Comparison of Flood Scenarios in the Cunas River Under the Influence of Climate Change
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Micro-Watershed Area
2.3. Hydrological Study Under Baseline Conditions
2.3.1. Precipitation Influence and Analysis
2.3.2. Estimation of Maximum Discharge (Qm) Using HEC-HMS
2.3.3. Simulation of the Cunas River Behavior Using HEC-RAS
2.4. Hydrological Study Under Climate Change Conditions
2.4.1. Global Climate Models (GCMs) from CMIP6
2.4.2. RAIN4PE Product
2.4.3. Reliability Ensemble Averaging (REA)
2.4.4. Performance Evaluation Methods
3. Results
3.1. Calculation of Maximum Design Discharge Using HEC-HMS
3.2. Hydrological Model Calibration and Validation
3.3. Flood Simulation (Flooded Areas and Sections)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Wang, G.; Wang, G.; Huang, J.; Jiang, T. Flood risk in a range of spatial perspectives—From global to local scales. Nat. Hazard Earth Sys. 2019, 19, 1319–1328. [Google Scholar] [CrossRef]
- Stamos, I.; Diakakis, M. Mapping Flood Impacts on Mortality at European Territories of the Mediterranean Region within the Sustainable Development Goals (SDGs) Framework. Water 2024, 16, 2470. [Google Scholar] [CrossRef]
- Allaire, M. Socio-economic impacts of flooding: A review of the empirical literature. Water Secur. 2018, 3, 18–26. [Google Scholar] [CrossRef]
- UNISDR—The United Nations Office for Disaster Risk Reduction: The Human Cost of Weather-Related Disasters 1995–2015. Available online: https://www.undrr.org/publication/human-cost-weather-related-disasters-1995-2015 (accessed on 22 April 2024).
- Winsemius, H.C.; Aerts, J.C.; van Beek, L.P.; Bierkens, M.F.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.; Ligtvoet, W.; Lucas, P.L.; Van Vuuren, D.P. Global drivers of future river flood risk. Nat. Clim. Change 2016, 6, 381. [Google Scholar] [CrossRef]
- Ruddiman, W.F. The Anthropogenic Greenhouse Era Began Thousands of Years Ago. Clim. Change 2003, 61, 261–293. [Google Scholar] [CrossRef]
- Papadaki, C.; Dimitriou, E. River Flow Alterations Caused by Intense Anthropogenic Uses and Future Climate Variability Implications in the Balkans. Hydrology 2021, 8, 7. [Google Scholar] [CrossRef]
- Ghazali, D.; Guericolas, M.; Thys, F.; Sarasin, F.; Arcos González, P.; Casalino, E. Climate Change Impacts on Disaster and Emergency Medicine Focusing on Mitigation Disruptive Effects: An International Perspective. Int. J. Environ. Res. Public Health 2018, 15, 1379. [Google Scholar] [CrossRef]
- Janizadeh, S.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Ahmadi, K.; Mirzaei, S.; Mosavi, A.H.; Tiefenbacher, J.P. Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. J. Environ. Manag. 2021, 298, 113551. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, G.; Wang, J.; Li, C.; Wu, S.; Li, Y. Spatiotemporal variation of flash floods in the Hengduan Mountains region affected by rainfall properties and land use. Nat. Hazards 2021, 111, 465–488. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013—The Physical Science Basis. Contribution of Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 11 May 2024).
- Quintero, F.; Mantilla, R.; Anderson, C.; Claman, D.; Krajewski, W. Assessment of Changes in Flood Frequency Due to the Effects of Climate Change: Implications for Engineering Design. Hydrology 2018, 5, 19. [Google Scholar] [CrossRef]
- Iliadis, C.; Galiatsatou, P.; Glenis, V.; Prinos, P.; Kilsby, C. Urban Flood Modelling under Extreme Rainfall Conditions for Building-Level Flood Exposure Analysis. Hydrology 2023, 10, 172. [Google Scholar] [CrossRef]
- Gruss, Ł.; Wiatkowski, M.; Połomski, M.; Szewczyk, Ł.; Tomczyk, P. Analysis of Changes in Water Flow after Passing through the Planned Dam Reservoir Using a Mixture Distribution in the Face of Climate Change: A Case Study of the Nysa Kłodzka River, Poland. Hydrology 2023, 10, 226. [Google Scholar] [CrossRef]
- Huo, L.; Sha, J.; Wang, B.; Li, G.; Ma, Q.; Ding, Y. Revelation and Projection of Historic and Future Precipitation Characteristics in the Haihe River Basin, China. Water 2023, 15, 3245. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Janizadeh, S.; Kim, D.; Jun, C.; Bateni, S.M.; Pandey, M.; Mishra, V.N. Impact of climate change on future flood susceptibility projections under shared socioeconomic pathway scenarios in South Asia using artificial intelligence algorithms. J. Environ. Manag. 2024, 366, 121764. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- del Aguila, S.; Espinoza-Montes, F. Impact of Climate Change on Future Discharges from a High Andean Basin in Peru to 2100. Tecnol. Cienc. Agua 2024, 15, 111–155. [Google Scholar] [CrossRef]
- Jenkins, K.; Surminski, S.; Hall, J.; Crick, F. Assessing Surface Water Flood Risk and Management Strategies under Future Climate Change: Insights from an Agent-Based Model. Sci. Total Environ. 2017, 595, 159–168. [Google Scholar] [CrossRef]
- Lawrence, J.; Reisinger, A.; Mullan, B.; Jackson, B. Exploring climate change uncertainties to support adaptive management of changing flood-risk. Environ. Sci. Policy 2013, 33, 133–142. [Google Scholar] [CrossRef]
- Farinaz, G.; Yue, L.; Junlong, Z.; Alireza, N. Quantifying Future Climate Change’s Impact on Flood Susceptibility: An Integration of CMIP6 Models, Machine Learning, and Remote Sensing. J. Water Res. Plan. Manag. 2024, 150. [Google Scholar] [CrossRef]
- Chathuranika, I.M.; Gunathilake, M.B.; Azamathulla, H.M.; Rathnayake, U. Evaluation of Future Streamflow in the Upper Part of the Nilwala River Basin (Sri Lanka) under Climate Change. Hydrology 2022, 9, 48. [Google Scholar] [CrossRef]
- Hossain, M.M.; Anwar, A.H.M.F.; Garg, N.; Prakash, M.; Bari, M. Monthly Rainfall Prediction at Catchment Level with the Facebook Prophet Model Using Observed and CMIP5 Decadal Data. Hydrology 2022, 9, 111. [Google Scholar] [CrossRef]
- Shuaibu, A.; Mujahid Muhammad, M.; Bello, A.-A.D.; Sulaiman, K.; Kalin, R.M. Flood Estimation and Control in a Micro-Watershed Using GIS-Based Integrated Approach. Water 2023, 15, 4201. [Google Scholar] [CrossRef]
- Brookfield, A.; Ajami, H.; Carroll, R.; Tague, C.; Sullivan, P.; Condon, L. Recent Advances in Integrated Hydrologic Models: Integration of New Domains. J. Hydrol. 2023, 620, 129515. [Google Scholar] [CrossRef]
- Bruno, L.S.; Mattos, T.S.; Oliveira, P.T.S.; Almagro, A.; Rodrigues, D.B.B. Hydrological and Hydraulic Modeling Applied to Flash Flood Events in a Small Urban Stream. Hydrology 2022, 9, 223. [Google Scholar] [CrossRef]
- Serikbay, N.T.; Tillakarim, T.A.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.-E.; Duskayev, K.K. Evaluation of Reservoir Inflows Using Semi-Distributed Hydrological Modeling Techniques: Application to the Esil and Moildy Rivers’ Catchments in Kazakhstan. Water 2023, 15, 2967. [Google Scholar] [CrossRef]
- Chiang, S.; Chang, C.-H.; Chen, W.-B. Comparison of Rainfall-Runoff Simulation between Support Vector Regression and HEC-HMS for a Rural Watershed in Taiwan. Water 2022, 14, 191. [Google Scholar] [CrossRef]
- Jerjera, U.G.; Ayatullah, S.M. Hydrological modeling using HEC-HMS model, case of Tikur Wuha River Basin, Rift Valley River Basin, Ethiopia. Environ. Chall. 2024, 17, 101017. [Google Scholar] [CrossRef]
- Hamdan, A.N.A.; Almuktar, S.; Scholz, M. Rainfall-Runoff Modeling Using the HEC-HMS Model for the Al-Adhaim River Catchment, Northern Iraq. Hydrology 2021, 8, 58. [Google Scholar] [CrossRef]
- Minywach, L.; Lohani, T.; Ayalew, A. Inundation Mapping and Flood Frequency Analysis using HEC-RAS Hydraulic Model and EasyFit Software. J. Water Manag. Model. 2024, 10. [Google Scholar] [CrossRef]
- Ogras, S.; Onen, F. Flood Analysis with HEC-RAS: A Case Study of Tigris River. Adv. Civ. Eng. 2020, 2020, 6131982. [Google Scholar] [CrossRef]
- Wijaya, T.; Wijayanti, Y. Flood Mapping Using HEC-RAS and HEC-HMS: A Case Study of Upper Citarum River at Dayeuhkolot District, Bandung Regency, West Java. IOP Conf. Ser. Earth Environ. Sci. 2024, 1324, 012103. [Google Scholar] [CrossRef]
- Natarajan, S.; Radhakrishnan, N. An Integrated Hydrologic and Hydraulic Flood Modeling Study for a Medium-Sized Ungauged Urban Catchment Area: A Case Study of Tiruchirappalli City Using HEC-HMS and HEC-RAS. J. Inst. Eng. Ser. A 2020, 101, 381–398. [Google Scholar] [CrossRef]
- Abdessamed, D.; Abderrazak, B. Coupling HEC-RAS and HEC-HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: Case study of Ain Sefra city, Ksour Mountain. SW of Algeria. Environ. Earth Sci. 2019, 78, 586. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Touzé-Peiffer, L.; Barberousse, A.; Le Treut, H. The Coupled Model Intercomparison Project-History, Uses, and Structural Effects on Climate Research. WIREs Clim. Change 2020, 11, e648. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Li, C.; Zwiers, F.; Zhang, X.; Li, G.; Sun, Y.; Wehner, M. Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models. J. Clim. 2021, 34, 3441–3460. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, T.; Zhang, L.; Chen, X.; Zhang, W.; Jiang, J. Global Land Monsoon Precipitation Changes in CMIP6 Projections. Geophys. Res. Lett. 2020, 47, e2019GL086902. [Google Scholar] [CrossRef]
- Afsari, R.; Nazari-Sharabian, M.; Hosseini, A.; Karakouzian, M. Projected Climate Change Impacts on the Number of Dry and Very Heavy Precipitation Days by Century’s End: A Case Study of Iran’s Metropolises. Water 2024, 16, 2226. [Google Scholar] [CrossRef]
- Moradian, S.; Torabi Haghighi, A.; Asadi, M.; Mirbagheri, S.A. Future changes in precipitation over northern urope based on a multi-model ensemble from CMIP6: Focus on Tana River Basin. Water Resour. Manag. 2023, 37, 2447–2463. [Google Scholar] [CrossRef]
- Diks, C.G.; Vrugt, J.A. Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch. Environ. Res. Risk Assess. 2010, 24, 809–820. [Google Scholar] [CrossRef]
- Rojpratak, S.; Supharatid, S. Regional Extreme Precipitation Index: Evaluations and Projections from the Multi-Model Ensemble CMIP5 over Thailand. Weather. Clim. Extrem. 2022, 37, 100475. [Google Scholar] [CrossRef]
- Giorgi, F.; Mearns, L.O. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averaging” (REA) method. J. Clim. 2002, 15, 1141–1158. [Google Scholar] [CrossRef]
- Giorgi, F.; Mearns, L.O. Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophys. Res. Lett. 2003, 30, 1629. [Google Scholar] [CrossRef]
- Moise, A.F.; Hudson, D.A. Probabilistic predictions of climate change for Australia and southern Africa using the reliability ensemble average of IPCC CMIP3 model simulations. J. Geophys. Res. 2008, 113, D15113. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, Z.; Zhou, M.; Ju, Q.; Wen, L.; Huang, T. Optimal reliability ensemble averaging approach for robust climate projections over China. Int. J. Climatol. 2024, 44, 2852–2875. [Google Scholar] [CrossRef]
- Instituto Nacional de Defensa Civil (INDECI). Reporte de Inundaciones en Huancayo. Available online: https://portal.indeci.gob.pe/emergencias/reporte-preliminar-n-2372-28-11-2023-coen-indeci-1030-horas-lluvias-intensas-en-la-provincia-de-huancayo-junin/ (accessed on 25 January 2024).
- Yuli-Posadas, R.; García-Rivero, A.E.; Olivera Acosta, J.; Bulege-Gutierrez, W.; Miravet-Sánchez, B.L.; Neira Huamani, E. Determinación de escenarios de inundaciones en la subcuenca del río Cunas, Junín, Perú. Ing. Hidrául. Ambient. 2023, 44, 74–83. Available online: https://riha.cujae.edu.cu/index.php/riha/article/view/622 (accessed on 4 March 2024).
- Servicio Nacional de Meteorología e Hidrología—SENAMHI. Escenarios de Cambio Climático en la Cuenca del río Mantaro para el año 2100. Primera edición. Proyecto Regional Andino de Adaptación—PRAA, Auspiciado por el GEF a Través del Banco Mundial y Coordinado por el CONAM. SENAMHI, Centro de Predicción Numérica. 2007. Available online: https://www.senamhi.gob.pe/usr/cmn/pdf/PRAA_est_fin_cuenca_MANTARO.pdf (accessed on 17 April 2024).
- Instituto Geofísico del Perú (IGP). Atlas Climático de Precipitación y Temperatura del aire de la Cuenca del Río Mantaro; Consejo Nacional del Ambiente (CONAM): Lima, Peru, 2005. Available online: https://sinia.minam.gob.pe/sites/default/files/sinia/archivos/public/docs/207.pdf (accessed on 15 December 2024).
- Thiessen, A.H. Precipitation Averages for Large Areas. Mon. Wea. Rev. 1911, 39, 1082–1084. [Google Scholar] [CrossRef]
- U.S. Water Resources Council (USWRC). Guidelines for Determining Flood Flow Frequency; Bulletin No. 17B of the Hydrology Subcommittee; 1981; pp. 15–19. Available online: https://water.usgs.gov/osw/bulletin17b/dl_flow.pdf (accessed on 5 May 2024).
- Heidarpour, B.; Saghafian, B.; Golian, S. The Effect of Involving Exceptional Outlier Data on Design Flood Magnitude. Curr. World Environ. 2015, 10, 698–706. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; 2d Impression; Griffin London: London, UK, 1975; Available online: https://psycnet.apa.org/record/1948-15040-000 (accessed on 8 July 2024).
- Xavier Júnior, S.F.A.; Jale, J.d.S.; Stosic, T.; dos Santos, C.A.C.; Singh, V.P. Precipitation Trends Analysis by Mann-Kendall Test: A Case Study of Paraíba, Brazil. Rev. Bras. Meteorol. 2020, 35, 187–196. [Google Scholar] [CrossRef]
- Chiew, F.; Siriwardena, L.; Arene, S.; Rahman, J. TREND. 2005. Available online: https://toolkit.ewater.org.au/Tools/TREND (accessed on 12 December 2024).
- Stedinger, J.; Vogel, R.; Foufoula-Georgia, E. Frequency Analysis of Extreme Events. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw Hill: New York, NY, USA, 1993; Chapter 18; pp. 18.1–18.66. Available online: https://sites.tufts.edu/richardvogel/files/2019/04/frequencyAnalysis.pdf (accessed on 5 December 2024).
- Hershfield, D.M. Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years: Technical Paper No. 40; Weather Bureau, U.S. Department of Commerce: Washington, DC, USA, 1961. Available online: https://www.weather.gov/media/owp/oh/hdsc/docs/TechnicalPaper_No40.pdf (accessed on 1 November 2024).
- Guevara, E.; Cartaya, H. Hidrología: Una Introducción a la Ciencia Hidrológica Aplicada; Gueca Ediciones; Universidad de Carabobo: Valencia, Venezuela, 1991; p. 358. Available online: https://books.google.com.pe/books?id=SKbljwEACAAJ (accessed on 13 September 2024).
- Chow, V.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988; ISBN 978-0-07-100174-8. Available online: https://ponce.sdsu.edu/Applied_Hydrology_Chow_1988.pdf (accessed on 1 November 2024).
- Ministerio de Transportes y Comunicaciones (MTC). Manual de Hidrología, Hidráulica y Drenaje; MTC: Lima, Peru, 2011; pp. 1–221. Available online: https://www.gob.pe/institucion/mtc/normas-legales/4443017-20-2011-mtc-14 (accessed on 1 October 2024).
- U.S. Army Corps of Engineers. HEC-HMS Technical Reference Manual: Canopy, Surface, Infiltration, and Runoff Volume—SCS Curve Number Loss Model. 2024. Available online: https://www.hec.usace.army.mil/confluence/hmsdocs/hmstrm/canopy-surface-infiltration-and-runoff-volume/infiltration/scs-curve-number-loss-model (accessed on 2 December 2024).
- Ponce, V.M.; Hawkins, R.H. Runoff curve number:has it reached maturity? J. Hydrol. Eng. 1996, 1, 11–19. [Google Scholar] [CrossRef]
- Shrestha, M.N. Spatially Distributed Hydrological Modeling Considering Land-Use Changes Using Remote Sensing and GIS. Map Asia Conference. 2003. Available online: https://www.researchgate.net/publication/238115140_Spatially_Distributed_Hydrological_Modelling_considering_Land-use_changes_using_Remote_Sensing_and_GIS (accessed on 2 December 2024).
- Mark, A.; Marek, P.E. Hydraulic Design Manual. Austin, Texas Department of Transportation. 2021. Available online: https://onlinemanuals.txdot.gov/TxDOTOnlineManuals/TxDOTManuals/hyd/hyd_mn_archive.pdf (accessed on 15 November 2024).
- Welle, P.I.; Woodward, D. Engineering Hydrology-Time of Concentration; Technical Note 4; US Department of Agriculture, Soil Conservation Service, NENTC: Chester, PA, USA, 1986.
- Vélez, J.; Botero, A. Estimación del tiempo de concentración y tiempo de rezago en la cuenca experimental urbana de la quebrada San Luis, Manizales. Dyna 2011, 78, 58–71. Available online: http://www.redalyc.org/articulo.oa?id=49622372006 (accessed on 8 March 2024).
- Almeida, I.; Kaufmann-Almeida, A.; Anache, J.; Steffen, J.; Alves-Sobrinho, T. Estimation on Time of Concentration of Overland Flow in Watersheds: A Review. Geociencias 2015, 33, 661–671. Available online: https://www.revistageociencias.com.br/geociencias-arquivos/33/volume33_4_files/33-4-artigo-9.pdf (accessed on 12 March 2024).
- Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, USA, 1959; pp. 108–111. Available online: https://ostad.nit.ac.ir/payaidea/ospic/file674.pdf (accessed on 20 December 2024).
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Noh, S.J.; Lee, G.; Kim, B.; Lee, S.; Jo, J.; Woo, D.K. Climate Change Impact Assessment on Water Resources Management Using a Combined Multi-Model Approach in South Korea. J. Hydrol. Reg. Stud. 2024, 53, 101842. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Fernandez-Palomino, C.A.; Hattermann, F.F.; Krysanova, V.; Lobanova, A.; Vega-Jacome, F.; Lavado, W.; Santini, W.; Aybar, C.; Bronstert, A. A Novel Highresolution Gridded Precipitation Dataset For Peruvian and Ecuadorian Watersheds: Development and Hydrological Evaluation. J. Hydrometeorol. 2022, 23, 309–336. [Google Scholar] [CrossRef]
- Zheng-Tai, Z.; Chang-Ai, X. Reliability ensemble averaging reduces surface wind speed projection uncertainties in the 21st century over China. Adv. Clim. Change Res. 2024, 15, 222–229. [Google Scholar] [CrossRef]
- Tegegne, G.; Kim, Y.O.; Lee, J.K. Spatiotemporal reliability ensemble averaging of multimodel simulations. Geophys. Res. Lett. 2019, 46, 12321–12330. [Google Scholar] [CrossRef]
- Exbrayat, J.F.; Bloom, A.A.; Falloon, P.; Ito, A.; Smallman, T.L.; Williams, M. Reliability ensemble averaging of 21st century projections of terrestrial net primary productivity reduces global and regional uncertainties. Earth Syst. Dynam. 2018, 9, 153–165. [Google Scholar] [CrossRef]
- Multsch, S.; Exbrayat, J.F.; Kirby, M.; Viney, N.R.; Frede, H.G.; Breuer, L. Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging. Geosci. Model Dev. 2015, 8, 1233–1244. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van-Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. Regionalisation of catchment model parameters. J. Hydrol. 2004, 287, 95–123. [Google Scholar] [CrossRef]
- Olsson, T.; Kämäräinen, M.; Santos, D.; Seitola, T.; Tuomenvirta, H.; Haavisto, R.; Lavado-Casimiro, W. Downscaling climate projections for the Peruvian coastal Chancay-Huaral Basin to support river discharge modeling with WEAP. J. Hydrol. 2017, 13, 26–42. [Google Scholar] [CrossRef]
- Prakash, C.; Ahirwar, A.; Kumar, A.; Prasad, H. Comparative analysis of HEC-HMS and SWAT hydrological models for simulating the streamflow in sub-humid tropical region in India. Environ. Sci. Pollut. Res. 2024, 31, 41182–41196. [Google Scholar] [CrossRef]
- Alaghmand, S.; Bin, R.; Abustan, I.; Eslamian, S. Comparison between capabilities of HEC-RAS and MIKE11 hydraulic models in river flood risk modelling (a case study of Sungai Kayu Ara River basin, Malaysia). Int. J. Hydrol. Sci. Technol. 2012, 2, 270. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, X.; Giorgi, F. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Clim. Res. 2010, 41, 61–81. [Google Scholar] [CrossRef]
- Jiang, W.; Yu, J.; Wang, Q.; Yue, Q. Understanding the effects of digital elevation model resolution and building treatment for urban flood modelling. Reg. Stud. 2022, 42, 101122. [Google Scholar] [CrossRef]
- Constantine, J.A.; Dunne, T.; Piégay, H.; Kondolf, G.M. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 2014, 7, 899–903. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Shen, Y.; Li, Y. Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China. Land 2021, 10, 839. [Google Scholar] [CrossRef]
- Hu, J.; Deng, C.; Chang, X.; Pang, A. Urban Flood Risk analysis using the SWAGU-coupled model and a cloud-enhanced fuzzy comprehensive evaluation method. Environ. Model. Softw. 2025, 189, 106461. [Google Scholar] [CrossRef]
- Yuli-Posadas, R.A.; García-Rivero, A.E.; Acosta, J.O.; Bulege-Gutierrez, W.; Miravet-Sánchez, B.L.; Huamani, E.N. Determination of flood scenarios in the cunas river sub-basin, Junín, Peru. Ing. Hidráu. Ambient. 2023, 44, 73–82. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1680-03382023000100073&lng=es&nrm=iso (accessed on 21 July 2024).
- Oyelakin, R.; Yang, W.; Krebs, P. Analysing Urban Flooding Risk with CMIP5 and CMIP6 Climate Projections. Water 2024, 16, 474. [Google Scholar] [CrossRef]
- Syldon, P.; Shrestha, B.B.; Miyamoto, M.; Tamakawa, K.; Nakamura, S. Assessing the Impact of Climate Change on Flood Inundation and Agriculture in the Himalayan Mountainous Region of Bhutan. J. Hydrol. Reg. Stud. 2024, 52, 101687. [Google Scholar] [CrossRef]
- AL-Hussein, A.A.M.; Khan, S.; Ncibi, K.; Hamdi, N.; Hamed, Y. Flood Analysis Using HEC-RAS and HEC-HMS: A Case Study of Khazir River (Middle East—Northern Iraq). Water 2022, 14, 3779. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.Y.; Pasquale, S.; Kijne, J.W.; Hanjra, M.A.; Bindraban, P.S.; Bouman, B.A.M.; Cook, S.; Erenstein, O.; Farahani, H.; et al. Pathways for increasing agricultural water productivity. In Water for Food, Water for Life. A Comprehensive Assessment of Water Management in Agriculture; Molden, D., Ed.; Earthscan-International Water Management Institute: London, UK, 2007; pp. 279–310. Available online: https://hdl.handle.net/10568/36882 (accessed on 19 February 2025).
- Zisopoulou, K.; Panagoulia, D. An In-Depth Analysis of Physical Blue and Green Water Scarcity in Agriculture in Terms of Causes and Events and Perceived Amenability to Economic Interpretation. Water 2021, 13, 1693. [Google Scholar] [CrossRef]
- Amoussou, E.; Amoussou, F.T.; Bossa, A.Y.; Kodja, D.J.; Totin-Vodounon, H.S.; Houndénou, C.; Borrell-Estupina, V.; Paturel, J.E.; Mahé, G.; Cudennec, C.; et al. Use of the HEC RAS model for the analysis of exceptional floods in the Ouémé basin. Proc. IAHS 2024, 385, 141–146. [Google Scholar] [CrossRef]
- Pino-Vargas, E.; Chávarri-Velarde, E.; Ingol-Blanco, E.; Mejía, F.; Cruz, A.; Vera, A. Impacts of Climate Change and Variability on Precipitation and Maximum Flows in Devil’s Creek, Tacna, Peru. Hydrology 2022, 9, 10. [Google Scholar] [CrossRef]
- Benito, G.; Beneyto, C.; Aranda, J.Á.; Machado, M.J.; Francés, F.; Sánchez-Moya, Y. Inundaciones y Cambio Climático: Certezas e Incertidumbres en el Camino a la Adaptación. Cuad. Geogr. Univ. València 2022, 107, 191–216. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global Projections of River Flood Risk in a Warmer World. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 17 March 2025).
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2018, 50, 31–49. [Google Scholar] [CrossRef]
Cunas River Basin (CRB) | Indicator | Unit | Value |
---|---|---|---|
Morphometric Basin Properties | Area | [km2] | 1700.25 |
Perimeter | [km] | 279.62 | |
Length | [km] | 54.37 | |
Width | [km] | 31.27 | |
Mean slope | [%] | 23.73 | |
Maximum elevation | [masl] | 4953.00 | |
Minimum elevation | [masl] | 3216.00 | |
Mean elevation | [masl] | 4203.82 | |
Main Channel Properties | Length | [km] | 93.79 |
Length to watershed divide | [km] | 98.50 | |
Highest elevation | [masl] | 4532 | |
Lowest elevation | [masl] | 3221 | |
Mean slope | [%] | 1.40% | |
Drainage Basin Properties | Total drainage length | [km] | 2839.16 |
Drainage density | [km/km2] | 1.67 | |
Stream order | [-] | 5° | |
Runoff coefficient | [-] | 0.59 | |
Shape Index | Compactness coefficient, Kc | [-] | 1.90 |
Shape factor, Kf | [-] | 0.19 |
Method Used | Calculated Tc (h) | Min. Var. (h) | Max. Var. (h) | Accepted | Valid Tc (h) |
---|---|---|---|---|---|
Giandotti | 7.11 | 5.50 | 8.64 | Yes | 7.11 |
Kirpich | 5.77 | 5.50 | 8.64 | Yes | 5.77 |
California Culvers Practice | 5.78 | 5.50 | 8.64 | Yes | 5.78 |
Average calculated Tc for the studied hydrological unit | 6.22 |
Reach (m) | Channel Type and Description | n |
---|---|---|
6899.7–6599 | Sparse shrubs and trees | 0.055 |
6599–6300.3 | Sparse shrubs and trees | 0.055 |
6300.3–5999 | Sparse shrubs and trees | 0.055 |
5999–5701 | Sparse shrubs and trees | 0.055 |
5701–5399 | Sparse shrubs and trees | 0.055 |
5399–5100.2 | Grasslands, no shrubs, short grass | 0.030 |
5100.2–4799 | Scattered shrubs, dense undergrowth | 0.050 |
4799–4500 | Cleared land with trees and abundant saplings | 0.060 |
4500–4199.9 | Mature row crops | 0.035 |
4199.9–3903 | Mature row crops | 0.035 |
3903–3600 | Scattered shrubs, dense undergrowth | 0.050 |
3600–3300 | Grasslands, no shrubs, short grass | 0.030 |
3300–2998 | Mature row crops | 0.035 |
2998–2697 | Clear, straight stream with rock mounds and vegetation | 0.035 |
2697–2397 | Clear, straight stream with rock mounds and vegetation | 0.035 |
2397–2099 | Mature row crops | 0.035 |
2099–1799 | Clear, straight stream with rock mounds and vegetation | 0.035 |
1799–1498 | Clear, straight stream with rock mounds and vegetation | 0.035 |
1498–1201 | Clear, straight stream without mounds or deep pools | 0.030 |
1201–899 | Clear, straight stream without mounds or deep pools | 0.030 |
899–598 | Mature row crops | 0.035 |
598–298 | Clear, straight stream with rock mounds and vegetation | 0.035 |
N° | GCM Name | Institution | Country | Spatial Resolution |
---|---|---|---|---|
M1 | CanESM5 | Canadian Centre for Climate Modelling and Analysis (CCCma) | Canada | 2.81° × 2.81° |
M2 | CNRM-CM6-1 | Centre National de Recherches Météorologiques (CNRM) | France | 1.4° × 1.4° |
M3 | CNRM-ESM2-1 | Centre National de Recherches Météorologiques (CNRM) | France | 2.8° × 2.8° |
M4 | GFDL-ESM4 | Geophysical Fluid Dynamics Laboratory (GFDL) | USA | 1° × 1° |
M5 | IPSL-CM6A-LR | Institut Pierre-Simon Laplace (IPSL) | France | 2.5° × 2.5° |
M6 | MIROC6 | Modeling and Information Research on Climate (MIROC), University of Tokyo, National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | Japan | 1.4° × 1.4° |
M7 | MPI-ESM1-2-HR | Max Planck Institute for Meteorology (MPI-M) | Germany | 0.94° × 0.94° |
M8 | MRI-ESM2-0 | Meteorological Research Institute (MRI) | Japan | 1.4° × 1.4° |
M9 | UKESM1-0-LL | UK Met Office Hadley Centre | UK | 1.25° × 1.25 |
M10 | ACCESS-ESM1-5 | Australian Community Climate and Earth-System Simulator (ACCESS), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Bureau of Meteorology | Australia | 1.875° × 1.25° |
Return Period (Years) | Peak Discharge (m3/s) | |
---|---|---|
Baseline Conditions | Climate Change Conditions | |
25 | 170.20 | 176.80 |
50 | 183.20 | 190.00 |
100 | 197.70 | 204.00 |
139 | 203.90 | 210.90 |
200 | 211.60 | 218.70 |
500 | 232.20 | 239.40 |
Type | Period Event | NSE | MAE | RMSE | R2 | PBIAS |
---|---|---|---|---|---|---|
Calibration | 1984–2023 | 0.939 | −0.129 | 5.418 | 0.998 | −0.001 |
Validation | 1984–2023 | 0.921 | −3.337 | 6.095 | 0.998 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Mercado, C.-E.; Villafuerte-Jeremias, J.-A.; Guerreros-Ollero, G.-P.; Perez-Campomanes, G. Comparison of Flood Scenarios in the Cunas River Under the Influence of Climate Change. Hydrology 2025, 12, 117. https://doi.org/10.3390/hydrology12050117
Torres-Mercado C-E, Villafuerte-Jeremias J-A, Guerreros-Ollero G-P, Perez-Campomanes G. Comparison of Flood Scenarios in the Cunas River Under the Influence of Climate Change. Hydrology. 2025; 12(5):117. https://doi.org/10.3390/hydrology12050117
Chicago/Turabian StyleTorres-Mercado, Carlos-Enrique, Jhordan-Anderson Villafuerte-Jeremias, Giancarlo-Paul Guerreros-Ollero, and Giovene Perez-Campomanes. 2025. "Comparison of Flood Scenarios in the Cunas River Under the Influence of Climate Change" Hydrology 12, no. 5: 117. https://doi.org/10.3390/hydrology12050117
APA StyleTorres-Mercado, C.-E., Villafuerte-Jeremias, J.-A., Guerreros-Ollero, G.-P., & Perez-Campomanes, G. (2025). Comparison of Flood Scenarios in the Cunas River Under the Influence of Climate Change. Hydrology, 12(5), 117. https://doi.org/10.3390/hydrology12050117