Micro/Nanostructures in Sensors and Actuators, 2nd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "A:Physics".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 7145

Special Issue Editors


E-Mail Website
Guest Editor
School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
Interests: micro/nano fabrication; micro/nanofluidics; electrokinetics; BioMEMS; biosensor
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
Interests: micro/nano fabrication; BioMEMS; micro/nanosensors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the rapid development of micro- and nano-scale manufacturing technology and material science, sensors and actuators have been miniaturized and integrated into microsystems, especially for wearable or implantable devices. Micro/nanostructures in sensors and actuators leverage unique micro- and nano-scale phenomena that are significantly different from those in the macro-scale world. These micro/nanostructures have several merits that enable rapid, accurate, and robust analysis and control. Accordingly, this Special Issue seeks to showcase research papers and review articles that focus on (1) novel methodological developments in micro/nano structures used for sensors and actuators; (2) novel designs, fabrication, and applications of sensors and actuators (e.g., micro/nanofluidic sensors, wearable or implantable sensors and actuators, etc.).

We look forward to receiving your submissions!

Prof. Dr. Cong Wang
Prof. Dr. Shulan Jiang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • micro/nano fabrication
  • micro/nano structure
  • sensors and actuators
  • MEMS
  • BioMEMS

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 6002 KiB  
Article
Effect of Flow Length on Pressure and Measurement of PEMFC Temperature by Using Thin-Film Thermocouples
by Huijin Guo, Zhihui Liu, Xingyu Li, Xingshu Wang, Maopeng Zhang, Shiqi Zhang, Zixi Wang and Wanyu Ding
Micromachines 2025, 16(5), 535; https://doi.org/10.3390/mi16050535 (registering DOI) - 29 Apr 2025
Abstract
Based on the COMSOL simulation software (v.6.1), this paper systematically investigates the influence law of runner length on the velocity and pressure distribution of cathode and anode gas runners in proton exchange membrane fuel cells (PEMFCs), and experimentally verifies the measurement effect of [...] Read more.
Based on the COMSOL simulation software (v.6.1), this paper systematically investigates the influence law of runner length on the velocity and pressure distribution of cathode and anode gas runners in proton exchange membrane fuel cells (PEMFCs), and experimentally verifies the measurement effect of thin-film thermocouples on the operating temperature of PEMFCs. The simulation results show that the maximum pressure of the cathode and anode increases nonlinearly with the increase in the runner length, while the velocity distribution remains stable; the shortening of the runners significantly reduces the friction loss along the flow path and optimizes the matching of the permeability of the porous medium. In addition, the NiCr/NiSi thin-film thermocouple prepared by magnetron sputtering exhibits high accuracy (Seebeck coefficient of 41.56 μV/°C) in static calibration and successfully captures the dynamic response characteristics of temperature in PEMFC operation. This study provides a theoretical basis and experimental support for the optimization of fuel cell flow channel design and temperature monitoring technology. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

23 pages, 6425 KiB  
Article
The Feasibility and Performance of Thin-Film Thermocouples in Measuring Insulated Gate Bipolar Transistor Temperatures in New Energy Electric Drives
by Bole Xiang, Guoqiang Li and Zhihui Liu
Micromachines 2025, 16(4), 465; https://doi.org/10.3390/mi16040465 - 14 Apr 2025
Viewed by 165
Abstract
In the new energy electric drive system, the thermal stability of IGBT, a core power device, significantly impacts the system’s overall performance. Accurate IGBT temperature measurement is crucial, but traditional methods face limitations in IGBT’s compact working space. Thin-film thermocouples, with their thin [...] Read more.
In the new energy electric drive system, the thermal stability of IGBT, a core power device, significantly impacts the system’s overall performance. Accurate IGBT temperature measurement is crucial, but traditional methods face limitations in IGBT’s compact working space. Thin-film thermocouples, with their thin and light features, offer a new solution. In this study, Ni 90% Cr 10% and Ni 97% Si 3% thin-film thermocouples were prepared on polyimide substrates via magnetron sputtering. After calibration, the Seebeck coefficient of the thin-film thermocouple temperature sensors reached 40.23 μV/°C, and the repeatability error stabilized at about 0.3% as the temperature rose, showing good stability. Researchers studied factors affecting IGBT temperature. Thin-film thermocouples can accurately monitor IGBT module surface temperature under different conditions. Compared to K-type wire thermocouples, they measure slightly higher temperatures. As the control signal’s switching frequency increases, IGBT temperature first rises then falls; as the duty cycle increases, the temperature keeps rising. This is consistent with RAC’s junction temperature prediction theory, validating the feasibility of thin-film thermocouples for IGBT chip temperature measurement. Thin-film thermocouples have great application potential in power device temperature measurement and may be a key research direction, supporting the optimization and upgrading of new energy electric drive systems. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

15 pages, 6112 KiB  
Article
Study on the Mechanism of the Micro-Charge-Detonation-Driven Flyer
by Shuang Li, Jie Ren, Chang Leng, Zhenhao Shi, Yan Ma, Mingyu Li and Qingxuan Zeng
Micromachines 2025, 16(4), 441; https://doi.org/10.3390/mi16040441 - 9 Apr 2025
Viewed by 197
Abstract
To investigate the energy transfer mechanisms during the micro-explosive initiator-driven flyer process and to guide the performance evaluation of micro-sized charges and the structural design of micro-initiators, a combined approach of numerical simulations and experimental tests was employed to study the detonation process [...] Read more.
To investigate the energy transfer mechanisms during the micro-explosive initiator-driven flyer process and to guide the performance evaluation of micro-sized charges and the structural design of micro-initiators, a combined approach of numerical simulations and experimental tests was employed to study the detonation process of copper-based azide micro-charges driving a flyer. The output pressure and detonation velocity of the copper-based azide micro-charge were measured using the manganese–copper piezoresistive method and electrical probe technique, and the corresponding JWL equation of the state parameters was subsequently fitted. A simulation model for the micro-charge-driven flyer was established and validated using Photonic Doppler Velocimetry (PDV), and the influence of charge conditions, structural parameters, and other factors on the flyer velocity and morphology was investigated. The results indicate that the flyer velocity decreases as its thickness increases, whereas the specific kinetic energy of the flyer initially increases and then decreases with increasing thickness. The optimal flyer thickness was found to be in the range of 30 to 70 μm. The flyer velocity increases with the density and height of the micro-charge; however, when the micro-charge density exceeds a certain threshold, the flyer velocity decreases. The flyer velocity exhibits an exponential decline as the diameter of the acceleration chamber increases, whereas it shows a slight increase with the increase in the length of the acceleration chamber. The diameter of the acceleration chamber should not exceed the charge diameter and must be no smaller than the critical diameter required for detonation initiation of the underlying charge. The use of a multi-layer accelerating chamber structure leads to a slight reduction in flyer velocity and further increases in the transmission hole diameter while having no significant impact on the flyer velocity. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

23 pages, 3146 KiB  
Article
Design of Temperature Monitoring and Fault Warning System for Lithium Ternary Battery Case
by Xiyao Liu and Kuihua Han
Micromachines 2025, 16(3), 345; https://doi.org/10.3390/mi16030345 - 19 Mar 2025
Viewed by 396
Abstract
To enhance the safety of lithium ternary battery cases in new energy vehicles, this study designed a temperature monitoring and fault warning system based on NiCr/NiSi thin-film thermocouples. The system integrates six modules—sensor, amplifier, data acquisition, microprocessor (using the KPCA nonlinear dimensionality reduction [...] Read more.
To enhance the safety of lithium ternary battery cases in new energy vehicles, this study designed a temperature monitoring and fault warning system based on NiCr/NiSi thin-film thermocouples. The system integrates six modules—sensor, amplifier, data acquisition, microprocessor (using the KPCA nonlinear dimensionality reduction algorithm), communication and monitoring, and alarm control—to monitor temperature, voltage, and humidity changes in real time. Multi-level warning thresholds are established (e.g., Level 1: initial temperature 35–55 °C rising to 42–65 °C after 10 min; initial voltage 400–425 V dropping to 398–375 V after 10 min). Experimental results demonstrate that the NiCr/NiSi thermocouple exhibits high sensitivity (average Seebeck coefficient: 41.42 μV/°C) and low repeatability error (1.04%), with a dense and uniform surface structure (roughness: 3.2–5.75 nm). The warning logic, triggered in four levels based on dynamic temperature and voltage changes, achieves an 80% accuracy rate and a low false/missed alarm rate of 4%. Long-term operation tests show stable monitoring deviations (±0.2 °C for temperature and ±0.02 V for voltage over 24 h). The system also adapts to varying humidity environments, with peak sensitivity (41.3 μV/°C) at 60% RH. This research provides a highly reliable solution for battery safety management in new energy vehicles. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

17 pages, 5039 KiB  
Article
Optimization of Parameters and Comparison of Detection Signals for Planar Coil Particle Detection Sensors with Different Core Materials
by Changzhi Gu, Chao Liu, Bo Liu, Wenbo Zhang, Chenzhao Bai, Chenyong Wang, Yuqing Sun and Hongpeng Zhang
Micromachines 2024, 15(12), 1520; https://doi.org/10.3390/mi15121520 - 20 Dec 2024
Viewed by 774
Abstract
The cleanliness of lubricating oil plays a key role in determining the operational health of mechanical systems, serving as a critical metric that delineates the extent of equipment wear. In this study, we present a magnetic-core-type planar coil particle detection sensor. The detection [...] Read more.
The cleanliness of lubricating oil plays a key role in determining the operational health of mechanical systems, serving as a critical metric that delineates the extent of equipment wear. In this study, we present a magnetic-core-type planar coil particle detection sensor. The detection accuracy and detection limit are improved by optimizing the magnetic field inside the sensor. The optimization of the magnetic field is achieved through the finite element simulation analysis of the coil and the magnetic core. First, the finite element simulation software COMSOL 6.0 is used to model the sensor in three dimensions (3D). Then, we study the distribution of the magnetic field under different coil radii, core conductivity levels, and other parameters. We obtain the sensor structure after optimizing the magnetic field. The sensor is made using experimental methods, and the iron particles and copper particles are detected. The results show that the lower limit of detection of iron particles can reach 46 μm, and the lower limit of detection of copper particles can reach 110 μm. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

16 pages, 6182 KiB  
Article
Electrostatic MEMS Two-Dimensional Scanning Micromirrors Integrated with Piezoresistive Sensors
by Yameng Shan, Lei Qian, Kaixuan He, Bo Chen, Kewei Wang, Wenchao Li and Wenjiang Shen
Micromachines 2024, 15(12), 1421; https://doi.org/10.3390/mi15121421 - 26 Nov 2024
Cited by 1 | Viewed by 3221
Abstract
The MEMS scanning micromirror requires angle sensors to provide real-time angle feedback during operation, ensuring a stable and accurate deflection of the micromirror. This paper proposes a method for integrating piezoresistive sensors on the torsion axis of electrostatic MEMS micromirrors to detect the [...] Read more.
The MEMS scanning micromirror requires angle sensors to provide real-time angle feedback during operation, ensuring a stable and accurate deflection of the micromirror. This paper proposes a method for integrating piezoresistive sensors on the torsion axis of electrostatic MEMS micromirrors to detect the deflection angle. The design uses a multi-layer bonding process to realize a vertical comb-driven structure. The device structure is designed as a double-layer structure, in which the top layer is the ground layer and integrates with piezoresistive sensor. This approach avoids crosstalk between the applied drive voltage and the piezoresistive sensor. This design also optimizes the sensor’s size, improving sensitivity. A MEMS two-dimensional (2D) scanning micromirror with a 1 mm mirror diameter was designed and fabricated. The test results indicated that, in a vacuum environment, the torsional resonance frequencies of the micromirror’s fast axis and slow axis were 17.68 kHz and 2.225 kHz, respectively. When driving voltages of 33 V and 40 V were applied to the fast axis and slow axis of the micromirror, the corresponding optical scanning angles were 55° and 45°, respectively. The piezoresistive sensor effectively detects the micromirror’s deflection state, and optimizing the sensor’s size achieved a sensitivity of 13.87 mV/V/°. The output voltage of the piezoresistive sensor shows a good linear relationship with the micromirror’s deflection angle, enabling closed-loop feedback control of the electrostatic MEMS micromirror. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

13 pages, 2526 KiB  
Article
A Novel Nano-Spherical Tip for Improving Precision in Elastic Modulus Measurements of Polymer Materials via Atomic Force Microscopy
by Tianyu Fu, Paul C. Uzoma, Xiaolei Ding, Pengyuan Wu, Oleksiy Penkov and Huan Hu
Micromachines 2024, 15(9), 1175; https://doi.org/10.3390/mi15091175 - 22 Sep 2024
Cited by 1 | Viewed by 2008
Abstract
Micro-nano-scale mechanical properties are vital for engineering and biological materials. The elastic modulus is generally measured by processing the force–indentation curves obtained by atomic force microscopy (AFM). However, the measurement precision is largely affected by tip shape, tip wear, sample morphology, and the [...] Read more.
Micro-nano-scale mechanical properties are vital for engineering and biological materials. The elastic modulus is generally measured by processing the force–indentation curves obtained by atomic force microscopy (AFM). However, the measurement precision is largely affected by tip shape, tip wear, sample morphology, and the contact model. In such research, it has been found that the radius of the sharp tip increases due to wear during contact scanning, affecting elastic modulus calculations. For flat-ended tips, it is difficult to identify the contact condition, leading to inaccurate results. Our research team has invented a nano-spherical tip, obtained by implanting focused helium ions into a silicon microcantilever, causing it to expand into a silicon nanosphere. This nano-spherical tip has the advantages of sub-micro size and a smooth spherical surface. Comparative tests of the elastic modulus measurement were conducted on polytetrafluoroethylene (PTFE) and polypropylene (PP) using these three tips. Overall, the experimental results show that our nano-spherical tip with a consistent tip radius, symmetrical geometric shape, and resistance to wear and contamination can improve precision in elastic modulus measurements of polymer materials. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

Back to TopTop