Spatial Distribution and Seasonal Variation of Antibiotic-Resistant Bacteria in an Urban River in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of River Water Samples
2.2. Preparation of Antibiotics
2.3. Screening of Culturable Bacterial Strains
2.4. Identification of Culturable Antibiotic-Resistant Strains
2.5. Statistical Analysis
3. Results
3.1. Distribution of Culturable Bacteria
3.2. Identification Results of ARB
3.3. Distribution of Antibiotic-Resistant Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Xu, S.; Zhao, K.; Song, G.; Zhao, S.; Liu, R. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. Sci. Total Environ. 2023, 877, 162772. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Lerminiaux, N.A.; Cameron, A.D.S. Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 2018, 65, 34–44. [Google Scholar] [CrossRef]
- Kumar, M.; Ram, B.; Sewwandi, H.; Sulfikar; Honda, R.; Chaminda, T. Treatment enhances the prevalence of antibiotic-resistant bacteria and antibiotic resistance genes in the wastewater of Sri Lanka, and India. Environ. Res. 2020, 183, 109179. [Google Scholar] [CrossRef] [PubMed]
- Pruden, A.; Pei, R.; Storteboom, H.; Carlson, K.H. Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado. Environ. Sci. Technol. 2006, 40, 7445–7450. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.I.; Álvarez-Arroyo, R.; Arrieta, J.; Suescun, J.M.; Paunero, S.; Gómez, M.A. Occurrence of antibiotics and antibiotic-resistant bacteria (ARB) in the Nervión river. Chemosphere 2022, 288, 132479. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.C.; Wilson, M.J.; Esser, S.M.; Lee, N.L.; Wheeler, M.E.; Aubee, A.; Aw, T.G. Assessing visitor use impact on antibiotic resistant bacteria and antibiotic resistance genes in soil and water environments of Rocky Mountain National Park. Sci. Total Environ. 2021, 785, 147122. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Ding, P.; Wang, Y.; Ding, C.; Wu, L.; Zheng, P.; Zhang, X.; Li, X.; Wang, L.; Sun, Z. Comparison of culturable antibiotic-resistant bacteria in polluted and non-polluted air in Beijing, China. Environ. Int. 2019, 131, 104936. [Google Scholar] [CrossRef] [PubMed]
- Swift, B.M.C.; Bennett, M.; Waller, K.; Dodd, C.; Murray, A.; Gomes, R.L.; Humphreys, B.; Hobman, J.L.; Jones, M.A.; Whitlock, S.E.; et al. Anthropogenic environmental drivers of antimicrobial resistance in wildlife. Sci. Total Environ. 2019, 649, 12–20. [Google Scholar] [CrossRef]
- Srichamnong, W.; Kalambaheti, N.; Woskie, S.; Kongtip, P.; Sirivarasai, J.; Matthews, K.R. Occurrence of antibiotic-resistant bacteria on hydroponically grown butterhead lettuce (Lactuca sativa var. capitata). Food Sci. Nutr. 2021, 9, 1460–1470. [Google Scholar] [CrossRef]
- Li, S.; Ondon, B.S.; Ho, S.-H.; Zhou, Q.; Li, F. Drinking water sources as hotspots of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs): Occurrence, spread, and mitigation strategies. J. Water Process Eng. 2023, 53, 103907. [Google Scholar] [CrossRef]
- Cerqueira, F.; Matamoros, V.; Bayona, J.; Piña, B. Antibiotic resistance genes distribution in microbiomes from the soil-plant-fruit continuum in commercial Lycopersicon esculentum fields under different agricultural practices. Sci. Total Environ. 2019, 652, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.S.; Punia, A. Chapter 8—Antibiotic pollution and antibiotic-resistant bacteria in water bodies. In Degradation of Antibiotics and Antibiotic-Resistant Bacteria from Various Sources; Singh, P., Sillanpää, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 179–201. [Google Scholar]
- Fletcher, S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ. Health Prev. Med. 2015, 20, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Guo, Y.; Isabwe, A.; Chen, H.; Wang, Y.; Zhang, Y.; Zhu, Z.; Yang, J. Urbanization drives riverine bacterial antibiotic resistome more than taxonomic community at watershed scale. Environ. Int. 2020, 137, 105524. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Huang, D.; Du, L.; Song, B.; Yin, L.; Chen, Y.; Gao, L.; Li, R.; Huang, H.; Zeng, G. Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks. Sci. Total Environ. 2023, 869, 161855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Hu, H.-W.; Chen, Q.-L.; Singh, B.K.; Yan, H.; Chen, D.; He, J.-Z. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ. Int. 2019, 130, 104912. [Google Scholar] [CrossRef] [PubMed]
- Nnadozie, C.F.; Odume, O.N. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environ. Pollut. 2019, 254, 113067. [Google Scholar] [CrossRef]
- Scaccia, N.; Vaz-Moreira, I.; Manaia, C.M. The risk of transmitting antibiotic resistance through endophytic bacteria. Trends Plant Sci. 2021, 26, 1213–1226. [Google Scholar] [CrossRef] [PubMed]
- Leonard, A.F.C.; Zhang, L.; Balfour, A.J.; Garside, R.; Gaze, W.H. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environ. Int. 2015, 82, 92–100. [Google Scholar] [CrossRef]
- Omotade, I.F.; Lasisi, K.H.; Ajibade, F.O.; Ajibade, T.F.; Adelodun, B.; Kumar, P.; Nwogwu, N.A.; Adeoye, I.A.; Olanrewaju, O.O.; Adewumi, J.R. Chapter 9—Antibiotic-resistant bacteria in natural water bodies: Causes, routes, and remedies. In Degradation of Antibiotics and Antibiotic-Resistant Bacteria from Various Sources; Singh, P., Sillanpää, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 203–229. [Google Scholar]
- Calero-Cáceres, W.; Méndez, J.; Martín-Díaz, J.; Muniesa, M. The occurrence of antibiotic resistance genes in a Mediterranean river and their persistence in the riverbed sediment. Environ. Pollut. 2017, 223, 384–394. [Google Scholar] [CrossRef]
- Calero-Cáceres, W.; Muniesa, M. Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res. 2016, 95, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Czekalski, N.; Sigdel, R.; Birtel, J.; Matthews, B.; Bürgmann, H. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environ. Int. 2015, 81, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Strickler, K.M.; Fremier, A.K.; Goldberg, C.S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 2015, 183, 85–92. [Google Scholar] [CrossRef]
- Anyaduba, T. Fate and Transport of Antibiotic Resistance Genes in Aquatic Ecosystem; Imperial College London: London, UK, 2016. [Google Scholar]
- Scoullos, I.M.; Lopez Vazquez, C.M.; van de Vossenberg, J.; Hammond, M.; Brdjanovic, D. Effect of Artificial Solar Radiation on the Die-Off of Pathogen Indicator Organisms in Urban Floods. Int. J. Environ. Res. 2019, 13, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Mcclary, J.S.; Sassoubre, L.M.; Boeh, A.B. Staphylococcus aureus Strain Newman Photoinactivation and Cellular Response to Sunlight Exposure. Appl. Environ. Microbiol. 2017, 83, e01052-17. [Google Scholar] [CrossRef]
- Jerde, C.L.; Olds, B.P.; Shogren, A.J.; Andruszkiewicz, E.A.; Mahon, A.R.; Bolster, D.; Tank, J.L. Influence of Stream Bottom Substrate on Retention and Transport of Vertebrate Environmental DNA. Environ. Sci. Technol. 2016, 50, 8770–8779. [Google Scholar] [CrossRef] [PubMed]
- LaPara, T.M.; Madson, M.; Borchardt, S.; Lang, K.S.; Johnson, T.J. Multiple Discharges of Treated Municipal Wastewater Have a Small Effect on the Quantities of Numerous Antibiotic Resistance Determinants in the Upper Mississippi River. Environ. Sci. Technol. 2015, 49, 11509–11515. [Google Scholar] [CrossRef]
- Devarajan, N.; Laffite, A.; Mulaji, C.K.; Otamonga, J.-P.; Mpiana, P.T.; Mubedi, J.I.; Prabakar, K.; Ibelings, B.W.; Poté, J. Occurrence of Antibiotic Resistance Genes and Bacterial Markers in a Tropical River Receiving Hospital and Urban Wastewaters. PLoS ONE 2016, 11, e0149211. [Google Scholar] [CrossRef]
- Sta Ana, K.M.; Madriaga, J.; Espino, M.P. β-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: An overview of contamination, sources and detection methods. Environ. Pollut. 2021, 275, 116624. [Google Scholar] [CrossRef]
- Shahid, A.; Muzammil, S.; Aslam, B.; Ashfaq, U.A.; Hayat, S.; Bilal, M.; Rajoka, M.S.R.; Nisar, M.A.; Khurshid, M. Chapter 2—Antibiotics and antibiotic-resistant bacteria in the environment: Sources and impacts. In Degradation of Antibiotics and Antibiotic-Resistant Bacteria from Various Sources; Singh, P., Sillanpää, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 39–65. [Google Scholar]
- Nelson, K.L.; Boehm, A.B.; Davies-Colley, R.J.; Dodd, M.C.; Kohn, T.; Linden, K.G.; Liu, Y.; Maraccini, P.A.; McNeill, K.; Mitch, W.A.; et al. Sunlight-mediated inactivation of health-relevant microorganisms in water: A review of mechanisms and modeling approaches. Environ. Sci. Process. Impacts 2018, 20, 1089–1122. [Google Scholar] [CrossRef]
- Guo, M.-T.; Yuan, Q.-B.; Yang, J. Distinguishing Effects of Ultraviolet Exposure and Chlorination on the Horizontal Transfer of Antibiotic Resistance Genes in Municipal Wastewater. Environ. Sci. Technol. 2015, 49, 5771–5778. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Y.; Li, J.; Mao, L.; Nguyen, S.H.; Duarte, T.; Coin, L.; Bond, P.; Yuan, Z.; Guo, J. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Environ. Int. 2018, 121, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, J.; Han, Y.; Chen, J.; Liu, G.; Lu, H.; Yan, B.; Chen, S. Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture. Environ. Pollut. 2017, 220, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Feng, M.; Ye, C.; Yu, X. Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review. Sci. Total Environ. 2022, 806, 150568. [Google Scholar] [CrossRef]
- Hossain, Z. Pseudomonas. In Encyclopedia of Food Safety, 2nd ed.; Smithers, G.W., Ed.; Academic Press: Oxford, UK, 2024; pp. 236–251. [Google Scholar]
- da Silva, M.E.P.; Gomes, M.A.d.S.; Rodrigues, R.S.; Lima, N.C.d.S.; Carvalho, A.G.; Taborda, R.L.M.; Matos, N.B. Multidrug-resistant Acinetobacter spp. from hospital intensive care units in Brazilian Amazon. Braz. J. Infect. Dis. 2023, 27, 103687. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Chen, Y.-H. Bacteremia due to Brevundimonas vesicularis. J. Microbiol. Immunol. Infect. 2013, 46, 143. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Irzykowska, L. Flavobacterium spp.—Characteristics, Occurrence, and Toxicity. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 938–942. [Google Scholar]
- Gaastra, W.; Kusters, J.G.; van Duijkeren, E.; Lipman, L.J.A. Escherichia fergusonii. Vet. Microbiol. 2014, 172, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shang, B.; Zhang, X.; Zhang, H.; Li, Z.; Shen, X.; Chen, F.; Tao, S. Complete genome sequence data of multidrug-resistant Aeromonas hydrophila Ah27 isolated from intussusception channel catfish (Ictalurus punctatus). Gene Rep. 2023, 33, 101807. [Google Scholar] [CrossRef]
- Adegun, B.R.; Oluduro, A.O.; Aregbesola, O.A. Isolation and molecular characterization of citrobacter species in fruits and vegetables sold for consumption in ILE-IFE, Nigeria. Sci. Afr. 2019, 6, e00173. [Google Scholar] [CrossRef]
- Mumy, K.L. Shigella. In Encyclopedia of Toxicology, 4th ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2024; pp. 501–503. [Google Scholar]
- Zhang, J.; Liu, Y.; Wu, H.; Zhou, L. Is Shigella an under-recognized pathogen? A case of pyogenic cervical spondylitis caused by Escherichia coli and Shigella flexneri infection. IDCases 2024, 35, e01930. [Google Scholar] [CrossRef]
Position Number | Positional Information | North Latitude | East Longitude |
---|---|---|---|
S1 | Near Heilongjiang Shipyard Machinery Factory | 45°83′31.31″ | 126°72′33.72″ |
S2 | Songpu Bridge | 45°80′44.89″ | 126°66′45.87″ |
S3 | Songhua River Railway Bridge | 45°79′13.18″ | 126°63′45.78″ |
S4 | Near People’s Square | 45°78′10.61″ | 126°60′71.49″ |
S5 | Songhua River Highway Bridge | 45°76′94.94″ | 126°59′83.28″ |
S6 | The intersection of Hejiagou River and Songhua River | 45°76′10.44″ | 126°58′22.34″ |
Antibiotic | Reserve Solution Concentration | Final Concentration | Category |
---|---|---|---|
TET | 50 mg/mL | 16 μg/mL | Tetracycline class |
GEN | 16 mg/mL | 16 μg/mL | Aminoglycosides |
CIP | 4 mg/mL | 4 μg/mL | Quinolones |
CTX | 4 mg/mL | 4 μg/mL | β-Lactamides |
SDZ | 512 mg/mL | 512 μg/mL | Sulfonamides |
No. | Species | Length (bp) | Coverage | Identity | Accession |
---|---|---|---|---|---|
1 | Acinetobacter bouvetii | 1530 | 100% | 98.34% | NR_117628.1 |
2 | Acinetobacter movanagherensis | 1331 | 100% | 99.86% | NR_145841.1 |
3 | Acinetobacter kyonggiensis | 1395 | 100% | 99.17% | NR_116714.1 |
4 | Acinetobacter piscicola | 1501 | 99% | 96.32% | NR_159919.1 |
5 | Acinetobacter oryzae | 1499 | 100% | 99.72% | NR_180005.1 |
6 | Pseudomonas vancouverensis | 1492 | 100% | 99.72% | NR_041953.1 |
7 | Pseudomonas silesiensis | 1539 | 100% | 100% | NR_156815.1 |
8 | Pseudomonas oryzihabitans | 1527 | 100% | 99.31% | NR_025881.1 |
9 | Pseudomonas mohnii | 1459 | 100% | 98.89% | NR_042543.1 |
10 | Pseudomonas paracarnis | 1431 | 100% | 99.31% | NR_178976.1 |
11 | Pseudomonas alloputida | 1464 | 100% | 99.86% | NR_179595.1 |
12 | Pseudomonas umsongensis | 1455 | 100% | 100% | NR_025227.1 |
13 | Pseudomonas qingdaonensis | 1525 | 100% | 100% | NR_169411.1 |
14 | Pseudomonas kielensis | 1537 | 100% | 100% | NR_181570.1 |
15 | Pseudomonas kilonensis | 1528 | 100% | 100% | NR_028929.1 |
16 | Pseudomonas peli | 1497 | 100% | 99.31% | NR_042451.1 |
17 | Pseudomonas promysalinigenes | 1331 | 100% | 99.86% | NR_178291.1 |
18 | Pseudomonas petroselini | 1494 | 100% | 99.86% | NR_179384.1 |
19 | Pseudomonas mandelii | 1518 | 100% | 100% | NR_024902.1 |
20 | Pseudomonas lactis | 1428 | 100% | 100% | NR_156986.1 |
21 | Pseudomonas chengduensis | 1529 | 99% | 97.49% | NR_125523.1 |
22 | Pseudomonas laurylsulfativorans | 1499 | 100% | 99.72% | NR_179728.1 |
23 | Pseudomonas arcuscaelestis | 1567 | 100% | 99.86% | NR_181857.1 |
24 | Pseudomonas defluvii | 1532 | 100% | 100% | NR_179168.1 |
25 | Pseudomonas persica | 1472 | 100% | 98.34% | NR_179596.1 |
26 | Priestia qingshengii | 1455 | 100% | 99.31% | NR_133978.1 |
27 | Priestia megaterium | 1495 | 100% | 99.86% | NR_117473.1 |
28 | Bacillus mycoides | 1477 | 100% | 99.86% | NR_113996.1 |
29 | Bacillus thuringiensis | 1544 | 100% | 99.86% | NR_121761.1 |
30 | Bacillus proteolyticus | 1509 | 100% | 99.86% | NR_157735.1 |
31 | Bacillus altitudinis | 1506 | 100% | 100% | NR_042337.1 |
32 | Bacillus zhangzhouensis | 1513 | 100% | 99.86% | NR_148786.1 |
33 | Bacillus fungorum | 1576 | 87% | 88.32% | NR_170494.1 |
34 | Arthrobacter oryzae | 1465 | 100% | 99.72% | NR_041545.1 |
35 | Arthrobacter ginsengisoli | 1454 | 100% | 99.31% | NR_178602.1 |
36 | Paenarthrobacter nicotinovorans | 1468 | 100% | 99.58% | NR_026194.1 |
37 | Brevundimonas vesicularis | 1386 | 100% | 99.72% | NR_113586.1 |
38 | Flavobacterium tructae | 1458 | 100% | 99.86% | NR_133749.1 |
39 | Flavobacterium suzhouense | 1477 | 100% | 99.31% | NR_178734.1 |
40 | Peribacillus frigoritolerans | 1503 | 100% | 98.89% | NR_117474.1 |
41 | Peribacillus simplex | 1522 | 100% | 100% | NR_042136.1 |
42 | Exiguobacterium undae | 1550 | 100% | 99.86% | NR_043477.1 |
43 | Escherichia marmotae | 1504 | 100% | 99.17% | NR_136472.1 |
44 | Escherichia fergusonii | 1542 | 100% | 99.45% | NR_074902.1 |
45 | Shigella flexneri | 1488 | 100% | 99.86% | NR_026331.1 |
46 | Aeromonas media | 1460 | 100% | 99.86% | NR_119041.1 |
47 | Aeromonas hydrophila subsp. ranae | 1350 | 100% | 99.72% | NR_042518.1 |
48 | Aeromonas hydrophila | 1460 | 100% | 100% | NR_119039.1 |
49 | Aeromonas sanarellii | 1503 | 85% | 84.71% | NR_116584.1 |
50 | Citrobacter pasteurii | 1492 | 100% | 99.86% | NR_178769.1 |
51 | Lysinibacillus composti | 1475 | 100% | 99.86% | NR_126171.1 |
ARBs | Antibiotics |
---|---|
Acinetobacter bouvetii strain DSM 14964 | S1-TET |
Acinetobacter movanagherensis strain Movanagher 4 | S1-TET, CIP |
Acinetobacter kyonggiensis strain KSL5401-037 | S1-TET |
Acinetobacter piscicola strain LW15 | S1-TET |
Acinetobacter oryzae strain B23 | S6-TET |
Acinetobacter movanagherensis strain Movanagher 4 | S6-TET |
Pseudomonas vancouverensis strain DhA-51 | S1-TET |
Pseudomonas alloputida strain Kh7 | S1-CIP, SDZ, CTX |
Pseudomonas umsongensis strain Ps 3-10 | S1-SDZ, CTX |
Pseudomonas qingdaonensis strain JJ3 | S1-SDZ, CTX |
Pseudomonas silesiensis strain A3 | S1-CTX |
Pseudomonas oryzihabitans strain L-1 | S1-CTX |
Pseudomonas mohnii strain IpA-2 | S1-CTX |
Pseudomonas paracarnis strain V5/DAB/2/5 | S1-CTX |
Pseudomonas alloputida strain Kh7 | S1-CTX + SDZ |
Pseudomonas umsongensis strain Ps 3-10 | S1-CTX + SDZ |
Pseudomonas qingdaonensis strain JJ3 | S1-CTX + SDZ |
Pseudomonas alloputida strain Kh7 | S1-CTX + SDZ + CIP |
Pseudomonas kielensis strain MBT-1 | S2-CTX |
Pseudomonas kilonensis strain 520-20 | S2-CTX |
Pseudomonas silesiensis strain A3 | S2-CTX |
Pseudomonas peli strain R-20805 | S2-CTX, CIP |
Pseudomonas promysalinigenes strain RW10S1 | S2-CIP |
Pseudomonas petroselini strain MAFF 311094 | S2-CIP |
Pseudomonas vancouverensis strain DhA-51 | S3-TET, GEN |
Pseudomonas umsongensis strain Ps 3-10 | S3-TET |
Pseudomonas silesiensis strain A3 | S3-CTX |
Pseudomonas mandelii strain CIP 105273 | S3-CTX |
Pseudomonas lactis strain DSM 29167 | S3-SDZ |
Pseudomonas chengduensis strain MBR | S4-CTX |
Pseudomonas silesiensis strain A3 | S4-CTX |
Pseudomonas vancouverensis strain DhA-51 | S4-GEN |
Pseudomonas peli strain R-20805 | S4-TET, CIP |
Pseudomonas laurylsulfativorans strain AP3_22 | S5-SDZ |
Pseudomonas silesiensis strain A3 | S5-CTX |
Pseudomonas kielensis strain MBT-1 | S5-CTX |
Pseudomonas umsongensis strain Ps 3-10 | S5-CTX |
Pseudomonas peli strain R-20805 | S5-CIP |
Pseudomonas arcuscaelestis strain P66 | S6-CIP |
Pseudomonas defluvii strain WCHP16 | S6-CIP, CTX, SDZ |
Pseudomonas persica strain VKh13 | S6-CIP, CTX, SDZ |
Pseudomonas defluvii strain WCHP16 | S6-CTX + SDZ |
Pseudomonas persica strain VKh13 | S6-CTX + SDZ |
Pseudomonas persica strain VKh13 | S6-CTX + SDZ + CIP |
Pseudomonas defluvii strain WCHP16 | S6-CTX + SDZ + CIP |
Priestia qingshengii strain G19 | S1-SDZ |
Priestia megaterium strain ATCC 14581 | S4-SDZ |
Priestia megaterium strain ATCC 14581 | S6-CTX |
Bacillus mycoides strain NBRC 101238 | S1-CTX, SDZ |
Bacillus mycoides strain NBRC 101238 | S1-CTX + SDZ |
Bacillus thuringiensis strain IAM 12077 | S2-CTX, SDZ |
Bacillus proteolyticus strain MCCC 1A00365 | S3-SDZ |
Bacillus altitudinis 41KF2b | S5-CTX |
Bacillus zhangzhouensis strain MCCC 1A08372 | S5-CTX |
Bacillus thuringiensis strain IAM 12077 | S6-CTX, SDZ |
Bacillus fungorum strain 17-SMS-01 | S6-CTX, SDZ |
Bacillus thuringiensis strain IAM 12077 | S6-CTX + SDZ |
Bacillus fungorum strain 17-SMS-01 | S6-CTX + SDZ |
Arthrobacter ginsengisoli strain DCY81 | S3-GEN |
Arthrobacter oryzae strain KV-651 | S4-GEN |
Arthrobacter oryzae strain KV-651 | S5-GEN |
Paenarthrobacter nicotinovorans strain DSM 420 | S3-CIP |
Brevundimonas vesicularis strain NBRC 12165 | S3-CIP |
Flavobacterium tructae strain 435-08 | S4-GEN |
Flavobacterium suzhouense strain XIN-1 | S5-GEN |
Peribacillus frigoritolerans strain DSM 8801 | S4-SDZ |
Peribacillus simplex NBRC 15720 = DSM 1321 | S5-SDZ |
Peribacillus frigoritolerans strain DSM 8801 | S6-CTX |
Exiguobacterium undae strain DSM 14481 | S5-SDZ |
Escherichia marmotae strain HT073016 | S6-TET |
Escherichia fergusonii ATCC 35469 | S6-TET |
Shigella flexneri strain ATCC 29903 | S6-TET, CIP |
Aeromonas media strain ATCC 33907 | S6-TET, GEN, CTX, CIP, SDZ |
Aeromonas hydrophila subsp. ranae strain Au-1D12 | S6-GEN, CTX |
Aeromonas hydrophila strain ATCC 7966 | S6-GEN |
Aeromonas sanarellii strain A2-67 | S6-CIP |
Aeromonas media strain ATCC 33907 | S6-CTX + SDZ |
Aeromonas media strain ATCC 33907 | S6-CTX + SDZ + CIP |
Aeromonas media strain ATCC 33907 | S6-CTX + SDZ + CIP + GEN |
Aeromonas media strain ATCC 33907 | S6-CTX + SDZ + CIP + GEN + TET |
Citrobacter pasteurii strain CIP55.13 | S6-CIP |
Lysinibacillus composti strain NCCP-36 | S6-SDZ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Q.; Wang, X.; Xu, C.; Chen, W.; Huang, Q.; Wang, X. Spatial Distribution and Seasonal Variation of Antibiotic-Resistant Bacteria in an Urban River in Northeast China. Water 2024, 16, 1268. https://doi.org/10.3390/w16091268
Xiao Q, Wang X, Xu C, Chen W, Huang Q, Wang X. Spatial Distribution and Seasonal Variation of Antibiotic-Resistant Bacteria in an Urban River in Northeast China. Water. 2024; 16(9):1268. https://doi.org/10.3390/w16091268
Chicago/Turabian StyleXiao, Qingshan, Xin Wang, Chongxin Xu, Wei Chen, Qianchi Huang, and Xin Wang. 2024. "Spatial Distribution and Seasonal Variation of Antibiotic-Resistant Bacteria in an Urban River in Northeast China" Water 16, no. 9: 1268. https://doi.org/10.3390/w16091268
APA StyleXiao, Q., Wang, X., Xu, C., Chen, W., Huang, Q., & Wang, X. (2024). Spatial Distribution and Seasonal Variation of Antibiotic-Resistant Bacteria in an Urban River in Northeast China. Water, 16(9), 1268. https://doi.org/10.3390/w16091268