Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (724)

Search Parameters:
Keywords = wide band-gap semiconductor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1066 KB  
Article
Is GaN the Enabler of High-Power-Density Converters? An Overview of the Technology, Devices, Circuits, and Applications
by Paul-Catalin Medinceanu, Alexandru Mihai Antonescu and Marius Enachescu
Electronics 2026, 15(3), 510; https://doi.org/10.3390/electronics15030510 (registering DOI) - 25 Jan 2026
Abstract
The growing demand for electric vehicles, renewable energy systems, and portable electronics has led to the widespread adoption of power conversion systems. Although advanced structures like the superjunction MOSFET have prolonged the viability of silicon in power applications, maintaining its dominance through cost [...] Read more.
The growing demand for electric vehicles, renewable energy systems, and portable electronics has led to the widespread adoption of power conversion systems. Although advanced structures like the superjunction MOSFET have prolonged the viability of silicon in power applications, maintaining its dominance through cost efficiency, Si-based technology is ultimately constrained by its intrinsic limitations in critical electric fields. To address these constraints, research into wide bandgap semiconductors aims to minimize system footprint while maximizing efficiency. This study reviews the semiconductor landscape, demonstrating why Gallium Nitride (GaN) has emerged as the most promising technology for next-generation power applications. With a critical electric field of 3.75MV/cm (12.5× higher than Si), GaN facilitates power devices with lower conduction loss and higher frequency capability when compared to their Si counterpart. Furthermore, this paper surveys the GaN ecosystem, ranging from device modeling and packaging to monolithic ICs and switching converter implementations based on discrete transistors. While existing literature primarily focuses on discrete devices, this work addresses the critical gap regarding GaN monolithic integration. It synthesizes key challenges and achievements in the design of GaN integrated circuits, providing a comprehensive review that spans semiconductor technology, monolithic circuit architectures, and system-level applications. Reported data demonstrate monolithic stages reaching 30mΩ and 25MHz, exceeding Si performance limits. Additionally, the study reports on high-density hybrid implementations, such as a space-grade POL converter achieving 123.3kW/L with 90.9% efficiency. Full article
(This article belongs to the Section Microelectronics)
30 pages, 1777 KB  
Review
Motor Soft-Start Technology: Intelligent Control, Wide Bandwidth Applications, and Energy Efficiency Optimization
by Peng Li, Li Fang, Pengkun Ji, Shuaiqi Li and Weibo Li
Energies 2026, 19(3), 603; https://doi.org/10.3390/en19030603 (registering DOI) - 23 Jan 2026
Viewed by 86
Abstract
Direct-starting of industrial motors has problems such as large current impact (five to eight times the rated current), mechanical stress damage, and low energy efficiency. This paper explores the technological innovations in motor soft-start driven by intelligent control and wide-bandgap semiconductors, and constructs [...] Read more.
Direct-starting of industrial motors has problems such as large current impact (five to eight times the rated current), mechanical stress damage, and low energy efficiency. This paper explores the technological innovations in motor soft-start driven by intelligent control and wide-bandgap semiconductors, and constructs a highly reliable and low energy consumption solution. Firstly, based on a material–device–algorithm system framework, a comparative study is conducted on the performance breakthroughs of SiC/GaN in replacing silicon-based devices. Secondly, an intelligent control model is established and a highly reliable system architecture is developed. A comprehensive review of recent literature indicates that SiC devices can reduce switching losses by up to 80%, and intelligent algorithms significantly improve control accuracy. System-level solutions reported in the industry demonstrate the capability to limit current to 1.5–3 times the rated current and achieve substantial carbon emission reductions. These technologies provide key technical support for the intelligent upgrading of industrial motor systems and the dual-carbon goal. In the future, development will continue to evolve in the direction of device miniaturization and other directions. Full article
Show Figures

Figure 1

28 pages, 1402 KB  
Article
Solid-State Transformers in the Global Clean Energy Transition: Decarbonization Impact and Lifecycle Performance
by Nikolay Hinov
Energies 2026, 19(2), 558; https://doi.org/10.3390/en19020558 - 22 Jan 2026
Viewed by 50
Abstract
The global clean energy transition requires power conversion technologies that combine high efficiency, operational flexibility, and reduced environmental impact over their entire service life. Solid-state transformers (SSTs) have emerged as a promising alternative to conventional line-frequency transformers, offering bidirectional power flow, high-frequency isolation, [...] Read more.
The global clean energy transition requires power conversion technologies that combine high efficiency, operational flexibility, and reduced environmental impact over their entire service life. Solid-state transformers (SSTs) have emerged as a promising alternative to conventional line-frequency transformers, offering bidirectional power flow, high-frequency isolation, and advanced control capabilities that support renewable integration and electrified infrastructures. This paper presents a comparative life cycle assessment (LCA) of conventional transformers and SSTs across representative power-system applications, including residential and industrial distribution networks, electric vehicle fast-charging infrastructure, and transmission–distribution interface substations. The analysis follows a cradle-to-grave approach and is based on literature-derived LCA data, manufacturer specifications, and harmonized engineering assumptions applied consistently across all case studies. The results show that, under identical assumptions, SST-based solutions are associated with indicative lifecycle CO2 emission reductions of approximately 10–30% compared to conventional transformers, depending on power rating and operating profile (≈90–1000 t CO2 over 25 years across the four cases). These reductions are primarily driven by lower operational losses and reduced material intensity, while additional system-level benefits arise from enhanced controllability and compatibility with renewable-rich and hybrid AC/DC grids. The study also identifies key challenges that influence the sustainability performance of SSTs, including higher capital cost, thermal management requirements, and the long-term reliability of power-electronic components. Overall, the results indicate that SSTs represent a relevant enabling technology for future low-carbon power systems, while highlighting the importance of transparent assumptions and lifecycle-oriented evaluation when comparing emerging grid technologies. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

36 pages, 3358 KB  
Review
A Comprehensive Review of Reliability Analysis for Pulsed Power Supplies
by Xiaozhen Zhao, Haolin Tong, Haodong Wu, Ahmed Abu-Siada, Kui Li and Chenguo Yao
Energies 2026, 19(2), 518; https://doi.org/10.3390/en19020518 - 20 Jan 2026
Viewed by 201
Abstract
Achieving high reliability remains the critical challenge for pulsed power supplies (PPS), whose core components are susceptible to severe degradation and catastrophic failure due to long-term operation under electrical, thermal and magnetic stresses, particularly those associated with high voltage and high current. This [...] Read more.
Achieving high reliability remains the critical challenge for pulsed power supplies (PPS), whose core components are susceptible to severe degradation and catastrophic failure due to long-term operation under electrical, thermal and magnetic stresses, particularly those associated with high voltage and high current. This reliability challenge fundamentally limits the widespread deployment of PPSs in defense and industrial applications. This article provides a comprehensive and systematic review of the reliability challenges and recent technological progress concerning PPSs, focusing on three hierarchical levels: component, system integration, and extreme operating environments. The review investigates the underlying failure mechanisms, degradation characteristics, and structural optimization of key components, such as energy storage capacitors and power switches. Furthermore, it elaborates on advanced system-level techniques, including novel thermal management topologies, jitter control methods for multi-module synchronization, and electromagnetic interference (EMI) source suppression and coupling path optimization. The primary conclusion is that achieving long-term, high-frequency operation depends on multi-physics field modeling and robust, integrated design approaches at all three levels. In summary, this review outlines important research directions for future advancements and offers technical guidance to help speed up the development of next-generation PPS systems characterized by high power density, frequent repetition, and outstanding reliability. Full article
Show Figures

Figure 1

13 pages, 4761 KB  
Article
Low Molecular Weight Acid-Modified Aluminum Nitride Powders for Enhanced Hydrolysis Resistance
by Linguang Wu, Yaling Yu, Shaomin Lin, Xianxue Li, Chenyang Zhang and Ji Luo
Inorganics 2026, 14(1), 30; https://doi.org/10.3390/inorganics14010030 - 18 Jan 2026
Viewed by 114
Abstract
Aluminum nitride (AlN) possesses an exceptional combination of high thermal conductivity and an ultra-wide band gap, rendering it highly attractive for electronic packaging and semiconductor substrate applications. In this study, surface chemical modification of AlN powders was performed employing low-molecular-weight organic acids, successfully [...] Read more.
Aluminum nitride (AlN) possesses an exceptional combination of high thermal conductivity and an ultra-wide band gap, rendering it highly attractive for electronic packaging and semiconductor substrate applications. In this study, surface chemical modification of AlN powders was performed employing low-molecular-weight organic acids, successfully yielding hydrolysis-resistant AlN powders. The underlying mechanisms responsible for the improved anti-hydrolysis performance imparted by both single organic acids and the composite acid were systematically investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM), characterization techniques. The results reveal that Oxalic acid within the concentration range of 0.25 M to 1.50 M partially inhibits the hydrolysis of aluminum nitride (AlN); however, hydrolysis products such as aluminum hydroxide are still formed. In the case of citric acid, a higher concentration leads to a stronger anti-hydrolysis effect on the modified AlN. No significant hydrolysis products were detected when the AlN sample was treated in a 1 M aqueous citric acid solution at 80 °C. The effectiveness of the organic acids in enhancing the hydrolysis resistance of AlN follows the order: composite acid (citric acid + oxalic acid) > citric acid > oxalic acid. Under the action of the composite acid, the AlN diffraction peaks exhibit the highest intensity. Furthermore, TEM observations reveal the formation of an amorphous protective layer on the surface, which contributes to the improved hydrolysis resistance. Analytical results confirmed that the surface modification process, mediated by citric acid, oxalic acid, or the composite acid, involved an esterification-like reaction between the surface hydroxyl groups on AlN and the chemical modifiers. This reaction led to the formation of a continuous protective coordination layer encapsulating the AlN particles, which serves as an effective diffusion barrier against water molecules, thereby significantly inhibiting the hydrolysis reaction. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

18 pages, 2562 KB  
Article
Power Electronics for Aerospace Applications: An Experimental Validation with WBG Technologies
by Rosalina Morais, Ana Dias, Joao L. Afonso and Vitor Monteiro
Energies 2026, 19(2), 381; https://doi.org/10.3390/en19020381 - 13 Jan 2026
Viewed by 196
Abstract
Wide-bandgap (WBG) semiconductor materials such as silicon carbide (SiC) and gallium nitride (GaN) are key enablers of power-electronics converters for aerospace platforms, where high efficiency, weight reduction, and thermal robustness are critical requirements. This paper presents the main challenges associated with the use [...] Read more.
Wide-bandgap (WBG) semiconductor materials such as silicon carbide (SiC) and gallium nitride (GaN) are key enablers of power-electronics converters for aerospace platforms, where high efficiency, weight reduction, and thermal robustness are critical requirements. This paper presents the main challenges associated with the use of these technologies, including protection requirements, electromagnetic compatibility, and thermal management, as well as the material advantages that enable higher switching frequencies and lower losses compared to conventional Si technologies. A comparative analysis of semiconductor technologies and suitable power-conversion topologies for the aerospace context is provided. Representative laboratory-scale experimental validation is presented, including the development of a DC–DC boost converter and a DC–AC full-bridge inverter, which are linked through the common DC-link and are used for interfacing batteries and an electrical motor, both based on GaN and SiC diodes. The results demonstrated the correct operation, with stable high-frequency performance under controlled laboratory conditions, supporting aerospace-oriented development, although evaluated in a laboratory environment, confirming the potential of WBG technologies for future power-conversion architectures. Full article
(This article belongs to the Special Issue Power Electronics Technologies for Aerospace Applications)
Show Figures

Figure 1

15 pages, 2248 KB  
Article
Bandgap Engineering of Ga2O3 by MOCVD Through Alloying with Indium
by Md Minhazul Islam, A. Hernandez, H. Appuhami, A. Banerjee, Blas Pedro Uberuaga and F. A. Selim
Nanomaterials 2026, 16(2), 93; https://doi.org/10.3390/nano16020093 - 12 Jan 2026
Viewed by 277
Abstract
Ga2O3 and In2O3 are vital semiconductors with current and future electronic device applications. Here, we study the alloying of In2O3 and Ga2O3 (IGO) and the associated changes in structure, morphology, band [...] Read more.
Ga2O3 and In2O3 are vital semiconductors with current and future electronic device applications. Here, we study the alloying of In2O3 and Ga2O3 (IGO) and the associated changes in structure, morphology, band gap, and electrical transport properties. Undoped films of IGO were deposited on sapphire substrates with varying indium (In) percentage from zero to 100% by metal-organic chemical vapor deposition (MOCVD). Some films were annealed in H2 to induce electrical conductivity. The measurements showed the optical band gap decreased by adding In; this was confirmed by density functional (DFT) calculations, which revealed that the nature of the valence band maximum and conduction band minimum strongly relate to the chemistry and that the band gap drops by adding In. The as-grown films were highly resistive except for pure In2O3, which possesses p-type conductivity, likely arising from In vacancy-related acceptor states. N-type conductivity was induced in all films after H-anneal. DFT calculations revealed that the presence of In decreases the electron effective mass, which is consistent with the electrical transport measurements that showed higher electron mobility for higher In percentage. The work revealed the successful band gap engineering of IGO and the modification of its band structure while maintaining high-quality films by MOCVD. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

30 pages, 1549 KB  
Article
An Overview of DC-DC Power Converters for Electric Propulsion
by Minghai Dong, Hui Li, Shan Yin, Bin Tian, Sulan Yang and Yuhua Chen
Aerospace 2026, 13(1), 36; https://doi.org/10.3390/aerospace13010036 - 29 Dec 2025
Viewed by 480
Abstract
Electric propulsion (EP) has become a pivotal technology in modern space exploration, enabling prolonged mission durations, increased payload capacity, and precise deep-space navigation through its superior thrust efficiency and low propellant consumption. However, the performance of EP systems is fundamentally limited by the [...] Read more.
Electric propulsion (EP) has become a pivotal technology in modern space exploration, enabling prolonged mission durations, increased payload capacity, and precise deep-space navigation through its superior thrust efficiency and low propellant consumption. However, the performance of EP systems is fundamentally limited by the power processing unit (PPU), with the DC-DC power converter serving as the core of the PPU. Existing research on DC-DC converters often focuses on generic topologies, failing to address the divergent power demands of distinct EP types and the harsh space-specific constraints. This review aims to fill this gap by systematically analyzing DC-DC power converters tailored for EP systems. First, the core requirements of converters across major EP categories are classified. Then, converter topologies are compared by evaluating the suitability for EP operational and space constraints. Moreover, high step-up conversion techniques are explored that bridge the gap between low-voltage spacecraft buses and thruster power needs. Furthermore, this review highlights emerging technologies driving EP converter advancement, such as wide-bandgap semiconductors for improved power density and efficiency, planar magnetics for miniaturization, and direct-drive architecture for simplified Hall-effect thruster integration. It also identifies unresolved challenges, including balancing power density with thermal robustness, mitigating radiation-induced degradation, and suppressing electromagnetic interference (EMI). Finally, it outlines future research directions, such as optimizing WBG-compatible converter topologies, developing advanced thermal management solutions, and standardizing EP-specific design guidelines. This work provides a practical reference for PPU engineers, linking converter design to EP unique demands and space constraints while guiding innovations to advance EP technology for next-generation space missions, from low-Earth orbit satellites to interplanetary exploration. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

15 pages, 3374 KB  
Article
Photocatalytic CO2 Reduction over Cotton-like Blue C/TiO2 Nanotubes: Enhanced Performance via Structural Engineering
by Wenjing Wu, Zichao Yang, Min Zhang, Zhongjie Guan and Jianjun Yang
Nanomaterials 2026, 16(1), 35; https://doi.org/10.3390/nano16010035 - 25 Dec 2025
Viewed by 405
Abstract
Photocatalytic reduction of carbon dioxide is a very effective strategy to address the energy crisis and greenhouse effect. TiO2 is a widely used semiconductor photocatalyst, which has excellent catalytic activity, excellent chemical stability and low toxicity. Nevertheless, TiO2 still has some [...] Read more.
Photocatalytic reduction of carbon dioxide is a very effective strategy to address the energy crisis and greenhouse effect. TiO2 is a widely used semiconductor photocatalyst, which has excellent catalytic activity, excellent chemical stability and low toxicity. Nevertheless, TiO2 still has some inherent limitations, such as: wide band gap, high carrier recombination rate, and low adsorption activation ability for carbon dioxide. These drawbacks severely restrict its further application in the photocatalytic reduction of CO2. In this study, cotton-like blue C/TiO2 NTs are successfully synthesized through the in situ growth of TiO2 nanotubes on the MIL-125(Ti)-derived C/TiO2 precursor. The experimental results revealed that the CO production rate of the cotton-like blue C/TiO2 NTs was 1.84 times that of C/TiO2 and 3.78 times that of TiO2 nanotubes. These results clearly demonstrate that the cotton-like blue C/TiO2 NTs exhibit a broad spectral response, a large specific surface area, and an abundance of oxygen vacancies. This research provides new insights into the design of titanium dioxide-based photocatalytic materials and opens up a promising avenue for enhancing the performance of titanium dioxide in the photocatalytic reduction of carbon dioxide. Full article
(This article belongs to the Special Issue Heterogeneous Photocatalysts Based on Nanocomposites (Second Edition))
Show Figures

Figure 1

8 pages, 965 KB  
Brief Report
Integrated PbTe Quantum Dots for Two-Color Detection in II–VI Wide-Bandgap Diodes
by Jakub M. Głuch, Michał Szot and Grzegorz Karczewski
Nanomaterials 2026, 16(1), 7; https://doi.org/10.3390/nano16010007 - 19 Dec 2025
Viewed by 261
Abstract
Quantum dots (QDs) composed of the narrow-bandgap semiconductor PbTe were incorporated into the depletion region of p–n junctions based on wide-bandgap II–VI semiconductors (p-ZnTe/n-CdTe). The heterostructures were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates. The depletion region was engineered [...] Read more.
Quantum dots (QDs) composed of the narrow-bandgap semiconductor PbTe were incorporated into the depletion region of p–n junctions based on wide-bandgap II–VI semiconductors (p-ZnTe/n-CdTe). The heterostructures were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates. The depletion region was engineered by depositing 20 alternating thin layers of CdTe and PbTe, then thermal annealing under ultrahigh vacuum. As revealed by cross-sectional scanning electron microscopy (SEM), the initially continuous PbTe layers transformed into arrays of zero-dimensional nanostructures, namely PbTe QDs. The formation of PbTe QDs in a CdTe matrix arises from the structural mismatch between the zinc blende and rock-salt crystal structures of the two materials. Electron beam-induced current (EBIC) scans confirmed that the QDs are localized within the depleted charge region between the p-ZnTe and n-CdTe layers. The resulting wide-gap diodes containing narrow-band QDs show pronounced sensitivity to infrared radiation in the spectral range of 1–4.5 μm, with a peak responsivity of approximately 8 V/W at a wavelength of ~2.0 μm and a temperature of 200 K. A red-shift in the cutoff wavelength when temperature decreases indicates that the infrared (IR) response is governed by band-to-band optical transitions in the PbTe QDs. In addition, the devices show sensitivity to visible radiation, with a maximum responsivity of 20 V/W at 0.69 μm. These results demonstrate that wide-bandgap p–n junctions incorporating narrow-bandgap QDs can function as dual-wavelength (visible and infrared) photodetectors, with potential applications in two-color detection and infrared solar cells. Full article
(This article belongs to the Special Issue State-of-the-Art Nanostructured Photodetectors)
Show Figures

Figure 1

33 pages, 4350 KB  
Review
Laser Processing Methods in Precision Silicon Carbide Wafer Exfoliation: A Review
by Tuğrul Özel and Faik Derya Ince
J. Manuf. Mater. Process. 2026, 10(1), 2; https://doi.org/10.3390/jmmp10010002 - 19 Dec 2025
Viewed by 920
Abstract
The rapid advancement of high-performance electronics has intensified the demand for wide-bandgap semiconductor materials capable of operating under high-power and high-temperature conditions. Among these, silicon carbide (SiC) has emerged as a leading candidate due to its superior thermal conductivity, chemical stability, and mechanical [...] Read more.
The rapid advancement of high-performance electronics has intensified the demand for wide-bandgap semiconductor materials capable of operating under high-power and high-temperature conditions. Among these, silicon carbide (SiC) has emerged as a leading candidate due to its superior thermal conductivity, chemical stability, and mechanical strength. However, the high cost and complexity of SiC wafer fabrication, particularly in slicing and exfoliation, remain significant barriers to its widespread adoption. Conventional methods such as wire sawing suffer from considerable kerf loss, surface damage, and residual stress, reducing material yield and compromising wafer quality. Additionally, techniques like smart-cut ion implantation, though capable of enabling thin-layer transfer, are limited by long thermal annealing durations and implantation-induced defects. To overcome these limitations, ultrafast laser-based processing methods, including laser slicing and stealth dicing (SD), have gained prominence as non-contact, high-precision alternatives for SiC wafer exfoliation. This review presents the current state of the art and recent advances in laser-based precision SiC wafer exfoliation processes. Laser slicing involves focusing femtosecond or picosecond pulses at a controlled depth parallel to the beam path, creating internal damage layers that facilitate kerf-free wafer separation. In contrast, stealth dicing employs laser-induced damage tracks perpendicular to the laser propagation direction for chip separation. These techniques significantly reduce material waste and enable precise control over wafer thickness. The review also reports that recent studies have further elucidated the mechanisms of laser–SiC interaction, revealing that femtosecond pulses offer high machining accuracy due to localized energy deposition, while picosecond lasers provide greater processing efficiency through multipoint refocusing but at the cost of increased amorphous defect formation. The review identifies multiphoton ionization, internal phase explosion, and thermal diffusion key phenomena that play critical roles in microcrack formation and structural modification during precision SiC wafer laser processing. Typical ultrafast-laser operating ranges include pulse durations from 120–450 fs (and up to 10 ps), pulse energies spanning 5–50 µJ, focal depths of 100–350 µm below the surface, scan speeds ranging from 0.05–10 mm/s, and track pitches commonly between 5–20 µm. In addition, the review provides quantitative anchors including representative wafer thicknesses (250–350 µm), typical laser-induced crack or modified-layer depths (10–40 µm and extending up to 400–488 µm for deep subsurface focusing), and slicing efficiencies derived from multi-layer scanning. The review concludes that these advancements, combined with ongoing progress in ultrafast laser technology, represent research opportunities and challenges in transformative shifts in SiC wafer fabrication, offering pathways to high-throughput, low-damage, and cost-effective production. This review highlights the comparative advantages of laser-based methods, identifies the research gaps, and outlines the challenges and opportunities for future research in laser processing for semiconductor applications. Full article
Show Figures

Figure 1

45 pages, 4439 KB  
Review
Gallium Nitride for Space Photovoltaics: Properties, Synthesis Methods, Device Architectures and Emerging Market Perspectives
by Anna Drabczyk, Paweł Uss, Katarzyna Bucka, Wojciech Bulowski, Patryk Kasza, Paula Mazur, Edyta Boguta, Marta Mazur, Grzegorz Putynkowski and Robert P. Socha
Micromachines 2025, 16(12), 1421; https://doi.org/10.3390/mi16121421 - 18 Dec 2025
Viewed by 1041
Abstract
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, [...] Read more.
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, GaN offers an exceptional combination of intrinsic material properties ideally suited for harsh orbital environments. Its wide bandgap, high thermal conductivity, and strong chemical stability contribute to superior resistance against high-energy protons, electrons, and atomic oxygen, while minimizing thermal fatigue under repeated cycling between extreme temperatures. Recent progress in epitaxial growth—spanning metal–organic chemical vapor deposition, molecular beam epitaxy, hydride vapor phase epitaxy, and atomic layer deposition—has enabled unprecedented control over film quality, defect densities, and heterointerface sharpness. At the device level, InGaN/GaN heterostructures, multiple quantum wells, and tandem architectures demonstrate outstanding potential for spectrum-tailored solar energy conversion, with modeling studies predicting efficiencies exceeding 40% under AM0 illumination. In this review article, the current state of knowledge on GaN materials and device architectures for space photovoltaics has been summarized, with emphasis placed on recent progress and persisting challenges. Particular focus has been given to defect management, doping strategies, and bandgap engineering approaches, which define the roadmap toward scalable and radiation-hardened GaN-based solar cells. With sustained interdisciplinary advances, GaN is anticipated to complement or even supersede traditional III–V photovoltaics in space, enabling lighter, more durable, and radiation-hard power systems for long-duration missions beyond Earth’s magnetosphere. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits, 2nd Edition)
Show Figures

Figure 1

13 pages, 3982 KB  
Article
High Reliability and Breakdown Voltage of GaN HEMTs on Free-Standing GaN Substrates
by Shiming Li, Mei Wu, Ling Yang, Hao Lu, Bin Hou, Meng Zhang, Xiaohua Ma and Yue Hao
Nanomaterials 2025, 15(24), 1882; https://doi.org/10.3390/nano15241882 - 15 Dec 2025
Viewed by 471
Abstract
Gallium nitride (GaN)-based high electron mobility transistors (HEMTs) are pivotal for next-generation power-switching applications, but their reliability under high electric fields remains constrained by lattice mismatches and high dislocation densities in heterogeneous substrates. Herein, we systematically investigate the electrical performance and reliability of [...] Read more.
Gallium nitride (GaN)-based high electron mobility transistors (HEMTs) are pivotal for next-generation power-switching applications, but their reliability under high electric fields remains constrained by lattice mismatches and high dislocation densities in heterogeneous substrates. Herein, we systematically investigate the electrical performance and reliability of GaN-on-GaN HEMTs in comparison to conventional GaN-on-SiC HEMTs via DC characterization, reverse gate step stress, off-state drain step stress, and on-state electrical stress tests. Notably, the homogeneous epitaxial structure of GaN-on-GaN devices reduces dislocation density by 83.3% and minimizes initial tensile stress, which is obtained through HRXRD and Raman spectroscopy. The GaN-on-GaN HEMTs exhibit a record BFOM of 950 MW/cm2, enabled by a low specific on-resistance (RON-SP) of 0.6 mΩ·cm2 and a high breakdown voltage (BV) of 755 V. They withstand gate voltages up to −200 V and drain voltages beyond 200 V without significant degradation, whereas GaN-on-SiC HEMTs fail at −95 V (reverse gate stress) and 150 V (off-state drain stress). The reduced dislocation density suppresses leakage channels and defect-induced degradation, as confirmed by post-stress Schottky/transfer characteristics and Frenkel–Poole emission analysis. These findings establish GaN-on-GaN technology as a transformative solution for power electronics, offering a unique combination of high efficiency and long-term stability for demanding high-voltage applications. Full article
(This article belongs to the Special Issue Electro-Thermal Transport in Nanometer-Scale Semiconductor Devices)
Show Figures

Figure 1

24 pages, 1282 KB  
Article
Comparative Dynamic Performance Evaluation of Si IGBTs and SiC MOSFETs
by Jamlick M. Kinyua and Mutsumi Aoki
Energies 2025, 18(24), 6540; https://doi.org/10.3390/en18246540 - 14 Dec 2025
Viewed by 761
Abstract
Power semiconductor devices are fundamental components in modern electronic power conversion. In applications demanding high power density and efficiency, the choice between silicon (Si) IGBTs and Silicon Carbide (SiC) MOSFETs is critical. SiC MOSFETs, owing to their high critical electric field, superior thermal [...] Read more.
Power semiconductor devices are fundamental components in modern electronic power conversion. In applications demanding high power density and efficiency, the choice between silicon (Si) IGBTs and Silicon Carbide (SiC) MOSFETs is critical. SiC MOSFETs, owing to their high critical electric field, superior thermal conductivity, wide band gap, and low power loss, realize significant performance improvements and compact design. This work presents a comprehensive, simulation-driven comparative investigation under identical setups, evaluating both technologies across various parameters. The effects of temperature variations on gate-source threshold voltage drift, current slew rate, device stress, and energy dissipation during switching transitions are evaluated. Furthermore, the characteristic switching behavior when the DC-bus voltage, gate resistance, and load current are varied is investigated. This study addresses a current scarcity of systematic investigation by presenting a comprehensive comparative evaluation of switching losses and efficiency across varied operating conditions, providing validated conclusions for the design of advanced WBG converters. The results demonstrate that SiC exhibits lower losses and faster switching speeds than Si IGBTs, with minimal temperature-dependent loss variations, unlike Si devices, whose losses rise significantly with temperature. Si shows distinct tail currents during turn-off, absent in SiC devices. A conclusive comparative evaluation of switching energy losses under varied operating conditions demonstrates that SiC devices can effectively retrofit Si counterparts for fast, low-loss, high-efficiency applications. Full article
Show Figures

Figure 1

11 pages, 2087 KB  
Article
Dynamic Barrier Modulation in Graphene–Diamond Schottky Interfaces for Enhanced Ultraviolet Photodetection
by Xiaohui Zhang, Kang Liu, Saifei Fan, Sen Zhang, Fei Xia, Benjian Liu, Bing Dai, Yumin Zhang and Jiaqi Zhu
Sensors 2025, 25(24), 7536; https://doi.org/10.3390/s25247536 - 11 Dec 2025
Viewed by 667
Abstract
Wide-bandgap diamond photodetectors face a fundamental trade-off between dark current suppression and photocurrent collection due to high Schottky barriers. Here, a photo-modulation strategy is demonstrated by integrating monolayer graphene as transparent electrodes on oxygen-terminated single-crystal diamond. The atomically thin graphene (87.3% UV transmittance [...] Read more.
Wide-bandgap diamond photodetectors face a fundamental trade-off between dark current suppression and photocurrent collection due to high Schottky barriers. Here, a photo-modulation strategy is demonstrated by integrating monolayer graphene as transparent electrodes on oxygen-terminated single-crystal diamond. The atomically thin graphene (87.3% UV transmittance at 220 nm) allows photons to penetrate and dynamically reduce Schottky barriers through photoinduced electric fields, while maintaining high barriers (~2.3 eV) under dark conditions for ultralow leakage current. Compared with conventional 100 nm Au electrodes, graphene-based devices exhibit a 4.9-fold responsivity improvement (0.158 A/W at 220 nm) and a 5.2-fold detectivity increase (8.35 × 1013 cm·Hz1/2/W), while preserving ultralow dark current (~10−12 A at ±100 V). XPS measurements confirm a minimal Fermi level shift (0.06 eV) upon graphene integration, demonstrating robust surface state pinning by oxygen termination. Transient photoresponse reveals a 27% faster rise time (30 ns vs. 41 ns) with bi-exponential decay governed by band-to-band recombination (τ1 ≈ 75 ns) and trap-assisted recombination (τ2 ≈ 411 ns). The devices maintain stable performance after one month of ambient exposure and successfully demonstrate UV optical communication capability. This transparent electrode approach offers a versatile strategy for enhancing wide-bandgap semiconductor photodetectors for secure communications, environmental monitoring, and industrial sensing applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop