Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = stitching interferometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2723 KB  
Article
Stitching Interferometry for X-Ray Mirror Metrology at the Hefei Advanced Light Facility (HALF)
by Yanghui Wang, Yifan Zhao, Huiyun Wang, Yiyang Hu, Liang He, Shuai Zhao and Xuewei Du
Photonics 2025, 12(11), 1106; https://doi.org/10.3390/photonics12111106 - 10 Nov 2025
Viewed by 409
Abstract
The advancements in the 4th-generation synchrotron radiation light sources, characterized by their enhanced coherence and brightness, have led to more stringent requirements for the surface quality of X-ray mirrors used in beamlines. This poses a significant challenge to the metrology of X-ray mirrors. [...] Read more.
The advancements in the 4th-generation synchrotron radiation light sources, characterized by their enhanced coherence and brightness, have led to more stringent requirements for the surface quality of X-ray mirrors used in beamlines. This poses a significant challenge to the metrology of X-ray mirrors. This research work focuses on high-precision measurement techniques for X-ray mirrors. The algorithmic principles of various stitching methods were introduced in detail, and a custom-built stitching measurement system was demonstrated. The system was used to perform a stitching measurement on an elliptical X-ray mirror, and the results showed high consistency with the data provided by JTEC. This verifies the effectiveness of the stitching interferometry method and the high measurement capability of our system. Full article
(This article belongs to the Special Issue Next-Generation X-Ray Optical Technologies and Applications)
Show Figures

Figure 1

23 pages, 6449 KB  
Article
Development of the Stitching—Oblique Incidence Interferometry Measurement Method for the Surface Flatness of Large-Scale and Elongated Ceramic Parts
by Shuai Wang, Zepei Zheng, Wule Zhu, Bosong Duan, Zhi-Zheng Ju and Bingfeng Ju
Sensors 2025, 25(17), 5270; https://doi.org/10.3390/s25175270 - 24 Aug 2025
Viewed by 1344
Abstract
With the increasing demand for high-performance ceramic guideways in precision industries, accurate flatness measurement of large-scale, rough ceramic surfaces remains challenging. This paper proposes a novel method combining oblique-incidence laser interferometry and sub-aperture stitching to overcome limitations of conventional techniques. The oblique-incidence approach [...] Read more.
With the increasing demand for high-performance ceramic guideways in precision industries, accurate flatness measurement of large-scale, rough ceramic surfaces remains challenging. This paper proposes a novel method combining oblique-incidence laser interferometry and sub-aperture stitching to overcome limitations of conventional techniques. The oblique-incidence approach enhances interference signal strength on low-reflectivity surfaces, while stitching integrates high-resolution sub-aperture measurements for full-surface characterization. Numerical simulations validated the method’s feasibility, showing consistent reconstruction of surfaces with flatness values of 1–20 μm. Experimental validation on a 1050 mm × 130 mm SiC guideway achieved a full-surface measurement with PV 2.76 μm and RMS 0.59 μm, demonstrating high agreement with traditional methods in polished regions. The technique enabled quick monitoring of a 39-h lapping process, converging flatness from 13.97 μm to 2.76 μm, proving its efficacy for in-process feedback in ultra-precision manufacturing. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 8045 KB  
Article
Statistical Analysis of Measurement Processes Using Multi-Physic Instruments: Insights from Stitched Maps
by Clement Moreau, Julie Lemesle, David Páez Margarit, François Blateyron and Maxence Bigerelle
Metrology 2024, 4(2), 141-163; https://doi.org/10.3390/metrology4020010 - 26 Mar 2024
Cited by 1 | Viewed by 1794
Abstract
Stitching methods allow one to measure a wider surface without the loss of resolution. The observation of small details with a better topographical representation is thus possible. However, it is not excluded that stitching methods generate some errors or aberrations on topography reconstruction. [...] Read more.
Stitching methods allow one to measure a wider surface without the loss of resolution. The observation of small details with a better topographical representation is thus possible. However, it is not excluded that stitching methods generate some errors or aberrations on topography reconstruction. A device including confocal microscopy (CM), focus variation (FV), and coherence scanning interferometry (CSI) instrument modes was used to chronologically follow the drifts and the repositioning errors on stitching topographies. According to a complex measurement plan, a wide measurement campaign was performed on TA6V specimens that were ground with two neighboring SiC FEPA grit papers (P#80 and P#120). Thanks to four indicators (quality, drift, stability, and relevance indexes), no measurement drift in the system was found, indicating controlled stitching and repositioning processes for interferometry, confocal microscopy, and focus variation. Measurements show commendable stability, with interferometric microscopy being the most robust, followed by confocal microscopy, and then focus variation. Despite variations, robustness remains constant for each grinding grit, minimizing interpretation biases. A bootstrap analysis reveals time-dependent robustness for confocal microscopy, which is potentially linked to human presence. Despite Sa value discrepancies, all three metrologies consistently discriminate between grinding grits, highlighting the reliability of the proposed methodology. Full article
(This article belongs to the Collection Measurement Uncertainty)
Show Figures

Figure 1

12 pages, 4498 KB  
Article
An Anti-Noise-Designed Residual Phase Unwrapping Neural Network for Digital Speckle Pattern Interferometry
by Biao Wang, Xiaoling Cao, Meiling Lan, Chang Wu and Yonghong Wang
Optics 2024, 5(1), 44-55; https://doi.org/10.3390/opt5010003 - 19 Jan 2024
Cited by 3 | Viewed by 2481
Abstract
DSPI (Digital Speckle Pattern Interferometry) is a non-destructive optical measurement technique that obtains phase information of an object through phase unwrapping. Traditional phase unwrapping algorithms depend on the quality of the images, which demands preprocessing such as filtering and denoising. Moreover, the unwrapping [...] Read more.
DSPI (Digital Speckle Pattern Interferometry) is a non-destructive optical measurement technique that obtains phase information of an object through phase unwrapping. Traditional phase unwrapping algorithms depend on the quality of the images, which demands preprocessing such as filtering and denoising. Moreover, the unwrapping time is highly influenced by the size of the images. In this study, we proposed a new deep learning-based phase unwrapping algorithm combining the residual network and U-Net network. Additionally, we incorporated an improved SSIM function as the loss function based on camera characteristics. The experimental results demonstrated that the proposed method achieved higher quality in highly noisy phase unwrapping maps compared to traditional algorithms, with SSIM values consistently above 0.98. In addition, we applied image stitching to the network to process maps of various sizes and the unwrapping time remained around 1 s even for larger images. In conclusion, our proposed network is able to achieve efficient and accurate phase unwrapping. Full article
Show Figures

Figure 1

21 pages, 5897 KB  
Article
Circular Subaperture Stitching Interferometry Based on Polarization Grating and Virtual–Real Combination Interferometer
by Yao Hu, Zhen Wang and Qun Hao
Sensors 2022, 22(23), 9129; https://doi.org/10.3390/s22239129 - 24 Nov 2022
Cited by 4 | Viewed by 3002
Abstract
This paper presents a polarization grating based circular subaperture stitching interferometer. The system can be used for small F/# concave surface tests with a large F/# transmission sphere, where F/# is the ratio of focal length to aperture. A polarization grating was employed [...] Read more.
This paper presents a polarization grating based circular subaperture stitching interferometer. The system can be used for small F/# concave surface tests with a large F/# transmission sphere, where F/# is the ratio of focal length to aperture. A polarization grating was employed to deflect the incident beam for subaperture scanning by its axial rotation instead of a multi-axis motion-control system. Compared with the traditional subaperture stitching interferometric system, the system proposed in this paper is smaller in size and reduces the measurement error introduced by mechanical adjustment. Using a virtual interferometer model and a virtual–real combination algorithm to remove the retrace error, the full-aperture figure error can be directly obtained without the need for a complex stitching algorithm. The feasibility of the algorithm was verified, and the measurement error caused by the modeling error was analyzed by simulation. The capability of the polarization grating to scan subapertures was experimentally confirmed, and possible solutions to some engineering challenges were pointed out. The research in this paper has pioneering and guiding significance for the application of polarization grating in interferometry. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

22 pages, 14966 KB  
Article
On the Potential of 3D Transdimensional Surface Wave Tomography for Geothermal Prospecting of the Reykjanes Peninsula
by Amin Rahimi Dalkhani, Xin Zhang and Cornelis Weemstra
Remote Sens. 2021, 13(23), 4929; https://doi.org/10.3390/rs13234929 - 4 Dec 2021
Cited by 4 | Viewed by 3059
Abstract
Seismic travel time tomography using surface waves is an effective tool for three-dimensional crustal imaging. Historically, these surface waves are the result of active seismic sources or earthquakes. More recently, however, surface waves retrieved through the application of seismic interferometry have also been [...] Read more.
Seismic travel time tomography using surface waves is an effective tool for three-dimensional crustal imaging. Historically, these surface waves are the result of active seismic sources or earthquakes. More recently, however, surface waves retrieved through the application of seismic interferometry have also been exploited. Conventionally, two-step inversion algorithms are employed to solve the tomographic inverse problem. That is, a first inversion results in frequency-dependent, two-dimensional maps of phase velocity, which then serve as input for a series of independent, one-dimensional frequency-to-depth inversions. As such, a set of localized depth-dependent velocity profiles are obtained at the surface points. Stitching these separate profiles together subsequently yields a three-dimensional velocity model. Relatively recently, a one-step three-dimensional non-linear tomographic algorithm has been proposed. The algorithm is rooted in a Bayesian framework using Markov chains with reversible jumps, and is referred to as transdimensional tomography. Specifically, the three-dimensional velocity field is parameterized by means of a polyhedral Voronoi tessellation. In this study, we investigate the potential of this algorithm for the purpose of recovering the three-dimensional surface-wave-velocity structure from ambient noise recorded on and around the Reykjanes Peninsula, southwest Iceland. To that end, we design a number of synthetic tests that take into account the station configuration of the Reykjanes seismic network. We find that the algorithm is able to recover the 3D velocity structure at various scales in areas where station density is high. In addition, we find that the standard deviation of the recovered velocities is low in those regions. At the same time, the velocity structure is less well recovered in parts of the peninsula sampled by fewer stations. This implies that the algorithm successfully adapts model resolution to the density of rays. It also adapts model resolution to the amount of noise in the travel times. Because the algorithm is computationally demanding, we modify the algorithm such that computational costs are reduced while sufficiently preserving non-linearity. We conclude that the algorithm can now be applied adequately to travel times extracted from station–station cross correlations by the Reykjanes seismic network. Full article
(This article belongs to the Special Issue Advances in Seismic Interferometry)
Show Figures

Graphical abstract

17 pages, 7120 KB  
Article
A Self-Calibration Stitching Method for Pitch Deviation Evaluation of a Long-Range Linear Scale by Using a Fizeau Interferometer
by Xin Xiong, Yuki Shimizu, Hiraku Matsukuma and Wei Gao
Sensors 2021, 21(21), 7412; https://doi.org/10.3390/s21217412 - 8 Nov 2021
Cited by 7 | Viewed by 3461
Abstract
An interferometric self-calibration method for the evaluation of the pitch deviation of scale grating has been extended to evaluate the pitch deviation of the long-range type linear scale by utilizing the stitching interferometry technique. Following the previous work, in which the interferometric self-calibration [...] Read more.
An interferometric self-calibration method for the evaluation of the pitch deviation of scale grating has been extended to evaluate the pitch deviation of the long-range type linear scale by utilizing the stitching interferometry technique. Following the previous work, in which the interferometric self-calibration method was proposed to assess the pitch deviation of the scale grating by combing the first-order diffracted beams from the grating, a stitching calibration method is proposed to enlarge the measurement range. Theoretical analysis is performed to realize the X-directional pitch deviation calibration of the long-range linear scale while reducing the second-order accumulation effect by canceling the influence of the reference flat error in the sub-apertures’ measurements. In this paper, the stitching interferometry theory is briefly reviewed, and theoretical equations of the X-directional pitch deviation stitching are derived for evaluation of the pitch deviation of the long-range linear scale. Followed by the simulation verification, some experiments with a linear scale of 105 mm length from a commercial interferential scanning-type optical encoder are conducted to verify the feasibility of the self-calibration stitching method for the calibration of the X-directional pitch deviation of the linear scale over its whole area. Full article
(This article belongs to the Special Issue Optical Sensors Technology and Applications)
Show Figures

Figure 1

12 pages, 3412 KB  
Article
Measurement of High Numerical Aperture Cylindrical Surface with Iterative Stitching Algorithm
by Dingfu Chen, Junzheng Peng, Sergiy Valyukh, Anand Asundi and Yingjie Yu
Appl. Sci. 2018, 8(11), 2092; https://doi.org/10.3390/app8112092 - 29 Oct 2018
Cited by 17 | Viewed by 4227
Abstract
There are some limitations in null test measurements in stitching interferometry. In order to meet the null test conditions, the moving distance between the sub-apertures often deviates from the theoretical preset distance, which leads to a position deviation of sub-apertures when measured. To [...] Read more.
There are some limitations in null test measurements in stitching interferometry. In order to meet the null test conditions, the moving distance between the sub-apertures often deviates from the theoretical preset distance, which leads to a position deviation of sub-apertures when measured. To overcome this problem, an algorithm for data processing is proposed in this paper. An optimal estimation of the deviation between sub-apertures is used to update their positions, and then a new overlapped region is obtained and again optimized. This process is repeated until the algorithm converges to an acceptable tolerance, and finally exact stitching is realized. A cylindrical lens was taken as an object for experimental examination of the proposed method. The obtained results demonstrate the validity, reliability, and feasibility of our iterative stitching algorithm. Full article
(This article belongs to the Special Issue Precision Dimensional Measurements)
Show Figures

Figure 1

11 pages, 4569 KB  
Article
Topography Measurement of Large-Range Microstructures through Advanced Fourier-Transform Method and Phase Stitching in Scanning Broadband Light Interferometry
by Yi Zhou, Yan Tang, Yong Yang and Song Hu
Micromachines 2017, 8(11), 319; https://doi.org/10.3390/mi8110319 - 26 Oct 2017
Cited by 6 | Viewed by 4372
Abstract
Scanning broadband light interferometry (SBLI) has been widely utilized in surface metrology due to its non-contact and high-accuracy method. In SBLI, phase evaluation through Fourier Transform (FT) is a prevalent and efficient technique, where the topography measurement can often be achieved through one [...] Read more.
Scanning broadband light interferometry (SBLI) has been widely utilized in surface metrology due to its non-contact and high-accuracy method. In SBLI, phase evaluation through Fourier Transform (FT) is a prevalent and efficient technique, where the topography measurement can often be achieved through one interferogram. Nevertheless, the accuracy of the FT method would be significantly influenced by intensity modulation depth: “the lower the modulation of the pixel, the higher the error probability of its phase assignment”. If the structure has a large enough range along the z-axis, several areas in an individual interferogram would be weakly modulated due to the limited depth of focus (DOF). In this paper, we propose an advanced FT-based method when it comes to large-height structures. Spatial modulation depth is first calculated for each interferogram independently. After that, a binary control mask is reasonably constructed to identify the pixels that are valid for phase unwrapping. Then, a phase stitching method along the z-axis is carried out to conduct the large-height topography measurement within a giving field of view. The theoretical principle, simulation, and experimental validation are elaborated to demonstrate that the method can achieve an improved robustness for the reconstruction of large-range microstructures, the advantages of which include the elimination of stepping errors, the suppression of light fluctuations, and the freedom of a limited DOF. Full article
Show Figures

Figure 1

Back to TopTop