parasitic resistances. Through the analysis of the main scattering mechanisms in AlGaN/GaN HEMTs, it has been discovered that the impact of VGS on νeeff should be comprehensively analyzed from the aspects of νeint and parasitic resistances. On the one hand, changes in VGS influence the intensity of polar optical phonon (POP) scattering and polarization Coulomb field (PCF) scattering, which lead to changes in νeint dependent on VGS. The trend of νeint with changes in VGS plays a dominant role in determining the trend of νeeff with changes in VGS. On the other hand, both POP scattering and PCF scattering affect νeeff through their impact on parasitic resistance. Since there is a difference in the additional scattering potential corresponding to the additional polarization charges (APC) between the gate-source/drain regions and the region under the gate, the mutual effects of PCF scattering on the under-gate electron system and the gate-source/drain electron system should be considered when adjusting the PCF scattering intensity through device structure optimization to improve linearity. This study contributes to a new understanding of the electron transport mechanisms in AlGaN/GaN HEMTs and provides a novel theoretical basis for improving device performance. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

19 pages, 11484 KiB  
Communication
Analysis of Vibration Characteristics of Spatial Non-Uniform Tensioned Thin-Film Structures Based on the Absolute Nodal Coordinate Formulation
by Peng Sun, Jin Huang, Jiaying Zhang, Fanbo Meng and Pengbing Zhao
Micromachines 2024, 15(9), 1147; https://doi.org/10.3390/mi15091147 - 12 Sep 2024
Viewed by 261
Abstract
Due to their lightweight characteristics, spatial thin-film structures can generate vibrations far exceeding their film thickness when subjected to external loads, which has become a key factor limiting their performance. This study examines the vibration characteristics of tensioned membrane structures with non-uniform elements [...] Read more.
Due to their lightweight characteristics, spatial thin-film structures can generate vibrations far exceeding their film thickness when subjected to external loads, which has become a key factor limiting their performance. This study examines the vibration characteristics of tensioned membrane structures with non-uniform elements subjected to impacts in air, leveraging the Absolute Nodal Coordinate Formulation (ANCF). This model takes into account the wrinkling deformation of thin films under pre-tension and incorporates it into the dynamic equation derived using the absolute node coordinate method. A detailed discussion was conducted on the influence of non-uniform elements, situated at different locations and side lengths, on the vibration characteristics of the thin film. The analytical results obtained from the vibration model were compared with the experimental results, validating the effectiveness of the vibration model. This provides a theoretical foundation for the subsequent vibration control of thin films. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

13 pages, 12554 KiB  
Article
Wettability Behaviour of Metal Surfaces after Sequential Nanosecond and Picosecond Laser Texturing
by Yin Tang, Zheng Fang, Yang Fei, Shuai Wang, Walter Perrie, Stuart Edwardson and Geoff Dearden
Micromachines 2024, 15(9), 1146; https://doi.org/10.3390/mi15091146 - 12 Sep 2024
Viewed by 321
Abstract
This study examines the wettability behaviour of 304 stainless steel (304SS) and Ti-6Al-4V (Ti64) surfaces after sequential nanosecond (ns) and picosecond (ps) laser texturing; in particular, how the multi-scale surface structures created influence the lifecycle of surface hydrophobicity. The effect of different post-process [...] Read more.
This study examines the wettability behaviour of 304 stainless steel (304SS) and Ti-6Al-4V (Ti64) surfaces after sequential nanosecond (ns) and picosecond (ps) laser texturing; in particular, how the multi-scale surface structures created influence the lifecycle of surface hydrophobicity. The effect of different post-process treatments is also examined. Surfaces were analysed using Scanning Electron Microscopy (SEM), a white light interferometer optical profiler, and Energy Dispersive X-ray (EDX) spectroscopy. Wettability was assessed through sessile drop contact angle (CA) measurements, conducted at regular intervals over periods of up to 12 months, while EDX scans monitored elemental chemical changes. The results show that sequential (ns + ps) laser processing produced multi-scale surface texture with laser-induced periodic surface structures (LIPSS). Compared to the ns laser case, the (ns + ps) laser processed surfaces transitioned more rapidly to a hydrophobic state and maintained this property for much longer, especially when the single post-process treatment was ultrasonic cleaning. Some interesting features in CA development over these extended timescales are revealed. For 304SS, hydrophobicity was reached in 1–2 days, with the CA then remaining in the range of 120 to 140° for up to 180 days; whereas the ns laser-processed surfaces took longer to reach hydrophobicity and only maintained the condition for up to 30 days. Similar results were found for the case of Ti64. The findings show that such multi-scale structured metal surfaces can offer relatively stable hydrophobic properties, the lifetime of which can be extended significantly through the appropriate selection of laser process parameters and post-process treatment. The addition of LIPSS appears to help extend the longevity of the hydrophobic property. In seeking to identify other factors influencing wettability, from our EDX results, we observed a significant and steady rate of increase in the carbon content at the surface over the study period. Full article
(This article belongs to the Special Issue Ultrafast Laser Micro- and Nanoprocessing, 2nd Edition)
Show Figures

Figure 1

12 pages, 4854 KiB  
Article
Efficient Second-Harmonic Generation in Adapted-Width Waveguides Based on Periodically Poled Thin-Film Lithium Niobate
by Junjie He, Lian Liu, Mianjie Lin, Houhong Chen and Fei Ma
Micromachines 2024, 15(9), 1145; https://doi.org/10.3390/mi15091145 - 12 Sep 2024
Viewed by 261
Abstract
Frequency conversion process based on periodically poled thin-film lithium niobate (PPTFLN) has been widely recognized as an important component for quantum information and photonic signal processing. Benefiting from the tight confinement of optical modes, the normalized conversion efficiency (NCE) of nanophotonic waveguides is [...] Read more.
Frequency conversion process based on periodically poled thin-film lithium niobate (PPTFLN) has been widely recognized as an important component for quantum information and photonic signal processing. Benefiting from the tight confinement of optical modes, the normalized conversion efficiency (NCE) of nanophotonic waveguides is improved by orders of magnitude compared to their bulk counterparts. However, the power conversion efficiency of these devices is limited by inherent nanoscale inhomogeneity of thin-film lithium niobate (TFLN), leading to undesirable phase errors. In this paper, we theoretically present a novel approach to solve this problem. Based on dispersion engineering, we aim at adjusting the waveguide structure, making local waveguide width adjustment at positions of different thicknesses, thus eliminating the phase errors. The adapted waveguide width design is applied for etched and loaded waveguides based on PPTFLN, achieving the ultrahigh power conversion efficiency of second harmonic generation (SHG) up to 2.1 × 104%W−1 and 6936%W−1, respectively, which surpasses the power conversion efficiency of other related works. Our approach just needs standard periodic poling with a single period, significantly reducing the complexity of electrode fabrication and the difficulty of poling, and allows for the placing of multiple waveguides, without individual poling designs for each waveguide. With the advantages of simplicity, high production, and meeting current micro–nano fabrication technology, our work may open a new way for achieving highly efficient second-order nonlinear optical processes based on PPTFLN. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Second Edition)
Show Figures

Figure 1

18 pages, 6172 KiB  
Article
Integrated Amorphous Carbon Film Temperature Sensor with Silicon Accelerometer into MEMS Sensor
by Qi Zhang, Xiaoya Liang, Wenzhe Bi, Xing Pang and Yulong Zhao
Micromachines 2024, 15(9), 1144; https://doi.org/10.3390/mi15091144 - 12 Sep 2024
Viewed by 210
Abstract
Amorphous carbon (a-C) has promising potential for temperature sensing due to its outstanding properties. In this work, an a-C thin film temperature sensor integrated with the MEMS silicon accelerometer was proposed, and a-C film was deposited on the fixed frame of the accelerometer [...] Read more.
Amorphous carbon (a-C) has promising potential for temperature sensing due to its outstanding properties. In this work, an a-C thin film temperature sensor integrated with the MEMS silicon accelerometer was proposed, and a-C film was deposited on the fixed frame of the accelerometer chip. The a-C film was deposited by DC magnetron sputtering and linear ion beam, respectively. The nanostructures of two types of films were observed by SEM and TEM. The cluster size of sp2 was analyzed by Raman, and the content of sp2 and sp3 of the carbon film was analyzed by XPS. It showed that the DC-sputtered amorphous carbon film, which had a higher sp2 content, had better temperature-sensitive properties. Then, an integrated sensor chip was designed, and the structure of the accelerometer was simulated and optimized to determine the final sizes. The temperature sensor module had a sensitivity of 1.62 mV/°C at the input voltage of 5 V with a linearity of 0.9958 in the temperature range of 20~150 °C. The sensitivity of the sensor is slightly higher than that of traditional metal film temperature sensors. The accelerometer module had a sensitivity of 1.4 mV/g/5 V, a nonlinearity of 0.38%, a repeatability of 1.56%, a total thermomechanical noise of 509 μg over the range of 1 to 20 Hz, and an average thermomechanical noise density of 116 µg/√Hz, which is smaller than the input acceleration amplitude for testing sensitivity. Under different temperatures, the performance of the accelerometer was tested. This research provided significant insights into the convenient procedure to develop a high-performance, economical temperature–accelerometer-integrated MEMS sensor. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors and Actuators, 3rd Edition)
Show Figures

Figure 1

17 pages, 9225 KiB  
Article
Study of the Characteristics of Ba0.6Sr0.4Ti1-xMnxO3-Film Resistance Random Access Memory Devices
by Kai-Huang Chen, Chien-Min Cheng, Ming-Cheng Kao, Yun-Han Kao and Shen-Feng Lin
Micromachines 2024, 15(9), 1143; https://doi.org/10.3390/mi15091143 - 12 Sep 2024
Viewed by 209
Abstract
In this study, Ba0.6Sr0.4Ti1-xMnxO3 ceramics were fabricated by a novel ball milling technique followed by spin-coating to produce thin-film resistive memories. Measurements were made using field emission scanning electron microscopes, atomic force microscopes, X-ray [...] Read more.
In this study, Ba0.6Sr0.4Ti1-xMnxO3 ceramics were fabricated by a novel ball milling technique followed by spin-coating to produce thin-film resistive memories. Measurements were made using field emission scanning electron microscopes, atomic force microscopes, X-ray diffractometers, and precision power meters to observe, analyze, and calculate surface microstructures, roughness, crystalline phases, half-height widths, and memory characteristics. Firstly, the effect of different sintering methods with different substitution ratios of Mn4+ for Ti4+ was studied. The surface microstructural changes of the films prepared by the one-time sintering method were compared with those of the solid-state reaction method, and the effects of substituting a small amount of Ti4+ with Mn4+ on the physical properties were analyzed. Finally, the optimal parameters obtained in the first part of the experiment were used for the fabrication of the thin-film resistive memory devices. The voltage and current characteristics, continuous operation times, conduction mechanisms, activation energies, and hopping distances of two types of thin-film resistive memory devices, BST and BSTM, were measured and studied under different compliance currents. Full article
(This article belongs to the Special Issue Functional Ceramics: From Fundamental Research to Applications)
Show Figures

Figure 1

17 pages, 6138 KiB  
Article
Theoretical and Experimental Investigation on a Novel Cavitation-Assisted Abrasive Flow Polishing Method
by Jiayu Wang, Xiaoxing Dong, Lijun Zhu and Zhenfeng Zhou
Micromachines 2024, 15(9), 1142; https://doi.org/10.3390/mi15091142 - 11 Sep 2024
Viewed by 266
Abstract
A novel polishing method is proposed to increase material removal rates through the acceleration of abrasive movements using micro-jets formed by spontaneous collapses of bubbles due to the cavitation in a special-shaped Venturi tube. The Venturi structure is optimized by numerical simulations. Process-related [...] Read more.
A novel polishing method is proposed to increase material removal rates through the acceleration of abrasive movements using micro-jets formed by spontaneous collapses of bubbles due to the cavitation in a special-shaped Venturi tube. The Venturi structure is optimized by numerical simulations. Process-related parameters for the optimal cavitation ratio are investigated for achieving maximum adaptation to polishing flat workpieces. Furthermore, this novel approach enhances processing efficiency by approximately 60% compared to traditional abrasive flow polishing. The processing method that employs cavitation bubbles within a special-shaped Venturi tube to augment the flow of abrasive particles holds significant potential for material polishing applications. Full article
Show Figures

Figure 1

19 pages, 7149 KiB  
Article
Continuous High-Precision Positioning in Smartphones by FGO-Based Fusion of GNSS–PPK and PDR
by Amjad Hussain Magsi, Luis Enrique Díez and Stefan Knauth
Micromachines 2024, 15(9), 1141; https://doi.org/10.3390/mi15091141 - 11 Sep 2024
Viewed by 305
Abstract
The availability of raw Global Navigation Satellites System (GNSS) measurements in Android smartphones fosters advancements in high-precision positioning for mass-market devices. However, challenges like inconsistent pseudo-range and carrier phase observations, limited dual-frequency data integrity, and unidentified hardware biases on the receiver side prevent [...] Read more.
The availability of raw Global Navigation Satellites System (GNSS) measurements in Android smartphones fosters advancements in high-precision positioning for mass-market devices. However, challenges like inconsistent pseudo-range and carrier phase observations, limited dual-frequency data integrity, and unidentified hardware biases on the receiver side prevent the ambiguity resolution of smartphone GNSS. Consequently, relying solely on GNSS for high-precision positioning may result in frequent cycle slips in complex conditions such as deep urban canyons, underpasses, forests, and indoor areas due to non-line-of-sight (NLOS) and multipath conditions. Inertial/GNSS fusion is the traditional common solution to tackle these challenges because of their complementary capabilities. For pedestrians and smartphones with low-cost inertial sensors, the usual architecture is Pedestrian Dead Reckoning (PDR)+ GNSS. In addition to this, different GNSS processing techniques like Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) have also been integrated with INS. However, integration with PDR has been limited and only with Kalman Filter (KF) and its variants being the main fusion techniques. Recently, Factor Graph Optimization (FGO) has started to be used as a fusion technique due to its superior accuracy. To the best of our knowledge, on the one hand, no work has tested the fusion of GNSS Post-Processed Kinematics (PPK) and PDR on smartphones. And, on the other hand, the works that have evaluated the fusion of GNSS and PDR employing FGO have always performed it using the GNSS Single-Point Positioning (SPP) technique. Therefore, this work aims to combine the use of the GNSS PPK technique and the FGO fusion technique to evaluate the improvement in accuracy that can be obtained on a smartphone compared with the usual GNSS SPP and KF fusion strategies. We improved the Google Pixel 4 smartphone GNSS using Post-Processed Kinematics (PPK) with the open-source RTKLIB 2.4.3 software, then fused it with PDR via KF and FGO for comparison in offline mode. Our findings indicate that FGO-based PDR+GNSS–PPK improves accuracy by 22.5% compared with FGO-based PDR+GNSS–SPP, which shows smartphones obtain high-precision positioning with the implementation of GNSS–PPK via FGO. Full article
Show Figures

Figure 1

13 pages, 4456 KiB  
Article
Preparation of High-Performance Transparent Al2O3 Dielectric Films via Self-Exothermic Reaction Based on Solution Method and Applications
by Xuecong Fang, Honglong Ning, Zihan Zhang, Rihui Yao, Yucheng Huang, Yonglin Yang, Weixin Cheng, Shaojie Jin, Dongxiang Luo and Junbiao Peng
Micromachines 2024, 15(9), 1140; https://doi.org/10.3390/mi15091140 - 11 Sep 2024
Viewed by 340
Abstract
As the competition intensifies in enhancing the integration and performance of integrated circuits, in accordance with the famous Moore’s Law, higher performance and smaller size requirements are imposed on the dielectric layers in electronic devices. Compared to vacuum methods, the production cost of [...] Read more.
As the competition intensifies in enhancing the integration and performance of integrated circuits, in accordance with the famous Moore’s Law, higher performance and smaller size requirements are imposed on the dielectric layers in electronic devices. Compared to vacuum methods, the production cost of preparing dielectric layers via solution methods is lower, and the preparation cycle is shorter. This paper utilizes a low-temperature self-exothermic reaction based on the solution method to prepare high-performance Al2O3 dielectric thin films that are compatible with flexible substrates. In this paper, we first established two non-self-exothermic systems: one with pure aluminum nitrate and one with pure aluminum acetylacetonate. Additionally, we set up one self-exothermic system where aluminum nitrate and aluminum acetylacetonate were mixed in a 1:1 ratio. Tests revealed that the leakage current density and dielectric constant of the self-exothermic system devices were significantly optimized compared to the two non-self-exothermic system devices, indicating that the self-exothermic reaction can effectively improve the quality of the dielectric film. This paper further established two self-exothermic systems with aluminum nitrate and aluminum acetylacetonate mixed in 2:1 and 1:2 ratios, respectively, for comparison. The results indicate that as the proportion of aluminum nitrate increases, the overall dielectric performance of the devices improves. The best overall performance occurs when aluminum nitrate and aluminum acetylacetonate are mixed in a ratio of 2:1: The film surface is smooth without cracks; the surface roughness is 0.747 ± 0.045 nm; the visible light transmittance reaches up to 98%; on the basis of this film, MIM devices were fabricated, with tested leakage current density as low as 1.08 × 10−8 A/cm2 @1 MV and a relative dielectric constant as high as 8.61 ± 0.06, demonstrating excellent electrical performance. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits)
Show Figures

Figure 1

18 pages, 14990 KiB  
Article
A Droplet Generator Using Piezoelectric Ceramics to Impact Metallic Pellets
by Jilong Yu, Daicong Zhang, Wei Guo, Chunhui Jing and Yuan Xiao
Micromachines 2024, 15(9), 1139; https://doi.org/10.3390/mi15091139 - 10 Sep 2024
Viewed by 294
Abstract
Metal micro-droplet ejection technology has attracted attention for its potential applications in the rapid prototyping of micro-metal parts and microelectronic packaging. The current micro-droplet ejection device developed based on this technology faces challenges such as the requirement of a micro-oxygen ejection environment, a [...] Read more.
Metal micro-droplet ejection technology has attracted attention for its potential applications in the rapid prototyping of micro-metal parts and microelectronic packaging. The current micro-droplet ejection device developed based on this technology faces challenges such as the requirement of a micro-oxygen ejection environment, a complex feeding structure, and high costs. Therefore, a drop-on-demand droplet generator for metallic pellets with impact feed ejection is designed in this paper. This device has a simple and compact structure, does not require a high-cost heat source, and can perform drop-on-demand ejection of metallic pellets in an atmospheric environment. A micro-channel feeding method based on piezoelectric ceramic actuator drives is proposed. A rigid dynamics metallic pellet flight trajectory model is established to analyze the relationships between the driving voltage and the flight trajectory of the pellets. With the help of Fluent to simulate and analyze the melting and ejection processes of the pellets inside the nozzle, the changes in the variable parameters of the flow field in the process of the melting and flight of a single molten drop are studied. The droplet generator produces stable droplets with a 500 µs pulse width and 1100 mm/s initial velocity of the projectile. The simulation results show that a single projectile has to go through three stages including feeding, melting, and ejecting, which take 39.5 ms, 7.85 ms, and 17.65 ms. The total simulation time is 65.0 ms. It is expected that the injection frequency of the metal projectile droplet-generating device will reach 15 Hz. Full article
Show Figures

Figure 1

4 pages, 157 KiB  
Editorial
Editorial for the Topic on Advanced Laser Fabrication Technologies for Cross-Field Applications
by Zhuo-Chen Ma, Xue-Qing Liu and Bing Han
Micromachines 2024, 15(9), 1138; https://doi.org/10.3390/mi15091138 - 7 Sep 2024
Viewed by 531
Abstract
The field of laser fabrication technologies has seen remarkable advancements in recent years [...] Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
53 pages, 3240 KiB  
Review
Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview
by María F. Alexandre-Franco, Rahmani Kouider, Raúl Kassir Al-Karany, Eduardo M. Cuerda-Correa and Awf Al-Kassir
Micromachines 2024, 15(9), 1137; https://doi.org/10.3390/mi15091137 - 6 Sep 2024
Viewed by 1024
Abstract
This review explores significant advancements in polymer science and fabrication processes that have enhanced the performance and broadened the application scope of microfluidic devices. Microfluidics, essential in biotechnology, medicine, and chemical engineering, relies on precise fluid manipulation in micrometer-sized channels. Recent innovations in [...] Read more.
This review explores significant advancements in polymer science and fabrication processes that have enhanced the performance and broadened the application scope of microfluidic devices. Microfluidics, essential in biotechnology, medicine, and chemical engineering, relies on precise fluid manipulation in micrometer-sized channels. Recent innovations in polymer materials, such as flexible, biocompatible, and structurally robust polymers, have been pivotal in developing advanced microfluidic systems. Techniques like replica molding, microcontact printing, solvent-assisted molding, injection molding, and 3D printing are examined, highlighting their advantages and recent developments. Additionally, the review discusses the diverse applications of polymer-based microfluidic devices in biomedical diagnostics, drug delivery, organ-on-chip models, environmental monitoring, and industrial processes. This paper also addresses future challenges, including enhancing chemical resistance, achieving multifunctionality, ensuring biocompatibility, and scaling up production. By overcoming these challenges, the potential for widespread adoption and impactful use of polymer-based microfluidic technologies can be realized. Full article
Show Figures

Figure 1

27 pages, 21312 KiB  
Article
YOLO-PBESW: A Lightweight Deep Learning Model for the Efficient Identification of Indomethacin Crystal Morphologies in Microfluidic Droplets
by Jiehan Wei, Jianye Liang, Jun Song and Peipei Zhou
Micromachines 2024, 15(9), 1136; https://doi.org/10.3390/mi15091136 - 6 Sep 2024
Viewed by 417
Abstract
Crystallization is important to the pharmaceutical, the chemical, and the materials fields, where the morphology of crystals is one of the key factors affecting the quality of crystallization. High-throughput screening based on microfluidic droplets is a potent technique to accelerate the discovery and [...] Read more.
Crystallization is important to the pharmaceutical, the chemical, and the materials fields, where the morphology of crystals is one of the key factors affecting the quality of crystallization. High-throughput screening based on microfluidic droplets is a potent technique to accelerate the discovery and development of new crystal morphologies with active pharmaceutical ingredients. However, massive crystal morphologies’ datum needs to be identified completely and accurately, which is time-consuming and labor-intensive. Therefore, effective morphologies’ detection and small-target tracking are essential for high-efficiency experiments. In this paper, a new improved algorithm YOLOv8 (YOLO-PBESW) for detecting indomethacin crystals with different morphologies is proposed. We enhanced its capability in detecting small targets through the integration of a high-resolution feature layer P2, and the adoption of a BiFPN structure. Additionally, in this paper, adding the EMA mechanism before the P2 detection head was implemented to improve network attention towards global features. Furthermore, we utilized SimSPPF to replace SPPF to mitigate computational costs and reduce inference time. Lastly, the CIoU loss function was substituted with WIoUv3 to improve detection performance. The experimental findings indicate that the enhanced YOLOv8 model attained advancements, achieving AP metrics of 93.3%, 77.6%, 80.2%, and 99.5% for crystal wire, crystal rod, crystal sheet, and jelly-like phases, respectively. The model also achieved a precision of 85.2%, a recall of 83.8%, and an F1 score of 84.5%, with a mAP of 87.6%. In terms of computational efficiency, the model’s dimensions and operational efficiency are reported as 5.46 MB, and it took 12.89 ms to process each image with a speed of 77.52 FPS. Compared with state-of-the-art lightweight small object detection models such as the FFCA-YOLO series, our proposed YOLO-PBESW model achieved improvements in detecting indomethacin crystal morphologies, particularly for crystal sheets and crystal rods. The model demonstrated AP values that exceeded L-FFCA-YOLO by 7.4% for crystal sheets and 3.9% for crystal rods, while also delivering a superior F1-score. Furthermore, YOLO-PBESW maintained a lower computational complexity, with parameters of only 11.8 GFLOPs and 2.65 M, and achieved a higher FPS. These outcomes collectively demonstrate that our method achieved a balance between precision and computational speed. Full article
(This article belongs to the Special Issue Recent Advances in Lab-on-a-Chip and Their Biomedical Applications)
Show Figures

Figure 1

35 pages, 48192 KiB  
Review
Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels
by Isabella Petruzzellis, Rebeca Martínez Vázquez, Stefania Caragnano, Caterina Gaudiuso, Roberto Osellame, Antonio Ancona and Annalisa Volpe
Micromachines 2024, 15(9), 1135; https://doi.org/10.3390/mi15091135 - 6 Sep 2024
Viewed by 626
Abstract
Inertial focusing-based Lab-on-Chip systems represent a promising technology for cell sorting in various applications, thanks to their alignment with the ASSURED criteria recommended by the World Health Organization: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Delivered. Inertial focusing techniques using spiral [...] Read more.
Inertial focusing-based Lab-on-Chip systems represent a promising technology for cell sorting in various applications, thanks to their alignment with the ASSURED criteria recommended by the World Health Organization: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Delivered. Inertial focusing techniques using spiral microchannels offer a rapid, portable, and easy-to-prototype solution for cell sorting. Various microfluidic devices have been investigated in the literature to understand how hydrodynamic forces influence particle focusing in spiral microchannels. This is crucial for the effective prototyping of devices that allow for high-throughput and efficient filtration of particles of different sizes. However, a clear, comprehensive, and organized overview of current research in this area is lacking. This review aims to fill this gap by offering a thorough summary of the existing literature, thereby guiding future experimentation and facilitating the selection of spiral geometries and materials for cell sorting in microchannels. To this end, we begin with a detailed theoretical introduction to the physical mechanisms underlying particle separation in spiral microfluidic channels. We also dedicate a section to the materials and prototyping techniques most commonly used for spiral microchannels, highlighting and discussing their respective advantages and disadvantages. Subsequently, we provide a critical examination of the key details of inertial focusing across various cross-sections (rectangular, trapezoidal, triangular, hybrid) in spiral devices as reported in the literature. Full article
Show Figures

Figure 1

13 pages, 2413 KiB  
Article
Modeling and Vibration Analysis of Carbon Nanotubes as Nanomechanical Resonators for Force Sensing
by Jun Natsuki, Xiao-Wen Lei, Shihong Wu and Toshiaki Natsuki
Micromachines 2024, 15(9), 1134; https://doi.org/10.3390/mi15091134 - 6 Sep 2024
Viewed by 390
Abstract
Carbon nanotubes (CNTs) have attracted considerable attention as nanomechanical resonators because of their exceptional mechanical properties and nanoscale dimensions. In this study, a novel CNT-based probe is proposed as an efficient nanoforce sensing nanomaterial that detects external pressure. The CNT probe was designed [...] Read more.
Carbon nanotubes (CNTs) have attracted considerable attention as nanomechanical resonators because of their exceptional mechanical properties and nanoscale dimensions. In this study, a novel CNT-based probe is proposed as an efficient nanoforce sensing nanomaterial that detects external pressure. The CNT probe was designed to be fixed by clamping tunable outer CNTs. By using the mobile-supported outer CNT, the position of the partially clamped outer CNT can be controllably shifted, effectively tuning its resonant frequency. This study comprehensively investigates the modeling and vibration analysis of gigahertz frequencies with loaded CNTs used in sensing applications. The vibration frequency of a partially clamped CNT probe under axial loading was modeled using continuum mechanics, considering various parameters such as the clamping location, length, and boundary conditions. In addition, the interaction between external forces and CNT resonators was investigated to evaluate their sensitivity for force sensing. Our results provide valuable insights into the design and optimization of CNT-based nanomechanical resonators for high-performance force sensing applications. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Electronic and Optoelectronic Devices)
Show Figures

Figure 1

14 pages, 6765 KiB  
Article
Conceptual Piezoelectric-Based Energy Harvester from In Vivo Heartbeats’ Cyclic Kinetic Motion for Leadless Intracardiac Pacemakers
by Majid Khazaee, Sam Riahi and Alireza Rezania
Micromachines 2024, 15(9), 1133; https://doi.org/10.3390/mi15091133 - 6 Sep 2024
Viewed by 404
Abstract
This paper studies the development of piezoelectric energy harvesting for self-powered leadless intracardiac pacemakers. The energy harvester fit inside the battery compartment, assuming that the energy harvester would replace the battery with a smaller rechargeable battery capacity. The power output analysis was derived [...] Read more.
This paper studies the development of piezoelectric energy harvesting for self-powered leadless intracardiac pacemakers. The energy harvester fit inside the battery compartment, assuming that the energy harvester would replace the battery with a smaller rechargeable battery capacity. The power output analysis was derived from the three-dimensional finite element analysis and in vivo heart measurements. A Doppler laser at the anterior basal in the right ventricle directly measured the heart’s kinetic motion. Piezoceramics in the cantilevered configuration were studied. The heart motion was periodic but not harmonic and shock-based. This study found that energy can be harvested by applying periodic bio-movements (cardiac motion). The results also showed that the energy harvester can generate 1.1 V voltage. The effect of various geometrical parameters on power generation was studied. This approach offers potential for self-powered implantable medical devices, with the harvested energy used to power devices such as pacemakers. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

16 pages, 1309 KiB  
Article
A Sub-0.01 °C Resolution All-CMOS Temperature Sensor with 0.43 °C/−0.38 °C Inaccuracy and 1.9 pJ · K2 Resolution FoM for IoT Applications
by Yixiao Sun, Jie Cheng, Zhizhong Luo and Yanhan Zeng
Micromachines 2024, 15(9), 1132; https://doi.org/10.3390/mi15091132 - 6 Sep 2024
Viewed by 352
Abstract
A high resolution, acceptable accuracy and low power consumption time-domain temperature sensor is proposed and simulated in this paper based on a 180 nm standard CMOS technology. A diode stacking structure is introduced to enhance the accuracy of the temperature sensing core. To [...] Read more.
A high resolution, acceptable accuracy and low power consumption time-domain temperature sensor is proposed and simulated in this paper based on a 180 nm standard CMOS technology. A diode stacking structure is introduced to enhance the accuracy of the temperature sensing core. To improve the resolution of the sensor, a dual-input capacitor multiplexing voltage-to-time converter (VTC) is implemented. Additionally, a low-temperature drift voltage-mode relaxation oscillator (ROSC) is proposed, effectively reducing the large oscillation frequency drift caused by significant temperature impacts on delay errors. The simulated results show that the resolution is as high as 0.0071 °C over 0∼120 °C with +0.43 °C/−0.38 °C inaccuracy and 1.9 pJ · K2 resolution FoM, consuming only 1.48 μW at a 1.2 V supply voltage. Full article
Show Figures

Figure 1

19 pages, 8087 KiB  
Article
Compensation Techniques for Photosensors Used in High-Precision Accelerometers
by Yuan Wei, Jianhua Yang, Pengfei Li, Junling Zhang and Pu Liang
Micromachines 2024, 15(9), 1131; https://doi.org/10.3390/mi15091131 - 5 Sep 2024
Viewed by 370
Abstract
Temperature exerts a profound influence on the fidelity of photosensors, making the attainment of reliable temperature compensation a formidable task within engineering realms. This research delves into the intricacies of photosensors used in high-precision accelerometers, proposing an innovative, high-precision, adaptive, closed-loop compensation mechanism. [...] Read more.
Temperature exerts a profound influence on the fidelity of photosensors, making the attainment of reliable temperature compensation a formidable task within engineering realms. This research delves into the intricacies of photosensors used in high-precision accelerometers, proposing an innovative, high-precision, adaptive, closed-loop compensation mechanism. Our design stands in stark contrast to traditional open-loop models, demonstrating superior performance by achieving a remarkable reduction in compensation error—nearly 98%. This advancement in consistency and precision marks a significant leap forward for the application of high-precision photosensors in engineering contexts. Full article
Show Figures

Figure 1

15 pages, 5200 KiB  
Article
Self-Calibratable Absolute Modular Rotary Encoder: Development and Experimental Research
by Donatas Gurauskis, Dragan Marinkovic, Dalius Mažeika and Artūras Kilikevičius
Micromachines 2024, 15(9), 1130; https://doi.org/10.3390/mi15091130 - 5 Sep 2024
Viewed by 358
Abstract
Advanced microfabrication technologies have revolutionized the field of reflective encoders by integrating all necessary optical components and electronics into a miniature single-chip solution. Contemporary semiconductor sensors could operate at wide tolerance ranges that make them ideal for integration into compact and lightweight modular [...] Read more.
Advanced microfabrication technologies have revolutionized the field of reflective encoders by integrating all necessary optical components and electronics into a miniature single-chip solution. Contemporary semiconductor sensors could operate at wide tolerance ranges that make them ideal for integration into compact and lightweight modular encoder kit systems. However, in order to achieve the high accuracy of the operating encoder, precise mechanical installation is still needed. To overcome this issue and exploit the full potential of modern sensors, the self-calibratable absolute modular rotary encoder is developed. The equal division average (EDA) method by combining the angular position readings from multiple optical sensors is used to simplify the installation process and ensure the high accuracy of the system. The produced prototype encoder is experimentally tested vs. the reference encoder and the measurement deviations of using different numbers and arrangements of optical sensors are determined. The obtained results show encoder ability to handle the mounting errors and minimize the initial system deviation by more than 90%. Full article
(This article belongs to the Special Issue Smart Precision Manufacturing and Metrology)
Show Figures

Figure 1

21 pages, 6806 KiB  
Article
Periodic Arrays of Plasmonic Ag-Coated Multiscale 3D-Structures with SERS Activity: Fabrication, Modelling and Characterisation
by Marta Lafuente, Lucas J. Kooijman, Sergio G. Rodrigo, Erwin Berenschot, Reyes Mallada, María P. Pina, Niels R. Tas and Roald M. Tiggelaar
Micromachines 2024, 15(9), 1129; https://doi.org/10.3390/mi15091129 - 4 Sep 2024
Viewed by 633
Abstract
Surface enhanced Raman spectroscopy (SERS) is gaining importance as sensing tool. However, wide application of the SERS technique suffers mainly from limitations in terms of uniformity of the plasmonics structures and sensitivity for low concentrations of target analytes. In this work, we present [...] Read more.
Surface enhanced Raman spectroscopy (SERS) is gaining importance as sensing tool. However, wide application of the SERS technique suffers mainly from limitations in terms of uniformity of the plasmonics structures and sensitivity for low concentrations of target analytes. In this work, we present SERS specimens based on periodic arrays of 3D-structures coated with silver, fabricated by silicon top-down micro and nanofabrication (10 mm × 10 mm footprint). Each 3D-structure is essentially an octahedron on top of a pyramid. The width of the top part—the octahedron—was varied from 0.7 µm to 5 µm. The smallest structures reached an analytical enhancement factor (AEF) of 3.9 × 107 with a relative standard deviation (RSD) below 20%. According to finite-difference time-domain (FDTD) simulations, the origin of this signal amplification lies in the strong localization of electromagnetic fields at the edges and surfaces of the octahedrons. Finally, the sensitivity of these SERS specimens was evaluated under close-to-reality conditions using a portable Raman spectrophotometer and monitoring of the three vibrational bands of 4-nitrobenzenethiol (4-NBT). Thus, this contribution deals with fabrication, characterization and simulation of multiscale 3D-structures with SERS activity. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

9 pages, 7405 KiB  
Article
Quantitative Optimization of Handheld Probe External Pressure on Dermatological Microvasculature Using Optical Coherence Tomography-Based Angiography
by Jiacheng Gu, Jinpeng Liao, Tianyu Zhang, Yilong Zhang, Zhihong Huang and Chunhui Li
Micromachines 2024, 15(9), 1128; https://doi.org/10.3390/mi15091128 - 4 Sep 2024
Viewed by 438
Abstract
Optical Coherence Tomography (OCT)-based angiography (OCTA) is a high-resolution, high-speed, and non-invasive imaging method that can provide vascular mapping of subcutaneous tissue up to approximately 2 mm. In dermatology applications of OCTA, handheld probes are always designed with a piece of transparent but [...] Read more.
Optical Coherence Tomography (OCT)-based angiography (OCTA) is a high-resolution, high-speed, and non-invasive imaging method that can provide vascular mapping of subcutaneous tissue up to approximately 2 mm. In dermatology applications of OCTA, handheld probes are always designed with a piece of transparent but solid contact window placed at the end of the probe to directly contact the skin for achieving better focusing between the light source and the tissue, reducing noise caused by minor movements. The pressure between the contact window and the skin is usually uncontrollable, and high external pressure affects the quality of microvascular imaging by compressing the vessels and obstructing the underlying blood flow. Therefore, it is necessary to determine a pressure range to ensure that the vessels can be fully imaged in high-quality images. In this paper, two pressure sensors were added to the existing handheld OCT probe, and the imaging probe was fixed to a metal stand and adjusted vertically to change the pressure between the probe and the tested skin site, a gradient of roughly 4 kPa (with 1–2 kPa error) increase was applied in each experiment, and the impact of pressure to the vessel was calculated. The experiment involved a total of five subjects, three areas of which were scanned (palm, back of the hand, and forearm). The vessel density was calculated to evaluate the impact of external pressure on angiography. In addition, PSNR was calculated to ensure that the quality of different tests was at a similar level. The angiography showed the highest density (about 10%) when the pressure between the contact window on the probe and the test area was between 3 and 5 kPa. As the pressure increased, the vascular density decreased, and the rate of decrease varied in different test areas. After fitting all the data points according to the different sites, the slope of the fitted line, i.e., the rate of decrease in density per unit value of pressure, was found to be 4.05% at the palm site, 6.93% at the back of the hand, and 4.55% at the forearm site. This experiment demonstrates that the pressure between the skin and contact window is a significant parameter that cannot be ignored. It is recommended that in future OCTA data collection processes and probe designs, the impact of pressure on the experiment be considered. Full article
(This article belongs to the Special Issue Optical Coherence Tomography (OCT) Technique and Its Applications)
Show Figures

Figure 1

Previous Issue
Back to TopTop