Index-Based Alteration of Long-Term River Flow Regimes Influenced by Land Use Change and Dam Regulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, Q.; Liang, S.H. Effects of dams on river flow regime based on IHA/RVA. In Remote Sensing and GIS for Hydrology and Water Resources; IAHS Publications: Wallingford, UK, 2015; Volume 368, pp. 1–6. [Google Scholar]
- Naderi, M.; Sheikh, V.; Bahrehmand, A.; Komaki, C.B.; Ghangermeh, A. Analysis of river flow regime changes using the indicators of hydrologic alteration (Case study: Hableroud watershed). Water Soil. Manag. Model. 2023, 3, 1–19. [Google Scholar]
- Richter, B.D.; Postel, S.; Revenga, C.; Scudder, T.; Lehner, B.; Churchill, A.; Chow, M. Lost in development’s shadow: The downstream human consequences of dams. Water Altern. 2010, 3, 14. [Google Scholar]
- Fazel, N.; Haghighi, A.T.; Kløve, B. Analysis of land use and climate change impacts by comparing river flow records for headwaters and lowland reaches. Glob. Planet. Chang. 2017, 158, 47–56. [Google Scholar] [CrossRef]
- Kuriqi, A.; Ardiçlioǧlu, M. Investigation of hydraulic regime at middle part of the Loire River in context of floods and low flow events. Pollack Period. 2018, 13, 145–156. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Burbano, M.; Roush, J.; Kang, H.; Sridhar, V.; Hyndman, D. A Review of the Integrated Effects of Changing Climate, Land Use, and Dams on Mekong River Hydrology. Water 2018, 10, 266. [Google Scholar] [CrossRef]
- Amini, H.; Esmali-Ouri, A.; Mostafazadeh, R.; Sharari, M.; Zabihi, M. Hydrological drought response of regulated river flow under the influence of dam reservoir in Ardabil Province. Earth Space Phys. 2019, 45, 1–15. [Google Scholar]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Hydrologic alteration at the upper and middle part of the Yangtze-river, China: Towards sustainable water resource management under increasing water exploitation. Sustainability 2019, 11, 5176. [Google Scholar] [CrossRef]
- Aguiar, F.C.; Martins, M.J.; Silva, P.C.; Fernandes, M.R. Riverscapes downstream of hydropower dams: Effects of altered flows and historical land-use change. Landsc. Urban. Plan. 2016, 153, 83–98. [Google Scholar] [CrossRef]
- Petts, G.E. Instream flow science for sustainable river management 1. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1071–1086. [Google Scholar] [CrossRef]
- Hayes, D.S.; Brändle, J.M.; Seliger, C.; Zeiringer, B.; Ferreira, T.; Schmutz, S. Advancing towards functional environmental flows for temperate floodplain rivers. Sci. Total Environ. 2018, 633, 1089–1104. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, Y.; Liu, Q. Assessment of the flow regime alterations in the Lower Yellow River, China. Ecol. Inform. 2012, 10, 56–64. [Google Scholar] [CrossRef]
- Ge, J.; Peng, W.; Huang, W.; Qu, X.; Singh, S.K. Quantitative assessment of flow regime alteration using a revised range of variability methods. Water 2018, 10, 597. [Google Scholar] [CrossRef]
- Olden, J.D.; Poff, N.L. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res. Appl. 2003, 19, 101–121. [Google Scholar] [CrossRef]
- Song, X.; Zhuang, Y.; Wang, X.; Li, E. Combined effect of Danjiangkou Reservoir and cascade reservoirs on hydrologic regime downstream. J. Hydrol. Eng. 2018, 23, 05018008. [Google Scholar] [CrossRef]
- Vu, T.T.; Kiesel, J.; Guse, B.; Fohrer, N. Towards an improved understanding of hydrological change–linking hydrologic metrics and multiple change point tests. J. Water Clim. Chang. 2019, 10, 743–758. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Q.; Chen, Y.D.; Tao, X.; Xu, C.Y.; Chen, X. A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China. Hydrol. Process. An. Int. J. 2008, 22, 3829–3843. [Google Scholar] [CrossRef]
- Linnansaari, T.; Monk, W.A.; Baird, D.J.; Curry, R.A. Review of approaches and methods to assess Environmental Flows across Canada and internationally. DFO Can. Sci. Advis. Sec. Res. Doc. 2012, 39, 74. [Google Scholar]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef]
- Gao, Y.; Vogel, R.M.; Kroll, C.N.; Poff, N.L.; Olden, J.D. Development of representative indicators of hydrologic alteration. J. Hydrol. 2009, 374, 136–147. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Wang, P.; Hou, J.; Qian, J. Assessment of multi-objective reservoir operation in the middle and lower Yangtze River based on a flow regime influenced by the Three Gorges Project. Ecol. Inform. 2017, 38, 115–125. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Influence of hydrologically based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant. J. Clean. Prod. 2019, 232, 1028–1042. [Google Scholar] [CrossRef]
- Koel, T.M.; Sparks, R.E. Historical patterns of river stage and fish communities as criteria for operations of dams on the Illinois River. River Res. Appl. 2002, 18, 3–19. [Google Scholar] [CrossRef]
- Shiau, J.T.; Wu, F.C. Feasible diversion and instream flow release using range of variability approach. J. Water Resour. Plan. Manag. 2004, 130, 395–404. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathi, V.K.; Kumar, P.; Rakshit, A. Assessment of hydrologic impact on flow regime due to dam inception using IHA framework. Environ. Sci. Pollut. Res. 2023, 30, 37821–37844. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Yan, M.; Dai, L.; Huang, X.; Zhang, X.; Lu, Y. Improved indicators of hydrological alteration for quantifying the dam-induced impacts on flow regimes in small and medium-sized rivers. Sci. Total Environ. 2023, 867, 161499. [Google Scholar] [CrossRef]
- Khoeun, R.; Sor, R.; Chann, K.; Phy, S.R.; Oeurng, C.; Sok, T. The Impacts of Dams on Streamflow in Tributaries to the Lower Mekong Basin. Sustainability 2024, 16, 6700. [Google Scholar] [CrossRef]
- Legleiter, C.J. Downstream effects of recent reservoir development on the morphodynamics of a meandering channel: Savery Creek, Wyoming, USA. River Res. Appl. 2015, 31, 1328–1343. [Google Scholar] [CrossRef]
- Li, D.; Long, D.; Zhao, J.; Lu, H.; Hong, Y. Observed changes in flow regimes in the Mekong River basin. J. Hydrol. 2017, 551, 217–232. [Google Scholar] [CrossRef]
- López-Ballesteros, A.; Senent-Aparicio, J.; Martínez, C.; Pérez-Sánchez, J. Assessment of future hydrologic alteration due to climate change in the Aracthos River basin (NW Greece). Sci. Total Environ. 2020, 733, 139299. [Google Scholar] [CrossRef]
- Kumar, A.U.; Jayakumar, K.V. Hydrological alterations due to anthropogenic activities in Krishna River Basin, India. Ecol. Indic. 2020, 108, 105663. [Google Scholar] [CrossRef]
- Song, X.; Zhuang, Y.; Wang, X.; Li, E.; Zhang, Y.; Lu, X.; Liu, X. Analysis of hydrologic regime changes caused by dams in China. J. Hydrol. Eng. 2020, 25, 05020003. [Google Scholar] [CrossRef]
- Mezger, G.; del Tánago, M.G.; De Stefano, L. Environmental flows and the mitigation of hydrological alteration downstream from dams: The Spanish case. J. Hydrol. 2021, 598, 125732. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Talukdar, S.; Akhter, S.; Eibek, K.U.; Rahman, M.M.; Pal, S.; Mosavi, A. Assessing the impact of the Farakka Barrage on hydrological alteration in the Padma River with future insight. Sustainability 2022, 14, 5233. [Google Scholar] [CrossRef]
- Akula, U.K.; Jayakumar, K.V. Assessment of flow regime alteration in the Krishna River basin. ISH J. Hydraul. Eng. 2022, 28, 212–218. [Google Scholar]
- Panditharathne, R.; Gunathilake, M.B.; Chathuranika, I.M.; Rathnayake, U.; Babel, M.S.; Jha, M.K. Trends and Variabilities in Rainfall and Streamflow: A Case Study of the Nilwala River Basin in Sri Lanka. Hydrology 2023, 10, 8. [Google Scholar] [CrossRef]
- Malede, D.A.; Alamirew, T.; Andualem, T.G. Integrated and Individual Impacts of Land Use Land Cover and Climate Changes on Hydrological Flows over Birr River Watershed, Abbay Basin, Ethiopia. Water 2023, 15, 166. [Google Scholar] [CrossRef]
- Nasiri Khiazvi, A.; Mostafazadeh, R.; Esmali Ouri, A.; Ghafarzadeh, O.; Golshan, M. Alteration of hydrologic flow indicators in Ardabil Balikhlouchai River under combined effects of change in climatic variables and Yamchi Dam construction using Range of Variability Approach. Watershed Eng. Manag. 2019, 11, 851–865. (In Persian) [Google Scholar]
- Esfandyari Darabad, F.; Mostafazadeh, R.; Shahmoradi, R.; Nasiri Khiavi, A. The Analysis of the changes of the hydrological flow indices affected by dam construction in Zarrinehrood and Saruqchai rivers of West Azerbaijan Province. Hydrogeomorphology 2019, 6, 57–77. [Google Scholar]
- Morid, R.; Igderi, S.; Delavar, M. Assessment of Climate Change Impacts on Aquatic Habitat Suitability in Kordan River Case Study: Oxynemacheilus bergianus. Iran-Water Resour. Res. 2016, 11, 145–158. [Google Scholar]
- Gómez-Balandra, M.A.; del Pilar Saldaña-Fabela, M.; Martínez-Jiménez, M. The Nature Conservancy. Indicators of Hydrologic Alteration Version 7.1 User’s Manual; The Nature Conservancy: Charlottesville, VA, USA, 2009; p. 81. Available online: https://www.conservationgateway.org (accessed on 19 October 2022).
- Mathews, R.; Richter, B.D. Application of the Indicators of hydrologic alteration software in environmental flow setting 1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 1400–1413. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Braun, D.P.; Powell, J. A spatial assessment of hydrologic alteration within a river network. Regul. Rivers: Res. Manag. An. Int. J. Devoted River Res. Manag. 1998, 14, 329–340. [Google Scholar] [CrossRef]
- Baubekova, A.; Akbari, M.; Etemadi, H.; Ashraf, F.B.; Hekmatzadeh, A.; Haghighi, A.T. Causes effects of upstream-downstream flow regime alteration over Catchment-Estuary-Coastal systems. Sci. Total Environ. 2023, 858, 160045. [Google Scholar] [CrossRef] [PubMed]
- Richter, B.; Baumgartner, J.; Wigington, R.; Braun, D. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef]
- Daechini, F.; Vafakhah, M.; Moosavi, V. Impacts of Dam Construction on Indicators of Hydrologic Alterations in the Gorganroud Watershed. Ecohydrology 2022, 9, 185–198. (In Persian) [Google Scholar]
- Nazeri Tahrudi, M.; Ahmadi, F.; Khalili, K. Evaluation the Trend and Trend Chang Point of Urmia Lake Basin Precipitation. Water Soil. 2017, 31, 644–659. (In Persian) [Google Scholar]
- Ahmadi, F.; Khalili, K.; Behmanesh, J.; Verdinazhad, V. Determination of Climate Changes on Air Temperature and Shahar-Chai River in the West of Urmia Lake Using Trend and Stationarity Analysis. Irrig. Sci. Eng. 2013, 35, 97–108. (In Persian) [Google Scholar]
- Hessari, B.; Zeinalzadeh, K. Investigation on human activities effects on water resources trend of Urmia Plain. Watershed Eng. Manag. 2020, 12, 415–427. (In Persian) [Google Scholar]
- Jahanbakhsh, S.; din Pazhoh, Y.; Aalinejhad, M. Impacts of Climate Change on Runoff from Snowmelt (Case Study: Shahrchai basin Urmia). Geogr. Plan. 2019, 23, 91–107. (In Persian) [Google Scholar]
- Keivan Behjou, F.; Mostafazadeh, R.; Alaei, N. Effects of Forest Logging Systems on the River Flow Regime Indices Using Graphical Techniques: A Case Study in a Small Natural Forest. Hydrology 2024, 11, 94. [Google Scholar] [CrossRef]
Group/IHA Parameter | Pre-Impact Period 1950–2004 (55 years) | Post-Impact Period 2005–2018 (14 years) | RVA Boundaries | Relative Chang (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Medians | Range of Changes | Medians | Range of Changes | Low | High | |||||
Minimum | Maximum | Minimum | Maximum | |||||||
Group 1 | October | 0.80 | 0.25 | 4.40 | 0.64 | 0.06 | 5.56 | 0.62 | 1.20 | −19.8 |
November | 1.20 | 0.22 | 3.55 | 0.62 | 0.10 | 1.85 | 0.86 | 1.59 | −48.2 | |
December | 1.20 | 0.22 | 4.04 | 0.40 | 0.02 | 1.12 | 0.99 | 1.46 | −67.1 | |
January | 1.18 | 0.19 | 2.74 | 0.52 | 0.00 | 0.79 | 0.92 | 1.40 | −56.0 | |
February | 1.53 | 0.53 | 5.59 | 0.64 | 0.12 | 11.50 | 1.26 | 1.85 | −58.3 | |
March | 4.00 | 1.10 | 11.58 | 1.28 | 0.38 | 13.80 | 3.05 | 5.33 | −68.0 | |
April | 12.13 | 3.40 | 29.52 | 1.49 | 0.10 | 13.80 | 10.75 | 15.24 | −87.8 | |
May | 18.50 | 4.21 | 53.00 | 3.54 | 0.51 | 13.80 | 16.00 | 23.71 | −80.9 | |
June | 9.73 | 0.69 | 29.50 | 5.40 | 0.65 | 13.80 | 6.60 | 11.90 | −44.5 | |
July | 2.48 | 0.00 | 11.00 | 6.14 | 0.45 | 13.80 | 1.77 | 4.30 | 147.6 | |
August | 0.95 | 0.00 | 3.59 | 3.51 | 1.16 | 13.80 | 0.73 | 1.18 | 268.9 | |
September | 0.60 | 0.00 | 6.60 | 1.45 | 0.07 | 13.80 | 0.48 | 1.12 | 142.2 | |
Group 2 | 1-day minimum | 0.20 | 0.00 | 0.90 | 0.03 | 0.00 | 0.39 | 0.09 | 0.31 | −85.3 |
3-day minimum | 0.24 | 0.00 | 0.90 | 0.04 | 0.00 | 0.49 | 0.16 | 0.39 | −84.5 | |
7-day minimum | 0.31 | 0.00 | 0.99 | 0.09 | 0.00 | 0.56 | 0.21 | 0.44 | −72.3 | |
30-day minimum | 0.49 | 0.00 | 1.29 | 0.16 | 0.00 | 0.69 | 0.33 | 0.61 | −67.1 | |
90-day minimum | 0.89 | 0.00 | 2.19 | 0.42 | 0.08 | 0.80 | 0.75 | 1.09 | −52.9 | |
1-day maximum | 34.38 | 10.00 | 170.00 | 12.10 | 7.65 | 19.90 | 29.56 | 44.08 | −64.8 | |
3-day maximum | 29.33 | 9.27 | 103.10 | 10.68 | 7.26 | 15.30 | 24.85 | 35.20 | −63.6 | |
7-day maximum | 25.16 | 8.80 | 91.39 | 9.29 | 7.08 | 13.89 | 22.17 | 31.08 | −63.1 | |
30-day maximum | 20.77 | 6.40 | 57.79 | 7.08 | 4.71 | 13.82 | 17.92 | 24.85 | −65.9 | |
90-day maximum | 14.79 | 5.01 | 30.90 | 5.74 | 4.05 | 13.81 | 12.32 | 17.78 | −61.2 | |
Group 3 | Number of zero days | 0.00 | 0.00 | 89.00 | 0.00 | 0.00 | 37.00 | 0.00 | 0.00 | NA |
Base flow index | 0.06 | 0.00 | 0.34 | 0.04 | 0.00 | 0.23 | 0.03 | 0.09 | −29.5 | |
Date of minimum | 262 | 1 | 353 | 290 | 1 | 358 | 254 | 277 | 10.7 | |
Date of maximum | 117 | 54 | 325 | 181 | 58 | 246 | 105 | 128.5 | 54.7 | |
Group 4 | Low pulse count | 6 | 1 | 15 | 11 | 2 | 23 | 3.48 | 8 | 83.3 |
Low pulse duration | 5.5 | 1 | 119 | 6.5 | 2 | 61.5 | 3.24 | 10.52 | 18.2 | |
High pulse count | 3 | 1 | 10 | 7.5 | 1 | 12 | 2 | 4 | 150.0 | |
High pulse duration | 5 | 1 | 104 | 4.5 | 1 | 236 | 2.74 | 35.84 | −10.0 | |
Group 5 | Rise rate | 0.23 | 0.02 | 1 | 0.17 | 0.06 | 0.26 | 0.20 | 0.30 | −28.3 |
Fall rate | −0.245 | −0.68 | −0.095 | −0.13 | −0.24 | −0.05 | −0.28 | −0.20 | −46.9 | |
Number of reversals | 114 | 51 | 153 | 110 | 26 | 166 | 99.48 | 121.5 | −3.9 |
Land Use/Land Cover | 1987 | 2017 | ||
---|---|---|---|---|
Km2 | % | Km2 | % | |
Irrigated farming-Orchard (mix) | 820.1 | 2.6 | 1605.7 | 5.1 |
Irrigated Farming | 7344.0 | 23.2 | 4483.2 | 14.1 |
Orchard | 74.4 | 0.2 | 106.1 | 0.3 |
Rangeland | 17,685.7 | 55.8 | 20,428.9 | 64.4 |
Bare land | 29.7 | 0.1 | 3654.2 | 11.5 |
Residential | 55.7 | 0.2 | 308.5 | 1.0 |
Snow | 5598.1 | 17.6 | 256.8 | 0.8 |
Water | 112.3 | 0.4 | 866.8 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafazadeh, R.; Zabihi Silabi, M.; Azizi Mobaser, J.; Moezzipour, B. Index-Based Alteration of Long-Term River Flow Regimes Influenced by Land Use Change and Dam Regulation. Earth 2024, 5, 404-419. https://doi.org/10.3390/earth5030023
Mostafazadeh R, Zabihi Silabi M, Azizi Mobaser J, Moezzipour B. Index-Based Alteration of Long-Term River Flow Regimes Influenced by Land Use Change and Dam Regulation. Earth. 2024; 5(3):404-419. https://doi.org/10.3390/earth5030023
Chicago/Turabian StyleMostafazadeh, Raoof, Mostafa Zabihi Silabi, Javanshir Azizi Mobaser, and Bita Moezzipour. 2024. "Index-Based Alteration of Long-Term River Flow Regimes Influenced by Land Use Change and Dam Regulation" Earth 5, no. 3: 404-419. https://doi.org/10.3390/earth5030023
APA StyleMostafazadeh, R., Zabihi Silabi, M., Azizi Mobaser, J., & Moezzipour, B. (2024). Index-Based Alteration of Long-Term River Flow Regimes Influenced by Land Use Change and Dam Regulation. Earth, 5(3), 404-419. https://doi.org/10.3390/earth5030023