MEMS Nano/Micro Fabrication, 2nd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "E:Engineering and Technology".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 10503

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical System Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
Interests: nano/microfabrication; two-phase heat transfer; bubble visualization; nuclear engineering; thermal hydraulics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In order to use nano/microstructures in industrial applications, nano/microfabrication has been extensively studied over the past decade. Microscale structures are mainly manufactured using photolithography-based microelectromechanical systems (MEMSs). In contrast, nanoscale structures are fabricated using two different approaches: top-down methods (wet/dry etching, etc.) and bottom-up methods (vapor–liquid–solid (VLS), template-assisted electrodeposition, etc.). Nano/microstructures are produced using these methods for various engineering applications. For example, they can be used for drag reduction, anti-biofouling, anti-corrosion, anti-fogging, anti-frosting, and anti-icing through the control of the hydrophilicity of the surface in material engineering. Some of their other applications include high-performance sensors in electronic engineering (e.g., gas sensors and biosensors), owing to their large surface area and high sensitivity. Similarly, in mechanical engineering, they can be adopted for device cooling applications (e.g., for enhanced cooling surfaces in computer chips, data centers, and nuclear fuel core cooling) due to their large surface area. This Special Issue will cover topics ranging from nano/microfabrication methods to their engineering applications and seeks to showcase research papers, communications, and review articles that focus on (1) novel nano/microfabrication methods and (2) new developments applying nano/microstructures in various engineering fields (e.g., mechanics, materials, and electronics).

We look forward to receiving your submissions.

Dr. Donghwi Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nano/microfabrication
  • microelectromechanical systems (MEMS)
  • sensor and actuator
  • surface wettability
  • single-phase heat transfer
  • two-phase heat transfer
  • device cooling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 9534 KiB  
Article
Temperature Effects on Wicking Dynamics: Experimental and Numerical Study on Micropillar-Structured Surfaces
by Yoomyeong Lee, Hyunmuk Park, Hyeon Taek Nam, Yong-Hyeon Kim, Jae-Hwan Ahn and Donghwi Lee
Micromachines 2025, 16(5), 512; https://doi.org/10.3390/mi16050512 - 27 Apr 2025
Viewed by 130
Abstract
Boiling heat transfer, utilizing latent heat during phase change, has widely been used due to its high thermal efficiency and plays an important role in existing and next-generation cooling technologies. The most critical parameter in boiling heat transfer is critical heat flux (CHF), [...] Read more.
Boiling heat transfer, utilizing latent heat during phase change, has widely been used due to its high thermal efficiency and plays an important role in existing and next-generation cooling technologies. The most critical parameter in boiling heat transfer is critical heat flux (CHF), which represents the maximum heat flux a heated surface can sustain during boiling. CHF is primarily influenced by the wicking performance, which governs liquid supply to the surface. This study experimentally and numerically analyzed the wicking performance of micropillar structures at various temperatures (20–95 °C) using distilled water as the working fluid to provide fundamental data for CHF prediction. Infrared (IR) visualization was used to extract the wicking coefficient, and the experimental data were compared with computational fluid dynamics (CFD) simulations for validation. At room temperature (20 °C), the wicking coefficient increased with larger pillar diameters (D) and smaller gaps (G). Specifically, the highest roughness factor sample (D04G10, r = 2.51) exhibited a 117% higher wicking coefficient than the lowest roughness factor sample (D04G20, r = 1.51), attributed to enhanced capillary pressure and improved liquid supply. Additionally, for the same surface roughness factor, the wicking coefficient increased with temperature, showing a 49% rise at 95 °C compared to 20 °C due to reduced viscous resistance. CFD simulations showed strong agreement with experiments, with error within ±10%. These results confirm that the proposed numerical methodology is a reliable tool for predicting wicking performance near boiling temperatures. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

17 pages, 16456 KiB  
Article
Investigation of the Visible Photocatalytic–Fenton Reactive Composite Polishing Process for Single-Crystal SiC Wafers Based on Response Surface Methodology
by Zijuan Han, Bo Ran, Jisheng Pan and Rongji Zhuang
Micromachines 2025, 16(4), 380; https://doi.org/10.3390/mi16040380 - 27 Mar 2025
Viewed by 301
Abstract
The third-generation semiconductor single-crystal silicon carbide (SiC), as a typical difficult-to-machine material, improves the chemical reaction rate on the SiC surface during the polishing process, which is key to realizing efficient chemical mechanical polishing (CMP). In this paper, a new core-shell structure Fe [...] Read more.
The third-generation semiconductor single-crystal silicon carbide (SiC), as a typical difficult-to-machine material, improves the chemical reaction rate on the SiC surface during the polishing process, which is key to realizing efficient chemical mechanical polishing (CMP). In this paper, a new core-shell structure Fe3O4@MIL-100(Fe) magnetic catalyst was successfully synthesized, which can effectively improve the reaction rate during the SiC polishing procesSs. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), and was used as a heterogeneous photocatalyst for chemical mechanical polishing, and the polishing results of SiC were optimized using response surface methodology (RSM). The experimental results show that the surface roughness of SiC can reach the minimum value of 0.78 nm when the polishing pressure is 0.06 MPa, the polishing speed is 60 rpm, and the polishing flow rate is 12 mL/min. The results of the study provide theoretical support for the visible photocatalysis-assisted CMP of SiC. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

16 pages, 20095 KiB  
Article
Finite Element Analysis of Soft-Pad Moldless Stamping of Bistable Circular Micro Shells
by Mark M. Kantor, Asaf Asher, Rivka Gilat and Skava Krylov
Micromachines 2025, 16(3), 294; https://doi.org/10.3390/mi16030294 - 28 Feb 2025
Viewed by 563
Abstract
Bistable microstructures are promising for implementation in many mictroelectromechanical system (MEMS)-based applications due to their ability to stay in several equilibrium states, high tunability and unprecedented sensitivity to external stimuli. As opposed to the extensively investigated one-dimensional curved beam-type devices of this kind, [...] Read more.
Bistable microstructures are promising for implementation in many mictroelectromechanical system (MEMS)-based applications due to their ability to stay in several equilibrium states, high tunability and unprecedented sensitivity to external stimuli. As opposed to the extensively investigated one-dimensional curved beam-type devices of this kind, microfabrication of non-planar two-dimensional bistable structures, such as plates or shells, represents a remarkable challenge. Recently reported by us, a new moldless stamping procedure, based on pressing a soft stamp over a thin suspended metallic film, was demonstrated to be a feasible direction for the fabrication of initially curved micro plates. However, reliable implementation of this fabrication paradigm and its further development requires better understanding of the role of the process parameters, and of the effect of both the plate and the stamp material properties on the shape of the formed shell and on the postfabrication residual stresses, and therefore on the shell behavior. The need for an appropriate choice of these parameters requires the development of a systematic modeling approach to the stamping process. Here, we report on a finite element (FE)-based methodology for modeling the processing sequences of a successfully fabricated aluminum (Al) micro shell of realistic geometry. The model accounts for the elasto-plastic behavior of the plate material, the nonlinear material behavior of the foam and the contact between them. It was found that the stamping pressure and the plate material parameters are the key parameters affecting the residual shell curvature as well as its shape. Consistently with previously presented experimental results, we show that the fabrication procedure partially relieves the prestresses emerging during preceding fabrication steps, leaving a nontrivial distribution of residual stresses in the formed shell. The presented analysis approach and results provide tools for designers and manufacturers of systems including micro structural elements of shell type. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

23 pages, 14056 KiB  
Communication
Study on the Electro-Fenton Chemomechanical Removal Behavior in Single-Crystal GaN Pin–Disk Friction Wear Experiments
by Yangting Ou, Zhuoshan Shen, Juze Xie and Jisheng Pan
Micromachines 2025, 16(2), 210; https://doi.org/10.3390/mi16020210 - 12 Feb 2025
Viewed by 607
Abstract
Electro-Fenton chemical mechanical polishing primarily regulates the generation of hydroxyl radicals (·OH) via the Fenton reaction through an applied electric field, which subsequently influences the formation and removal of the oxide layer on the workpiece surface, thereby impacting the overall polishing quality and [...] Read more.
Electro-Fenton chemical mechanical polishing primarily regulates the generation of hydroxyl radicals (·OH) via the Fenton reaction through an applied electric field, which subsequently influences the formation and removal of the oxide layer on the workpiece surface, thereby impacting the overall polishing quality and rate. This study employs Pin–Disk friction and wear experiments to investigate the material removal behavior of single-crystal GaN during electro-Fenton chemical mechanical polishing. Utilizing a range of analytical techniques, including coefficient of friction (COF) curves, surface morphology assessments, cross-sectional analysis, and power spectral density (PSD) measurements on the workpiece surface, we examine the influence of abrasives, polishing pads, polishing pressure, and other parameters on the electro-Fenton chemical–mechanical material removal process. Furthermore, this research provides preliminary insights into the synergistic removal mechanisms associated with the electro-Fenton chemical–mechanical action in single-crystal GaN. The experimental results indicate that optimal mechanical removal occurs when using a W0.5 diamond at a concentration of 1.5 wt% combined with a urethane pad (SH-Q13K-600) under a pressure of 0.2242 MPa. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

16 pages, 10664 KiB  
Article
Multi-Position Inertial Alignment Method for Underground Pipelines Using Data Backtracking Based on Single-Axis FOG/MIMU
by Jiachen Liu, Lu Wang, Yutong Zu and Yuanbiao Hu
Micromachines 2024, 15(9), 1168; https://doi.org/10.3390/mi15091168 - 21 Sep 2024
Viewed by 3662
Abstract
The inertial measurement method of pipelines utilizes a Micro-Electro-Mechanical Systems Inertial Measurement Unit (MIMU) to get the three-dimensional trajectory of underground pipelines. The initial attitude is significant for the inertial measurement method of pipelines. The traditional method to obtain the initial attitude uses [...] Read more.
The inertial measurement method of pipelines utilizes a Micro-Electro-Mechanical Systems Inertial Measurement Unit (MIMU) to get the three-dimensional trajectory of underground pipelines. The initial attitude is significant for the inertial measurement method of pipelines. The traditional method to obtain the initial attitude uses three-axis magnetometers to measure the Earth’s magnetic field. However, the magnetic field in urban underground pipelines is intricate, which leads to the initial attitude being inaccurate. To overcome this challenge, a novel multi-position initial alignment method based on data backtracking for a single-axis FOG and a three-axis Micro-Electro-Mechanical Inertial Measurement Unit (MIMU) is proposed. Firstly, the configuration of the sensors is determined. Secondly, according to the three-point support structure of the pipeline measuring instrument, a three-position alignment scheme is designed. Additionally, an initial alignment algorithm using the data backtracking method is developed. In this algorithm, a rough initial alignment is conducted by the data from single-axis FOG, and a fine initial alignment is conducted by the data from FOG/MIMU. Finally, an experiment was conducted to validate this method. The experiment results indicate that the pitch and roll angle errors are less than 0.05°, and the azimuth angle errors are less than 0.2°. This improved the precision of the 3-D trajectory of underground pipelines. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research

32 pages, 1239 KiB  
Review
A Concise Review of Recent Advancements in Carbon Nanotubes for Aerospace Applications
by Silvia Zecchi, Giovanni Cristoforo, Erik Piatti, Daniele Torsello, Gianluca Ghigo, Alberto Tagliaferro, Carlo Rosso and Mattia Bartoli
Micromachines 2025, 16(1), 53; https://doi.org/10.3390/mi16010053 - 31 Dec 2024
Cited by 1 | Viewed by 2242
Abstract
Carbon nanotubes (CNTs) have attracted significant attention in the scientific community and in the industrial environment due to their unique structure and remarkable properties, including mechanical strength, thermal stability, electrical conductivity, and chemical inertness. Despite their potential, large-scale applications have been limited by [...] Read more.
Carbon nanotubes (CNTs) have attracted significant attention in the scientific community and in the industrial environment due to their unique structure and remarkable properties, including mechanical strength, thermal stability, electrical conductivity, and chemical inertness. Despite their potential, large-scale applications have been limited by challenges such as high production costs and catalyst contamination. In aerospace applications, CNTs have demonstrated considerable promise either in the form of thin layers or as reinforcements in polymer and metal matrices, where they enhance mechanical, thermal, and electromagnetic performance in lightweight composites. In this short review, we provide an overview of CNTs’ properties and structures, explore CNT growth methods, with a focus on chemical vapor deposition (CVD), and examine their integration into aerospace materials both as films and as multifunctional reinforcements. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

Back to TopTop