Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,493)

Search Parameters:
Keywords = glycoside

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1548 KiB  
Article
Phytochemical Analysis, Antioxidant Activity, and Anticancer Potential of Afzelia quanzensis Welw—Bark Extract: A Traditional Remedy Utilized by Indigenous Communities in KwaZulu-Natal and Eastern Cape Provinces of South Africa
by Siphamandla Qhubekani Njabuliso Lamula, Thando Bhanisa, Martha Wium, Juliano Domiraci Paccez, Luiz Fernando Zerbini and Lisa V. Buwa-Komoreng
Int. J. Mol. Sci. 2025, 26(15), 7623; https://doi.org/10.3390/ijms26157623 - 6 Aug 2025
Abstract
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South [...] Read more.
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South Africa to treat cancer and related illnesses. Phytochemical screening, high-performance liquid chromatography–diode array detection (HPLC-DAD), and Fourier-transform infrared spectroscopy (FTIR) analyses were carried out using established protocols. The antioxidant activity was assessed via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and nitric oxide radicals. The anticancer activity was evaluated using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). Phytochemical analysis revealed the presence of saponins, flavonoids, terpenoids, alkaloids, steroids, cardiac glycosides, and phlobatannins. The HPLC-DAD analysis detected seven distinctive peaks in the aqueous extract and three distinctive peaks in the methanolic extract. The FTIR spectra of the aqueous extract displayed characteristic peaks corresponding to O-H, C=O, C=C, and =C–H functional groups. Among the tested extracts, the methanol extract exhibited the strongest antioxidant activity, followed by the ethanolic extract, in both DPPH and nitric oxide. The methanol extract showed a higher cell proliferation inhibition against the DU-145 cancer cell line with the percentage of inhibition of 37.8%, followed by the aqueous extract with 36.3%. In contrast, limited activity was observed against PC-3, SK-UT-1, and AGS cell lines. The results demonstrated notable dose-dependent antioxidant and antiproliferative activities supporting the ethnomedicinal use of Afzelia quanzensis bark in cancer management. These findings warrant further investigation into its bioactive constituents and mechanisms of action. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
23 pages, 2046 KiB  
Article
A Rational Synthesis of a Branched Decaarabinofuranoside Related to the Fragments of Mycobacterial Polysaccharides
by Polina I. Abronina, Nelly N. Malysheva, Maxim Y. Karpenko, Dmitry S. Novikov, Alexander I. Zinin, N. G. Kolotyrkina and Leonid O. Kononov
Molecules 2025, 30(15), 3295; https://doi.org/10.3390/molecules30153295 - 6 Aug 2025
Abstract
A rational synthesis of the branched decaarabinofuranoside with 4-(2-azidoethoxy)phenyl aglycone (a Janus aglycone) related to the non-reducing terminal fragments of the arabinogalactan and lipoarabinomannan from Mycobacterium tuberculosis was proposed. Since the most challenging step is the formation of a 1,2-cis glycosidic linkage, [...] Read more.
A rational synthesis of the branched decaarabinofuranoside with 4-(2-azidoethoxy)phenyl aglycone (a Janus aglycone) related to the non-reducing terminal fragments of the arabinogalactan and lipoarabinomannan from Mycobacterium tuberculosis was proposed. Since the most challenging step is the formation of a 1,2-cis glycosidic linkage, we have significantly simplified access to a library of oligoarabinofuranosides derived from Mycobacterium tuberculosis polysaccharides using a silylated Ara-β-(1→2)-Ara disaccharide as the glycosyl donor. The application of a Janus aglycone also allowed us to reduce the number of reaction steps in glycoside synthesis. The obtained arabinans can be useful to further prepare conjugates as antigens for creating tuberculosis screening assays. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Figure 1

25 pages, 8901 KiB  
Article
Purified Cornel Iridoid Glycosides Attenuated Oxidative Stress Induced by Cerebral Ischemia-Reperfusion Injury via Morroniside and Loganin Targeting Nrf2/NQO-1/HO-1 Signaling Pathway
by Zhaoyang Wang, Fangli Xue, Enjie Hu, Yourui Wang, Huiliang Li and Boling Qiao
Cells 2025, 14(15), 1205; https://doi.org/10.3390/cells14151205 - 6 Aug 2025
Abstract
Oxidative stress significantly contributes to the exacerbation of brain damage during cerebral ischemia-reperfusion injury (CIR/I). In our previous study, purified cornel iridoid glycoside (PCIG), consisting of morroniside (MOR) and loganin (LOG), showed neuroprotective effects against CIR/I. To further explore the antioxidative effects and [...] Read more.
Oxidative stress significantly contributes to the exacerbation of brain damage during cerebral ischemia-reperfusion injury (CIR/I). In our previous study, purified cornel iridoid glycoside (PCIG), consisting of morroniside (MOR) and loganin (LOG), showed neuroprotective effects against CIR/I. To further explore the antioxidative effects and underlying molecular mechanisms, we applied PCIG, MOR, and LOG to rats injured by middle cerebral artery occlusion/reperfusion (MCAO/R) as well as H2O2-stimulated PC12 cells. Additionally, the molecular docking analysis was performed to assess the interaction between the PCIG constituents and Kelch-like ECH-associated protein 1 (Keap1). The results showed that the treated rats experienced fewer neurological deficits, reduced lesion volumes, and lower cell death accompanied by decreased levels of malondialdehyde (MDA) and protein carbonyl, as well as increased activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). In H2O2-stimulated PC12 cells, the treatments decreased reactive oxygen species (ROS) production, mitigated mitochondrial dysfunction, and inhibited mitochondrial-dependent apoptosis. Moreover, the treatments facilitated Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) translocation into the nucleus and selectively increased the expression of NAD(P)H quinone oxidoreductase 1 (NQO-1) and heme oxygenase 1 (HO-1) through MOR and LOG, respectively. Both MOR and LOG demonstrated strong binding affinity to Keap1. These findings suggested that PCIG, rather than any individual components, might serve as a valuable treatment for ischemic stroke by activating the Nrf2/NQO-1 and Nrf2/HO-1 signaling pathway. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

16 pages, 3038 KiB  
Article
Comparative Effects of Maturity and Processing on Chemical Composition and Bioactivities in Toona sinensis Leaves
by Guohuo Wu, Zhaoyun Chen, Yan Tang, Shuolei Xu, Wenli Fan, Li Wu, Yuntao Ji and Changqing Qu
Foods 2025, 14(15), 2717; https://doi.org/10.3390/foods14152717 - 2 Aug 2025
Viewed by 253
Abstract
Toona sinensis (“Heiyouchun”) is a traditional Chinese woody vegetable, the leaves of which can also be processed into tea, known for its distinctive flavor and diverse bioactivities. However, the effects of leaf maturity and processing methods on its phytochemical composition and functional properties [...] Read more.
Toona sinensis (“Heiyouchun”) is a traditional Chinese woody vegetable, the leaves of which can also be processed into tea, known for its distinctive flavor and diverse bioactivities. However, the effects of leaf maturity and processing methods on its phytochemical composition and functional properties remain unclear. In this study, metabolomic analysis revealed 35 significantly different metabolites between tender and mature leaves, with higher concentrations of flavonoids, flavonoid glycosides, limonoids, and amino acids in tender leaves. Additionally, comparative analysis revealed that black tea fermentation preserves bioactive compounds more effectively than hot-air drying, particularly in tender leaves. In vitro activity assays showed that toon leaf tea extracts exhibited significant antioxidant and hypoglycemic effects, with black tea fermented tender leaves displaying the most potent bioactivity. Correlation analysis further confirmed a strong positive relationship between flavonoid/polyphenol content and bioactivity. These findings provide a theoretical foundation for optimizing processing techniques to enhance the functional properties of toon leaf tea. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

20 pages, 4386 KiB  
Article
Foliar Application of Salicylic Acid Stimulates Phenolic Compound Accumulation and Antioxidant Potential in Saposhnikovia divaricata Herb
by Daniil N. Olennikov, Nina I. Kashchenko and Nadezhda K. Chirikova
Horticulturae 2025, 11(8), 895; https://doi.org/10.3390/horticulturae11080895 (registering DOI) - 2 Aug 2025
Viewed by 205
Abstract
Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., commonly known as divaricate siler, is a well-known medicinal plant from the Apiaceae family. Its natural habitat is rapidly declining owing to the harvesting of its roots, used as fángfēng in traditional Oriental medicine. This underutilized herb [...] Read more.
Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., commonly known as divaricate siler, is a well-known medicinal plant from the Apiaceae family. Its natural habitat is rapidly declining owing to the harvesting of its roots, used as fángfēng in traditional Oriental medicine. This underutilized herb may serve as a valuable source of bioactive phenolic compounds, which can potentially be influenced by salicylic acid (SA) elicitation—a practical method to increase the concentration of valuable substances in plants. A field study showed that foliar application of SA on one-year-old S. divaricata positively influenced the total phenolic content in the herb, with the highest increase observed at 1.0 mM SA. Liquid chromatography–mass spectrometry (LC–MS) data became increasingly complex with rising SA levels, identifying up to 48 compounds, including cinnamoyl quinic acids (CQAs), dihydrofurochromones (DFCs), and flavonol O-glycosides (FOGs), most reported for the first time in this species. The highest concentrations of CQAs, DFCs, and FOGs in plants treated with 1.0 mM SA were 83.14, 3.75, and 60.53 mg/g, respectively, compared to 42.76, 0.95, and 40.73 mg/g in untreated (0.0 mM SA) plants. Nine in vitro antioxidant assays revealed strong radical-scavenging and nitric oxide (NO)- and Fe2+-chelating activities in 1.0 mM SA-treated plants, indicating robust antioxidative properties of the S. divaricata herb. Thus, foliar application of SA considerably enriches the herb with target antioxidants, increasing its medicinal value, which is reflected in the plant’s biological response. This could potentially reduce the overexploitation of natural populations of S. divaricata, helping to preserve this valuable plant. Full article
Show Figures

Figure 1

26 pages, 956 KiB  
Review
Natural Flavonoids for the Prevention of Sarcopenia: Therapeutic Potential and Mechanisms
by Ye Eun Yoon, Seong Hun Ju, Yebean Kim and Sung-Joon Lee
Int. J. Mol. Sci. 2025, 26(15), 7458; https://doi.org/10.3390/ijms26157458 - 1 Aug 2025
Viewed by 144
Abstract
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for [...] Read more.
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for novel, effective, and scalable therapeutics. Flavonoids, a diverse class of plant-derived polyphenolic compounds, have attracted attention for their muti-targeted biological activities, including anti-inflammatory, antioxidant, metabolic, and myogenic effects. This review aims to evaluate the anti-sarcopenic potential of selected flavonoids—quercetin, rutin, kaempferol glycosides, baicalin, genkwanin, isoschaftoside, naringin, eriocitrin, and puerarin—based on recent preclinical findings and mechanistic insights. These compounds modulate key pathways involved in muscle homeostasis, such as NF-κB and Nrf2 signaling, AMPK and PI3K/Akt activation, mitochondrial biogenesis, proteosomal degradation, and satellite cell function. Importantly, since muscle wasting also features prominently in cancer cachexia—a distinct but overlapping syndrome—understanding flavonoid action may offer broader therapeutic relevance. By targeting shared molecular axes, flavonoids may provide a promising, biologically grounded approach to mitigating sarcopenia and the related muscle-wasting conditions. Further translational studies and clinical trials are warranted to assess their efficacy and safety in human populations. Full article
(This article belongs to the Special Issue Role of Natural Products in Human Health and Disease)
Show Figures

Figure 1

32 pages, 4311 KiB  
Article
Proteomics-Based Prediction of Candidate Effectors in the Interaction Secretome of Trichoderma harzianum and Pseudocercospora fijiensis
by Jewel Nicole Anna Todd, Karla Gisel Carreón-Anguiano, Gabriel Iturriaga, Roberto Vázquez-Euán, Ignacio Islas-Flores, Miguel Tzec-Simá, Miguel Ángel Canseco-Pérez, César De Los Santos-Briones and Blondy Canto-Canché
Microbiol. Res. 2025, 16(8), 175; https://doi.org/10.3390/microbiolres16080175 - 1 Aug 2025
Viewed by 150
Abstract
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen [...] Read more.
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen pleinteractions, but there is increasing evidence showing their involvement in other types of interaction, including microbe–microbe interactions. Through the use of LC-MS/MS sequencing, effector candidates were identified in the in vitro interaction between a banana pathogen, Pseudocercospora fijiensis and a biological control agent, Trichoderma harzianum. The diverse interaction secretome revealed various glycoside hydrolase families, proteases and oxidoreductases. T. harzianum secreted more proteins in the microbial interaction compared to P. fijiensis, but its presence induced the secretion of more P. fijiensis proteins that were exclusive to the interaction secretome. The interaction secretome, containing 256 proteins, was screened for effector candidates using the algorithms EffHunter and WideEffHunter. Candidates with common fungal effector motifs and domains such as LysM, Cerato-platanin, NPP1 and CFEM, among others, were identified. Homologs of true effectors and virulence factors were found in the interaction secretome of T. harzianum and P. fijiensis. Further characterization revealed a potential novel effector of T. harzianum. Full article
Show Figures

Figure 1

30 pages, 703 KiB  
Review
Fungal Lytic Polysaccharide Monooxygenases (LPMOs): Functional Adaptation and Biotechnological Perspectives
by Alex Graça Contato and Carlos Adam Conte-Junior
Eng 2025, 6(8), 177; https://doi.org/10.3390/eng6080177 - 1 Aug 2025
Viewed by 292
Abstract
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation [...] Read more.
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation of molecular oxygen (O2) or hydrogen peroxide (H2O2). Their catalytic versatility is intricately modulated by structural features, including the histidine brace active site, surface-binding loops, and, in some cases, appended carbohydrate-binding modules (CBMs). The oxidation pattern, whether at the C1, C4, or both positions, is dictated by subtle variations in loop architecture, amino acid microenvironments, and substrate interactions. LPMOs are embedded in a highly synergistic fungal enzymatic system, working alongside cellulases, hemicellulases, lignin-modifying enzymes, and oxidoreductases to enable efficient lignocellulose decomposition. Industrial applications of fungal LPMOs are rapidly expanding, with key roles in second-generation biofuels, biorefineries, textile processing, food and feed industries, and the development of sustainable biomaterials. Recent advances in genome mining, protein engineering, and heterologous expression are accelerating the discovery of novel LPMOs with improved functionalities. Understanding the balance between O2- and H2O2-driven mechanisms remains critical for optimizing their catalytic efficiency while mitigating oxidative inactivation. As the demand for sustainable biotechnological solutions grows, this narrative review highlights how fungal LPMOs function as indispensable biocatalysts for the future of the Circular Bioeconomy and green industrial processes. Full article
Show Figures

Figure 1

15 pages, 2399 KiB  
Review
Cyclodextrin-Based Supramolecular Hydrogels in Tissue Engineering and Regenerative Medicine
by Jiamin Lin, Yuanyuan Chen and Xuemei Wang
Molecules 2025, 30(15), 3225; https://doi.org/10.3390/molecules30153225 - 31 Jul 2025
Viewed by 303
Abstract
Cyclodextrins (CDs), cyclic oligosaccharides formed by α-1,4-glycosidic-bonded D-glucopyranose units, feature unique hydrophobic cavities and hydrophilic exteriors that enable molecular encapsulation via host–guest interactions. CDs form supramolecular host–guest complexes with diverse molecular entities, establishing their fundamental role in supramolecular chemistry. This review examines fabrication [...] Read more.
Cyclodextrins (CDs), cyclic oligosaccharides formed by α-1,4-glycosidic-bonded D-glucopyranose units, feature unique hydrophobic cavities and hydrophilic exteriors that enable molecular encapsulation via host–guest interactions. CDs form supramolecular host–guest complexes with diverse molecular entities, establishing their fundamental role in supramolecular chemistry. This review examines fabrication strategies for CD-based supramolecular hydrogels and their applications in tissue engineering and regenerative medicine, with focused analysis on wound healing, corneal regeneration, and bone repair. We critically analyze CD–guest molecular interaction mechanisms and innovative therapeutic implementations, highlighting the significant potential of CD hydrogels for tissue regeneration while addressing clinical translation challenges and future directions. Full article
(This article belongs to the Special Issue Cyclodextrin Chemistry and Toxicology III)
Show Figures

Figure 1

19 pages, 4477 KiB  
Article
Agapanthussaponin A from the Underground Parts of Agapanthus africanus Induces Apoptosis and Ferroptosis in Human Small-Cell Lung Cancer Cells
by Tomoki Iguchi, Tamami Shimazaki and Yoshihiro Mimaki
Molecules 2025, 30(15), 3189; https://doi.org/10.3390/molecules30153189 - 30 Jul 2025
Viewed by 215
Abstract
To explore the potential seed compounds from natural products as anticancer agents against small-cell lung cancer (SCLC), the underground parts of Agapanthus africanus, a plant commonly used for ornamental purposes, were investigated. Three spirostan-type steroidal glycosides (13) were [...] Read more.
To explore the potential seed compounds from natural products as anticancer agents against small-cell lung cancer (SCLC), the underground parts of Agapanthus africanus, a plant commonly used for ornamental purposes, were investigated. Three spirostan-type steroidal glycosides (13) were isolated and identified by nuclear magnetic resonance spectral analysis. Compounds 13 exhibited cytotoxicity against SBC-3 human SCLC cells, with IC50 values of 0.56, 1.4, and 7.4 µM, respectively. Compound 1, also known an agapanthussaponin A, demonstrated the most potent cytotoxicity among the isolated compounds and was evaluated for its apoptosis- and ferroptosis-inducing activities. Compound 1 arrested the cell cycle of SBC-3 cells in the G2/M phase and induced apoptosis primarily via the mitochondrial pathway, characterized by caspases-3 and -9 activation, loss of mitochondrial membrane potential, and overproduction of reactive oxygen species. Additionally, 1 triggered ferroptosis via a dual mechanism consisting of enhanced cellular iron uptake through upregulation of transferrin and transferrin receptor 1 expression and impaired glutathione synthesis via downregulation of both xCT and glutathione peroxidase 4 expression. Compound 1 induces cell death via the apoptosis and ferroptosis pathways, suggesting its promise as a seed compound for the development of anticancer therapeutics against SCLC. Full article
Show Figures

Graphical abstract

26 pages, 4256 KiB  
Review
Progress in Pharmacokinetics, Pharmacological Effects, and Molecular Mechanisms of Swertiamarin: A Comprehensive Review
by Hao-Xin Yang, Ying-Yue Hu, Rui Liang, Hong Zheng and Xuan Zhang
Cells 2025, 14(15), 1173; https://doi.org/10.3390/cells14151173 - 30 Jul 2025
Viewed by 377
Abstract
Swertiamarin (SW), a natural iridoid glycoside primarily isolated from the genus Swertia, Gentianaceae family, has been extensively utilized in traditional medicine systems, including Ayurveda, Traditional Chinese Medicine, and Tibetan medicine, for treating fever, diabetes, liver disorders, and inflammatory conditions. Pharmacokinetic studies reveal [...] Read more.
Swertiamarin (SW), a natural iridoid glycoside primarily isolated from the genus Swertia, Gentianaceae family, has been extensively utilized in traditional medicine systems, including Ayurveda, Traditional Chinese Medicine, and Tibetan medicine, for treating fever, diabetes, liver disorders, and inflammatory conditions. Pharmacokinetic studies reveal that SW exhibits rapid absorption but demonstrates low oral bioavailability due to the first-pass effect. Pharmacological studies have demonstrated that SW possesses a wide range of pharmacological activities, including antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and neuroprotective activities. Our analysis demonstrates that SW exerts remarkable therapeutic potential across multiple pathological conditions through coordinated modulation of key signaling cascades, including Nrf2/HO-1, NF-κB, MAPK, PI3K/Akt, and PPAR pathways. This comprehensive review systematically consolidates current knowledge on SW’s pharmacokinetic characteristics, toxicity, diverse biological activities, and underlying molecular mechanisms based on extensive preclinical evidence, establishing a scientific foundation for future drug development strategies and potential clinical applications of the potential natural lead compound. Full article
Show Figures

Figure 1

25 pages, 6142 KiB  
Article
Cancer Chemopreventive Potential of Claoxylon longifolium Grown in Southern Thailand: A Bioassay-Guided Isolation of Vicenin 1 as the Active Compound and In Silico Studies on Related C-Glycosyl Flavones
by Chuanchom Khuniad, Lutfun Nahar, Anupam D. Talukdar, Rajat Nath, Kenneth J. Ritchie and Satyajit D. Sarker
Molecules 2025, 30(15), 3173; https://doi.org/10.3390/molecules30153173 - 29 Jul 2025
Viewed by 337
Abstract
Claoxylon longifolium (Euphorbiaceae) is an indigenous vegetable that has been used in southern Thai traditional medicine and cuisine. A bioassay-guided approach was adopted to investigate the phytochemicals and chemopreventive potential of C. longifolium leaves and stems. Phytochemical investigation of the active MeOH fractions [...] Read more.
Claoxylon longifolium (Euphorbiaceae) is an indigenous vegetable that has been used in southern Thai traditional medicine and cuisine. A bioassay-guided approach was adopted to investigate the phytochemicals and chemopreventive potential of C. longifolium leaves and stems. Phytochemical investigation of the active MeOH fractions afforded six known compounds, including caffeic acid (1), isovitexin (2), and vicenins 1–3 (3–5) from leaves and hexadecanoic acid methyl ester (6) from stems. Their structures were determined by spectroscopic means. Ten constituents were tentatively identified from the oily fractions of stems by GC-MS. Non-cytotoxic concentrations of compounds 16 were identified using the MTT cell viability assay. The ability of compounds 16 at non-cytotoxic concentrations to induce Nrf2 activation, correlating to their potential chemopreventive properties, was determined using a luciferase reporter assay in the AREc32 cell line. Only vicenin 1 (3) was considered to be a potent chemopreventive compound, as it increased luciferase activity by 2.3-fold. In silico studies on compounds 25 and vitexin (16) revealed the potential of these compounds as cancer chemopreventive and chemotherapeutic agents. This study provides the first report on the chemopreventive properties of C. longifolium. All identified and isolated compounds are reported here for the first time from this species. Full article
Show Figures

Graphical abstract

24 pages, 5342 KiB  
Article
Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543
by Natalia N. Pozdnyakova, Tatiana S. Babicheva, Daria S. Chernova, Irina Yu. Sungurtseva, Andrey M. Zakharevich, Sergei L. Shmakov and Anna B. Shipovskaya
J. Fungi 2025, 11(8), 565; https://doi.org/10.3390/jof11080565 - 29 Jul 2025
Viewed by 316
Abstract
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on [...] Read more.
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on non-destructive chitosan transformation by living organisms and their enzyme systems is promising. This study was conducted using a wide range of classical and modern methods of microbiology, biochemistry, and physical chemistry. The ability of the ascomycete Fusarium oxysporum Schltdl. to modify films of chitosan with average-viscosity molecular weights of 200, 450, and 530 kDa was discovered. F. oxysporum was shown to use chitosan as the sole source of carbon/energy and actively overgrew films without deformations and signs of integrity loss. Scanning electron microscopy (SEM) recorded an increase in the porosity of film substrates. An analysis of the FTIR spectra revealed the occurrence of oxidation processes and crosslinking of macrochains without breaking β-(1,4)-glycosidic bonds. After F. oxysporum growth, the resistance of the films to mechanical dispersion and the degree of ordering of the polymer structure increased, while their solubility in the acetate buffer with pH 4.4 and sorption capacity for Fe2+ and Cu2+ decreased. Elemental analysis revealed a decrease in the nitrogen content in chitosan, which may indicate its inclusion into the fungal metabolism. The film transformation was accompanied by the production of extracellular hydrolase (different from chitosanase) and peroxidase, as well as biosurfactants. The results obtained indicate a specific mechanism of aminopolysaccharide transformation by F. oxysporum. Although the biochemical mechanisms of action remain to be analyzed in detail, the results obtained create new ways of using fungi and show the potential for the use of Fusarium and/or its extracellular enzymes for the formation of chitosan-containing materials with the required range of functional properties and qualities for biotechnological applications. Full article
(This article belongs to the Special Issue Innovative Applications and Biomanufacturing of Fungi)
Show Figures

Graphical abstract

13 pages, 1010 KiB  
Article
Valorization of Flourensia cernua Foliage Through a Multiproduct Fungal Solid-State Bioprocess and Its Effect on In Vitro Digestibility
by Juan López-Trujillo, Juan Alberto Ascacio-Valdés, Miguel Mellado-Bosque, Cristóbal N. Aguilar, Antonio Francisco Aguilera-Carbó and Miguel Á. Medina-Morales
Fermentation 2025, 11(8), 433; https://doi.org/10.3390/fermentation11080433 - 29 Jul 2025
Viewed by 352
Abstract
Biotechnological valorization of Flourensia cernua foliage was carried out using fungal solid-state fermentation; several outcomes of this bioprocess were identified which added value to the plant material. F. cernua leaves placed in aluminum trays were inoculated with Aspergillus niger; extracts of this [...] Read more.
Biotechnological valorization of Flourensia cernua foliage was carried out using fungal solid-state fermentation; several outcomes of this bioprocess were identified which added value to the plant material. F. cernua leaves placed in aluminum trays were inoculated with Aspergillus niger; extracts of this plant were evaluated and the foliage was tested for in vitro digestibility. The solid bioprocess was carried out at 75% humidity for 120 h and after the fermentation, β-glucosidase activity; phenolics and in vitro digestibility were quantified and measured. Two high β-glucosidase production levels were detected at 42 and 84 h with 3192 and 4092 U/L, respectively. Several phenolics of industrial importance were detected with a HPLC-ESI-MS, such as glycosides of luteolin and apigenin. The other outcome was a substantial improvement in anaerobic digestibility. The unfermented sample registered a 30% in vitro degradability, whereas samples subjected to 84 h of fungal fermentation increased degradability by up to 51%. This bioprocess was designed to detect more than one product, which can contribute to an increase in the added value of F. cernua foliage. Full article
Show Figures

Figure 1

18 pages, 8017 KiB  
Article
Flavone C-Glycosides from Dianthus superbus L. Attenuate Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) via Multi-Pathway Regulations
by Ming Chu, Yingying Tong, Lei Zhang, Yu Zhang, Jun Dang and Gang Li
Nutrients 2025, 17(15), 2456; https://doi.org/10.3390/nu17152456 - 28 Jul 2025
Viewed by 242
Abstract
Background: The metabolic dysfunction-associated steatotic liver disease (MASLD) represents an escalating global health concern, with effective treatments still lacking. Given its complex pathogenesis, multi-targeted strategies are highly desirable. Methods: This study reports the isolation of four flavone C-glycosides (FCGs) from Dianthus superbus L. [...] Read more.
Background: The metabolic dysfunction-associated steatotic liver disease (MASLD) represents an escalating global health concern, with effective treatments still lacking. Given its complex pathogenesis, multi-targeted strategies are highly desirable. Methods: This study reports the isolation of four flavone C-glycosides (FCGs) from Dianthus superbus L. and explores their potential in treating MASLD. The bioactivity and underlying mechanisms of FCGs were systematically evaluated by integrating network pharmacology, molecular docking, and zebrafish model validation. Results: Network pharmacology analysis revealed that FCGs may modulate multiple MASLD-related pathways, including lipid metabolism, insulin signaling, inflammation, and apoptosis. Molecular docking further confirmed strong binding affinities between FCGs and key protein targets involved in these pathways. In the zebrafish model of MASLD induced by egg yolk powder, FCGs administration markedly attenuated obesity, hepatic lipid accumulation, and liver tissue damage. Furthermore, FCGs improved lipid metabolism and restored locomotor function. Molecular analyses confirmed that FCGs upregulated PPARγ expression to promote lipid metabolism, restored insulin signaling by enhancing INSR, PI3K, and AKT expression, and suppressed inflammation by downregulating TNF, IL-6 and NF-κB. Additionally, FCGs inhibited hepatocyte apoptosis by elevating the BCL-2/BAX ratio. Conclusions: These findings highlight the multi-pathway regulatory effects of FCGs in MASLD, underscoring its potential as a novel therapeutic candidate for further preclinical development. Full article
Show Figures

Figure 1

Back to TopTop