Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543
Abstract
1. Introduction
2. Materials and Methods
2.1. Substances and Reagents
2.2. Objects of Study
2.3. Preparing Chitosan Films
2.4. F. oxysporum Cultivation on Chitosan Films
2.5. Examination of the Physicochemical Characteristics of Chitosan Films
2.6. Methods for Testing Chitosan Films
2.6.1. Microscopy
2.6.2. Physicomechanical Tests
2.6.3. X-Ray Diffractometry
2.6.4. Fourier IR Spectroscopy
2.6.5. Elemental Analysis
2.6.6. Atomic Absorption Spectrometry
2.6.7. Sorption Capacity
2.7. Methods for Studying the Culture Liquid During F. oxysporum Growth on Chitosan Films
2.8. Statistical Analysis
3. Results
3.1. Use of Chitosan Films for Cultivating F. oxysporum as Its Sole Source of Carbon and Energy
3.1.1. F. oxysporum Growth
3.1.2. SEM of the Film Surface
3.2. Chitosan Film Properties After F. oxysporum Growth
3.2.1. Physicochemical Properties
3.2.2. Physicomechanical Properties
3.2.3. Supramolecular Ordering
3.3. Identification Studies on the Chitosan Films After F. oxysporum Growth
3.3.1. IR Spectroscopy
3.3.2. Organo-Element Analysis (Elementary Glucopyranose Unit)
3.3.3. Elemental–Inorganic Analysis (Metals)
3.4. Production of Extracellular Enzymes and Emulsifying Substances During Chitosan Film Transformation by F. oxysporum
3.5. Detection of the Activity of the Crude Enzyme Preparation Towards Chitosan Films
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CS | chitosan |
En | enzyme |
FO | F. oxysporum |
InsF | insoluble fraction |
IR | infrared spectroscopy |
FTIR | Fourier-transform infrared spectroscopy |
SEM | scanning electron microscopy |
References
- Suryani, S.; Chaerunisa, A.Y.; Joni, I.M.; Ruslin, R.; Aspadiah, V.; Anton, A.; Sartinah, A.; Ramadhan, L.O.A.N. The chemical modification to improve solubility of chitosan and its derivatives application, preparation method, toxicity as a nanoparticles. Nanotechnol. Sci. Appl. 2024, 17, 41–57. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Wang, P.; Zhou, M.; Xu, B.; Liu, Y.; Yu, Y. A soft multifunctional film from chitosan modified with disulfide bond cross-links and prepared by a simple method. Int. J. Biol. Macromol. 2023, 253, 126774. [Google Scholar] [CrossRef]
- Harugade, A.; Sherje, A.P.; Pethe, A. Chitosan: A review on properties, biological activities and recent progress in biomedical applications. React. Funct. Polym. 2023, 191, 105634. [Google Scholar] [CrossRef]
- Ganan, M.; Lorentzen, S.B.; Gaustad, P.; Sørlie, M. Synergistic Antifungal Activity of Chito-Oligosaccharides and Commercial Antifungals on Biofilms of Clinical Candida Isolates. J. Fungi 2021, 7, 718. [Google Scholar] [CrossRef]
- Alghuthaymi, M.A.; Rajkuberan, C.; Rajiv, P.; Kalia, A.; Bhardwaj, K.; Bhardwaj, P.; Abd-Elsalam, K.A.; Valis, M.; Kuca, K. Nanohybrid antifungals for control of plant diseases: Current status and future perspectives. J. Fungi 2021, 7, 48. [Google Scholar] [CrossRef]
- Li, P.; Linhardt, R.J.; Cao, Z. Structural characterization of oligochitosan elicitor from Fusarium sambucinum and its elicitation of defensive responses in Zanthoxylum bungeanum. Int. J. Mol. Sci. 2016, 17, 2076. [Google Scholar] [CrossRef] [PubMed]
- Xing, K.; Zhu, X.; Peng, X.; Qin, S. Chitosan antimicrobial and eliciting properties for pest control in agriculture: A Review. Agron. Sustain. Dev. 2015, 35, 569–588. [Google Scholar] [CrossRef]
- Mawale, K.S.; Giridhar, P.; Johnson, T.S. Chitosan: A versatile polymer for enhancing plant bioactive accumulation, managing plant diseases, and advancing food preservation technologies. Int. J. Biol. Macromol. 2025, 308, 142081. [Google Scholar] [CrossRef]
- Saheed, I.O.; Da, O.W.; Suah, F.B.M. Chitosan modifications for adsorption of pollutants—A review. J. Hazar. Mater. 2020, 408, 124889. [Google Scholar] [CrossRef]
- Ravi Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Friuli, M.; Pellegrino, R.; Lamanna, L.; Nitti, P.; Madaghiele, M.; Demitri, C. Materials engineering to help pest control: A narrative overview of biopolymer-based entomopathogenic fungi formulations. J. Fungi 2023, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Déru, L.; David, G.; Auvergne, R. Chitosan chemistry review for living organisms encapsulation. Carbohydr. Polym. 2022, 295, 119877. [Google Scholar] [CrossRef] [PubMed]
- Thadathil, N.; Velappan, S.P. Recent developments in chitosanase research and its biotechnological applications: A review. Food Chem. 2014, 150, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Tegl, G.; Öhlknecht, C.; Vielnascher, R.; Rollett, A.; Hofinger-Horvath, A.; Kosma, P.; Guebitz, G.M. Cellobiohydrolases produce different oligosaccharides from chitosan. Biomacromolecules 2016, 17, 2284–2292. [Google Scholar] [CrossRef]
- Ponkit, R.; Naree, S.; Pichayangkura, R.; Beaurepaire, A.; Paxton, R.J.; Mayack, C.L.; Suwannapong, G. Chito-oligosaccharide and propolis extract of stingless bees reduce the infection load of Nosema Ceranae in Apis Dorsata (Hymenoptera: Apidae). J. Fungi 2023, 9, 20. [Google Scholar] [CrossRef]
- Ohkawa, K.; Yamada, M.; Nishida, A.; Nishi, N.; Yamamoto, H. Biodegradation of chitosan-gellan and poly(L-lysine)-gellan polyion complex fibers by pure cultures of soil filamentous fungi. J. Polym. Environ. 2000, 8, 59–66. [Google Scholar] [CrossRef]
- Bakshi, P.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial—A Review on recent modifications and applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.-W. Chitosan-based biodegradable functional films for food packing applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Asemoloye, M.D.; Jonathan, S.G.; Ahmad, R. Degradation of 2,2-dichlorovinyl dimethyl phosphate (dichlorvos) through the rhizosphere interaction between Panicum maximum Jacq and some selected fungi. Chemosphere 2019, 221, 403–411. [Google Scholar] [CrossRef]
- Adedayo, A.A.; Babalola, O.O. Fungi that promote plant growth in the rhizosphere boost crop growth. J. Fungi 2023, 9, 239. [Google Scholar] [CrossRef]
- Fravel, D.; Olivain, C.; Alabouvette, C. Fusarium oxysporum and its biocontrol. New Physiol. 2003, 157, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Thion, C.; Cebron, A.; Beguiristain, T.; Leyval, C. Inoculation of PAH-degrading strains of Fusarium solani and Arthrobacter oxydans in rhizospheric sand and soil microcosms: Microbial interactions and PAH dissipation. Biodegradation 2013, 24, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.R.M.; Sirwi, A.; Eid, B.G.; Mohamed, S.G.A.; Mohamed, G.A. Bright side of Fusarium oxysporum: Secondary metabolites bioactivities and industrial relevance in biotechnology and nanotechnology. J. Fungi 2021, 7, 943. [Google Scholar] [CrossRef]
- Liu, H.; Bao, X. Characterization of a chitosanase from Fusarium solani and its expression in an industrial strain of Saccharomyces cerevisiae. Wei Sheng Wu Xue Bao 2009, 49, 1607–1612. [Google Scholar] [PubMed]
- Abedin, R.M.A.; Abd Elwaly, D.R.M.; Abd El-Salam, A.E. Production, statistical evaluation and characterization of chitosanase from Fusarium oxysporum D18. Ann. Microbiol. 2023, 73, 1869–2044. [Google Scholar] [CrossRef]
- Pozdnyakova, N.N.; Varese, G.C.; Prigione, V.; Dubrovskaya, E.V.; Balandina, S.A.; Turkovskaya, O.V. Degradative properties of two newly isolated strains of the ascomycetes Fusarium oxysporum and Lecanicillium aphanocladii. Int. Microbiol. 2019, 22, 103–110. [Google Scholar] [CrossRef]
- Pozdnyakova, N.N.; Burov, A.M.; Antonov, E.A.; Aleksandrova, A.V.; Turkovskaya, O.V. The Ability of ascomycetes to transform polyethylene terephthalate. Appl. Biochem. Microbiol. 2023, 59, 1192–1200. [Google Scholar] [CrossRef]
- Pigaleva, M.A.; Portnov, I.V.; Rudov, A.A. Stabilization of chitosan aggregates at the nanoscale in solutions in carbonic acid. Macromolecules 2014, 47, 5749–5758. [Google Scholar] [CrossRef]
- Pandit, A.; Indurkar, A.; Deshpande, C.; Jain, R.; Dandekar, P. A Systematic review of physical techniques for chitosan degradation. Carbohydr. Polym. Technol. Appl. 2021, 2, 100033. [Google Scholar] [CrossRef]
- Shipovskaya, A.B.; Gegel, N.O.; Babicheva, T.S.; Golyadkina, A.A. Preparation, structure, and properties of chitosan microtubes. Russ. J. Appl. Chem. 2023, 96, 59–72. [Google Scholar] [CrossRef]
- de Souza Soares, L.; Perim, R.B.; de Alvarenga, E.S.; de Moura Guimarães, L.; de Carvalho Teixeira, A.V.N.; dos Reis Coimbra, J.S.; de Oliveira, E.B. Insights on physicochemical aspects of chitosan dispersion in aqueous solutions of acetic, glycolic, propionic or lactic acid. Int. J. Biol. Macromol. 2019, 128, 140–148. [Google Scholar] [CrossRef]
- Bezalel, L.; Hadar, Y.; Cerniglia, C.E. Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 1997, 63, 2495–2501. [Google Scholar] [CrossRef]
- Nikiforova, S.; Pozdnyakova, N.; Makarov, O.; Chernyshova, M.; Turkovskaya, O. Chrysene bioconversion by the white rot fungus Pleurotus ostreatus D1. Microbiology 2010, 79, 456–460. [Google Scholar] [CrossRef]
- Shipovskaya, A.B.; Shmakov, S.L.; Gegel, N.O. Optical activity anisotropy of chitosan-based films. Carbohydr. Polym. 2019, 206, 476–486. [Google Scholar] [CrossRef]
- Pretsch, E.; Bühlmann, P.; Badertscher, M. Structure Determination of Organic Compounds, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Cooper, D.; Goldenberg, B. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Niku-Paavola, M.-L.; Karhunen, E.; Salola, P.; Raunio, V. Ligninolytic enzymes of the white rot fungus Phlebia radiata. Biochem. J. 1988, 254, 877–884. [Google Scholar] [CrossRef]
- Alish, M.; Feuerhack, A.; Muller, H.; Mensak, B.; Andreaus, J.; Zimmermann, W. Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates. Biocatal. Biotrans. 2004, 22, 347–351. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Dutta, P.K. Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical applications. Int. J. Biol. Macromol. 2009, 45, 384. [Google Scholar] [CrossRef]
- Naito, P.K.; Ogawa, Y.; Kimura, S.; Iwata, T.; Wada, M.J. Crystal transition from hydrated chitosan and chitosan/monocarboxylic acid complex to anhydrous chitosan investigated by X-ray diffraction. Polym. Sci., Polym. Phys. 2015, 53, 1065–1069. [Google Scholar] [CrossRef]
- Jawad, A.H.; Nawi, M.A.; Mohamed, M.H.; Wilson, L.D. Oxidation of chitosan in solution by photocatalysis and product characterization. J. Polym. Environ. 2016, 25, 828–835. [Google Scholar] [CrossRef]
- Bordenave, N.; Grelier, S.; Coma, V. Advances on selective C-6 oxidation of chitosan by TEMPO. Biomacromolecules 2008, 9, 2377–2382. [Google Scholar] [CrossRef] [PubMed]
- Nikiforova, T.E.; Gabrin, V.A.; Razgovorov, P.B. Peculiarities of sorption of heavy-metal ions by polysaccharide and polyamide biopolymers. Prot. Met. Phys. Chem. Surf. 2023, 59, 313–324. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Liu, Y.; Zhang, T. Review on preparation and adsorption properties of chitosan and chitosan composites. Polym. Bull. 2022, 79, 2633–2665. [Google Scholar] [CrossRef]
- Yu, K.; Ho, J.; McCandlish, E.; Buckley, B.; Patel, R.; Li, Z.; Shapley, N.C. Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications. Colloids Surf. A Physicochem. Eng. Asp. 2013, 425, 31–41. [Google Scholar] [CrossRef]
- Azmana, M.; Mahmood, S.; Hilles, A.R.; Rahman, A.; Arifin, M.A.B.; Ahmed, S. A Review on chitosan and chitosan-based bionanocomposites: Promising material for combating global issues and its applications. Int. J. Biol. Macromol. 2021, 185, 832–848. [Google Scholar] [CrossRef]
- Liu, N.; Ni, S.; Gao, H.; Chang, Y.; Fu, Y.; Liu, W.; Qin, M. Laccase-catalyzed grafting of lauryl gallate on chitosan to improve its antioxidant and hydrophobic properties. Biomacromolecules 2021, 22, 4501–4509. [Google Scholar] [CrossRef]
- Esparza-Flores, E.E.; Cardoso, F.D.; Siquiera, L.B.; Santagapita, P.R.; Hertz, P.F.; Rodrigues, R.C. Genipin crosslinked porous chitosan beads as robust supports for β-galactosidase immobilization: Characterization, stability, and bioprocessing potential. Int. J. Biol. Macromol. 2023, 250, 126234. [Google Scholar] [CrossRef]
- Yong, H.; Xu, F.; Yun, D.; Hu, H.; Liu, J. Antioxidant packaging films developed by in situ cross-linking chitosan with dialdehyde starch–catechin conjugates. Int. J. Biol. Macromol. 2022, 222, 3203–3214. [Google Scholar] [CrossRef]
- Chen, J.; Nichols, B.; Norris, A.; Frazier, C.E.; Edgar, K.J. All-polysaccharide, self-healing injectable hydrogels based on chitosan and oxidized hydroxypropyl polysaccharides. Biomacromolecules 2020, 21, 4261–4272. [Google Scholar] [CrossRef]
- Vold, I.M.N.; Christensen, B.E. Periodate oxidation of chitosans with different chemical compositions. Carbohydr. Res. 2005, 340, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, K.; Noguchi, K.; Kanenari, M.; Egawa, T.; Osawa, K.; Ogawa, K. Structural diversity of chitosan and its complexes. Carbohydr. Polym. 2000, 41, 237–247. [Google Scholar] [CrossRef]
- Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Chen, S.; Su, L.; Chen, J.; Wu, J. Cutinase: Characteristics, preparation, and application. Biotechnol. Adv. 2013, 31, 1754–1767. [Google Scholar] [CrossRef]
- Qazi, M.; Kanwal, T.; Jadoon, M.; Ahmed, S.; Fatima, N. Isolation and characterization of a surfactant-producing Fusarium sp. BS-8 from oil contaminated soil. Biotechnol. Prog. 2014, 30, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Espino-Rammer, L.; Ribitsch, D.; Przylucka, A.; Marold, A.; Greimel, K.; Acero, E.; Guebitz, G.; Kubicek, C.; Druzhinina, I. Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly(ethylene terephthalate) when expressed as fusion proteins. Appl. Environ. Microbiol. 2013, 79, 4230–4238. [Google Scholar] [CrossRef]
- Da Silva, A.F.; Banat, I.M.; Giachini, A.J.; Robl, D. Fungal biosufactants, from nature to biotechnological product: Bioprospection, production and potential applications. Bioprocess Biosyst. Eng. 2021, 44, 2003–2034. [Google Scholar] [CrossRef]
- Sanches, M.; Luzeiro, I.; Cortez, A.; de Souza, E.; Albuquerque, P.; Chopra, H.; de Souza, J. Production of biosurfactants by Ascomycetes. Int. J. Microbiol. 2021, 2021, 6669263. [Google Scholar] [CrossRef]
- Chen, S.; Su, L.; Billig, S.; Zimmermann, W.; Chen, J.; Wu, J. Biochemical characterization of the cutinases from Thermobifida fusca. J. Mol. Catal. B Enzym. 2010, 63, 121–127. [Google Scholar] [CrossRef]
Chitosan Sample | Viscosity-Average Molecular Weight , kDa | Degree of Deacetylation, mol.% | Bulk Density, g/cm3 | Moisture Content, wt.% | Ash Content, wt.% |
---|---|---|---|---|---|
CS-200 | 200 | 82.0 | 0.32 | 9.6 ± 0.5 | 0.58 |
CS-450 | 450 | 79.0 | 0.42 | 8.9 ± 0.2 | 0.53 |
CS-530 | 530 | 80.0 | 0.44 | 9.8 ± 0.4 | 0.53 |
Parameter | Film Type | Sample | ||||
---|---|---|---|---|---|---|
CS-200 | CS-450 | CS-530-1 | CS-530-2 | |||
Physicochemical parameters | ||||||
(a) | Thickness, μm | I | 200 ± 15 | 100 ± 10 | ||
II | 300 ± 30 | 550 ± 30 | 750 ± 40 | 180 ± 25 | ||
(b) | Weight loss, % | II | 7.1 ± 1.8 | 2.6 ± 0.4 | 3.9 ± 0.6 | 2.8 ± 0.6 |
(c) | Humidity, % | I | 8.4 ± 2.2 | 8.7 ± 1.8 | 7.5 ± 2.2 | 7.9 ± 1.1 |
II | 7.7 ± 1.4 | 8.6 ± 3.6 | 7.3 ± 1.4 | 7.8 ± 1.3 | ||
(d) | Color | I | Light beige | |||
II | Ochre brown | |||||
(e) | Insoluble fraction, wt.% | I | No color | |||
II | 75 ± 5 | 82 ± 3 | 95 ± 2 | 87 ± 1 | ||
II* | – | – | 87 ± 3 | 82 ± 2 | ||
(f) | Crystallinity degree χ, % | I | 32 | 38 | 38 | 40 |
II | 46 | 57 | 44 | 38 | ||
II* | n.d. | n.d. | 46 | 42 | ||
III | 48 | n.d. | n.d. | n.d. | ||
Strength parameters | ||||||
(g) | Tensile strength σp, MPa | I | 12.2 ± 3.0 | 15.6 ± 3.6 | 14.8 ± 2.7 | n.d. |
II | 5.3 ± 0.8 | 9.1 ± 0.6 | 10.0 ± 1.5 | n.d. | ||
(h) | Relative elongation at break εp, % | I | 90 ± 10 | 80 ± 15 | 65 ± 15 | n.d. |
II | 55 ± 5 | 60 ± 3 | 40 ± 5 | n.d. | ||
(i) | Young’s modulus E, MPa | I | 11.9 ± 2.1 | 4.3 ± 1.0 | 4.1 ± 1.9 | n.d. |
II | 4.2 ± 1.4 | 3.9 ± 1.4 | 3.8 ± 0.9 | n.d. |
Sample | Film Type | Element Content, wt.% | C/N | C/H | ||
---|---|---|---|---|---|---|
C | H | N | ||||
CS-200 | I | 39.94 | 6.36 | 6.31 | 6.3 | 6.3 |
II | 37.20 | 6.01 | 3.30 | 11.3 | 5.7 | |
CS-450 | I | 38.70 | 6.83 | 5.73 | 6.8 | 5.7 |
II | 36.20 | 6.47 | 3.07 | 11.8 | 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozdnyakova, N.N.; Babicheva, T.S.; Chernova, D.S.; Sungurtseva, I.Y.; Zakharevich, A.M.; Shmakov, S.L.; Shipovskaya, A.B. Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543. J. Fungi 2025, 11, 565. https://doi.org/10.3390/jof11080565
Pozdnyakova NN, Babicheva TS, Chernova DS, Sungurtseva IY, Zakharevich AM, Shmakov SL, Shipovskaya AB. Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543. Journal of Fungi. 2025; 11(8):565. https://doi.org/10.3390/jof11080565
Chicago/Turabian StylePozdnyakova, Natalia N., Tatiana S. Babicheva, Daria S. Chernova, Irina Yu. Sungurtseva, Andrey M. Zakharevich, Sergei L. Shmakov, and Anna B. Shipovskaya. 2025. "Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543" Journal of Fungi 11, no. 8: 565. https://doi.org/10.3390/jof11080565
APA StylePozdnyakova, N. N., Babicheva, T. S., Chernova, D. S., Sungurtseva, I. Y., Zakharevich, A. M., Shmakov, S. L., & Shipovskaya, A. B. (2025). Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543. Journal of Fungi, 11(8), 565. https://doi.org/10.3390/jof11080565