Cyclodextrin-Based Supramolecular Hydrogels in Tissue Engineering and Regenerative Medicine
Abstract
1. Introduction
2. Fabrication Strategies for CD-Based Supramolecular Hydrogels
2.1. Hydrogel Formation Through Pseudopolyrotaxane Structure
2.2. Formation of Hydrogels by Inclusion Complex
3. Tissue Regeneration and Repair
3.1. Wound Healing
3.2. Corneal Tissue Repair and Regeneration
3.3. Bone Regeneration
4. Prospects and Challenges for the Future Regenerative Medicine
Author Contributions
Funding
Conflicts of Interest
References
- Nonsuwan, P.; Phiboonchaiyanan, P.P.; Hirun, N.; Kraisit, P. Curcumin-Loaded Methacrylate Pullulan with Grafted Carboxymethyl-β-Cyclodextrin to Form Hydrogels for Wound Healing: In Vitro Evaluation. Carbohydr. Polym. 2023, 321, 121294. [Google Scholar] [CrossRef]
- Roy, A.; Manna, K.; Dey, S.; Pal, S. Chemical Modification of β-Cyclodextrin Towards Hydrogel Formation. Carbohydr. Polym. 2023, 306, 120576. [Google Scholar] [CrossRef]
- Wüpper, S.; Lüersen, K.; Rimbach, G. Cyclodextrins, Natural Compounds, and Plant Bioactives—A Nutritional Perspective. Biomolecules 2021, 11, 401. [Google Scholar] [CrossRef]
- Lee, Y.B.; Kyun, M.-L.; Lee, Y.J.; Shim, H.-E.; Huh, K.M.; Kang, S.-W. Cyclodextrins as Multifunctional Tools for Advanced Biomaterials in Tissue Repair and Regeneration. Bioact. Mater. 2025, 49, 627–651. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Yang, L.; Wei, D.; Liang, M.; Xu, L.; Zhang, T.; Hu, W.; Zhang, Z.; Zhang, Q. Alginate/Polyacrylamide Host-Guest Supramolecular Hydrogels with Enhanced Adhesion. Int. J. Biol. Macromol. 2023, 242, 124885. [Google Scholar] [CrossRef] [PubMed]
- Kurdtabar, M.; Mirashrafi, N.-S.; Marandi, G.B.; Ghobadifar, V. Synthesis and Characterization of Self-Healable Supramolecular Hydrogel Based on Carboxymethyl Cellulose for Biomedical Applications. Int. J. Biol. Macromol. 2024, 281, 136532. [Google Scholar] [CrossRef]
- Liu, P. Cyclodextrins as Versatile Supramolecular Building Block in Nanoscale Drug Delivery Systems for Precise Tumor Chemotherapy. Chin. Chem. Lett. 2025, 111406. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, X.; Zhao, J.; Ling, G.; Zhang, P. Biomedical Applications of Supramolecular Hydrogels with Enhanced Mechanical Properties. Adv. Colloid Interface Sci. 2023, 321, 103000. [Google Scholar] [CrossRef] [PubMed]
- Seidi, F.; Jin, Y.; Xiao, H. Polycyclodextrins: Synthesis, Functionalization, and Applications. Carbohydr. Polym. 2020, 242, 116277. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Liu, C.-S.; Tian, Y.; Wang, J.; Xin, S.; Sheng, X. An Eco-Friendly Photo-Responsive Hyaluronic Acid-Based Supramolecular Polysaccharide Hybrid Hydrogels for Plant Growth Regulation and Heavy Metal Ions Adsorption. Int. J. Biol. Macromol. 2023, 242, 125194. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Z.; Yu, C.-Y.; Wei, H. Engineered Cyclodextrin-Based Supramolecular Hydrogels for Biomedical Applications. J. Mater. Chem. B 2023, 12, 39–63. [Google Scholar] [CrossRef]
- Yu, X.; An, W.; Jiang, L.; Xu, W.; Qian, Z.; Wang, L.; Chen, Y.; Liu, Y. Polymerization-Achieved Cyclodextrin Slide-Ring Supramolecular Hydrogel Self-Generating Flexible Electronic Device. ACS Appl. Mater. Interfaces 2024, 16, 68229–68236. [Google Scholar] [CrossRef]
- Hart, L.F.; Hertzog, J.E.; Rauscher, P.M.; Rawe, B.W.; Tranquilli, M.M.; Rowan, S.J. Material Properties and Applications of Mechanically Interlocked Polymers. Nat. Rev. Mater. 2021, 6, 508–530. [Google Scholar] [CrossRef]
- Qi, W.; Ma, C.; Yan, Y.; Huang, J. Chirality Manipulation of Supramolecular Self-Assembly Based on the Host-Guest Chemistry of Cyclodextrin. Curr. Opin. Colloid Interface Sci. 2021, 56, 101526. [Google Scholar] [CrossRef]
- Hu, W.; Ye, B.; Yu, G.; Huang, F.; Mao, Z.; Ding, Y.; Wang, W. Recent Development of Supramolecular Cancer Theranostics Based on Cyclodextrins: A Review. Molecules 2023, 28, 3441. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.; Li, J.; Kamachi, M. Preparation and Properties of Inclusion Complexes of Polyethylene Glycol with .Alpha.-Cyclodextrin. Macromolecules 1993, 26, 5698–5703. [Google Scholar] [CrossRef]
- Harada, A.; Li, J.; Kamachi, M. Double-Stranded Inclusion Complexes of Cyclodextrin Threaded on Poly(Ethylene Glycol). Nature 1994, 370, 126–128. [Google Scholar] [CrossRef]
- Mohamed, G.M.; Meng, T.S.; Kuo, S.W. Intrinsic Water-Soluble Benzoxazine-Functionalized Cyclodextrin and Its Formation of Inclusion Complex with Polymer. Polymer 2021, 226, 123827. [Google Scholar] [CrossRef]
- Kirmic, C.S.N.; Ceylan, T.D. Cyclodextrin-Linked Pvp/Peg Supramolecular Hydrogels. Carbohydr. Polym. 2021, 269, 118278. [Google Scholar] [CrossRef] [PubMed]
- Bovone, G.; Guzzi, E.A.; Bernhard, S.; Weber, T.; Dranseikiene, D.; Tibbitt, M.W. Supramolecular Reinforcement of Polymer–Nanoparticle Hydrogels for Modular Materials Design. Adv. Mater. 2022, 34, 2106941. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, Y.; Zhang, Y.; Lv, K.; Zhu, J.; Liu, M.; Xu, H.; Jiao, G.; Yang, W.; Sun, G.; et al. Three-Arm Polyrotaxanes with Multidirectional Molecular Motions as the Nanocarrier for Nitric Oxide-Enhanced Photodynamic Therapy against Bacterial Biofilms in Septic Arthritis. J. Nanobiotechnol. 2024, 22, 727. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Zhao, R.; Zhu, L.; Wang, Q.; Peng, S.; Kang, L.; Lu, H.; Zhang, G.; Tang, B. Nanoemulsion-Based Pseudopolyrotaxane Hydrogel for Enhanced Corneal Bioavailability and Treatment of Corneal Inflammation. J. Control. Release 2025, 379, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, W.; Lin, Q.; Ke, C. Hierarchically Templated Synthesis of 3d-Printed Crosslinked Cyclodextrins for Lycopene Harvesting. Small 2023, 19, e2300323. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, L.; Ding, L.; Zhao, X.; Ma, H.; Luo, Y.; Ma, S.; Xiong, Y. Fabrication of Cyclodextrin-Based Hydrogels for Wound Healing: Progress, Limitations, and Prospects. Chem. Mater. 2023, 35, 5723–5743. [Google Scholar] [CrossRef]
- Hu, T.; Cui, X.; Zhu, M.; Wu, M.; Tian, Y.; Yao, B.; Song, W.; Niu, Z.; Huang, S.; Fu, X. 3d-Printable Supramolecular Hydrogels with Shear-Thinning Property: Fabricating Strength Tunable Bioink Via Dual Crosslinking. Bioact. Mater. 2020, 5, 808–818. [Google Scholar] [CrossRef]
- Sapsford, E.; Michieletto, D. Topologically-Crosslinked Hydrogels Based on Γ-Cyclodextrins. Commun. Chem. 2025, 8, 99. [Google Scholar] [CrossRef]
- Higashi, T.; Taharabaru, T.; Motoyama, K. Synthesis of Cyclodextrin-Based Polyrotaxanes and Polycatenanes for Supramolecular Pharmaceutical Sciences. Carbohydr. Polym. 2024, 337, 122143. [Google Scholar] [CrossRef]
- Chen, R.; Li, Y.; Jin, Y.; Sun, Y.; Zhao, Z.; Xu, Y.; Xu, J.-F.; Dong, Y.; Liu, D. Reinforcing Supramolecular Hyaluronan Hydrogels Via Kinetically Interlocking Multiple-Units Strategy. Carbohydr. Polym. 2023, 310, 120703. [Google Scholar] [CrossRef]
- Ravi, A.; Pathigoolla, A.; Balan, H.; Gupta, R.; Raj, G.; Varghese, R.; Sureshan, K.M. Adamantoid Scaffolds for Multiple Cargo Loading and Cellular Delivery as β-Cyclodextrin Inclusion Complexes. Angew. Chem. Int. Ed. 2023, 62, e202307324. [Google Scholar] [CrossRef]
- He, F.; Wang, L.; Yang, S.; Qin, W.; Feng, Y.; Liu, Y.; Zhou, Y.; Yu, G.; Li, J. Highly Stretchable and Tough Alginate-Based Cyclodextrin/Azo-Polyacrylamide Interpenetrating Network Hydrogel with Self-Healing Properties. Carbohydr. Polym. 2021, 256, 117595. [Google Scholar] [CrossRef]
- Mayrhofer, P.; Anneser, M.R.; Schira, K.; Sommer, C.A.; Theobald, I.; Schlapschy, M.; Achatz, S.; Skerra, A. Protein Purification with Light Via a Genetically Encoded Azobenzene Side Chain. Nat. Commun. 2024, 15, 10693. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, L.; Liu, F.; Astruc, D.; Gu, H. Supramolecular Redox-Responsive Ferrocene Hydrogels and Microgels. Coord. Chem. Rev. 2020, 419, 213406. [Google Scholar] [CrossRef]
- Qin, J.; Dong, B.; Wang, W.; Cao, L. Self-Regulating Bioinspired Supramolecular Photonic Hydrogels Based on Chemical Reaction Networks for Monitoring Activities of Enzymes and Biofuels. J. Colloid Interface Sci. 2023, 649, 344–354. [Google Scholar] [CrossRef]
- Hoenders, D.; Ludwanowski, S.; Barner-Kowollik, C.; Walther, A. Cyclodextrin ‘Chaperones’ Enable Quasi-Ideal Supramolecular Network Formation and Enhanced Photodimerization of Hydrophobic, Red-Shifted Photoswitches in Water. Angew. Chem. Int. Ed. 2024, 63, e202405582. [Google Scholar] [CrossRef]
- Yildiz, Z.I.; Topuz, F.; Kilic, M.E.; Durgun, E.; Uyar, T. Encapsulation of Antioxidant Beta-Carotene by Cyclodextrin Complex Electrospun Nanofibers: Solubilization and Stabilization of Beta-Carotene by Cyclodextrins. Food Chem. 2023, 423, 136284. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, B.; Ren, H.; Zhou, X.; He, C.; Shen, Y.; Zhou, Z.; Hu, H. Supramolecular Metal-Organic Frameworks as Host-Guest Nanoplatforms for Versatile and Customizable Biomedical Applications. Acta Biomater. 2023, 168, 617–627. [Google Scholar] [CrossRef]
- Fang, G.; Yang, X.; Chen, S.; Wang, Q.; Zhang, A.; Tang, B. Cyclodextrin-Based Host–Guest Supramolecular Hydrogels for Local Drug Delivery. Coord. Chem. Rev. 2022, 454, 214352. [Google Scholar] [CrossRef]
- Ren, P.; Wei, D.; Ge, X.; Wang, F.; Liang, M.; Dai, J.; Xu, L.; Zhang, T. Injectable Supramolecular Hydrogels Based on Host–Guest Interactions with Cell Encapsulation Capabilities. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127338. [Google Scholar] [CrossRef]
- Wang, S.; Wei, Y.; Wang, Y.; Cheng, Y. Cyclodextrin Regulated Natural Polysaccharide Hydrogels for Biomedical Applications-a Review. Carbohydr. Polym. 2023, 313, 120760. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Li, M.; Chen, H.; Zhang, Y.; Liu, Y.; Chen, M.; Luo, Z.; Cai, K.; Hu, Y. Dynamic Hydrogel with Environment-Adaptive Autonomous Wound-Compressing Ability Enables Rapid Hemostasis and Inflammation Amelioration for Hemorrhagic Wound Healing. Nano Today 2023, 52, 101962. [Google Scholar] [CrossRef]
- Baddi, S.; Dang-i, A.Y.; Gao, F.; Qiu, X.; Feng, C. Physical Strategies to Engineer Supramolecular Composite Hydrogels for Advanced Biomedical Applications. Prog. Mater. Sci. 2025, 151, 101428. [Google Scholar] [CrossRef]
- Li, Z.; Yang, B.; Yang, Z.; Xie, X.; Guo, Z.; Zhao, J.; Wang, R.; Fu, H.; Zhao, P.; Zhao, X.; et al. Supramolecular Hydrogel with Ultra-Rapid Cell-Mediated Network Adaptation for Enhancing Cellular Metabolic Energetics and Tissue Regeneration. Adv. Mater. 2024, 36, e2307176. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhang, M.; Wu, J.; Cao, X.; Chen, L.; Yan, J.; Liang, G.; Tan, J. Bisphosphonate-Modified Functional Supramolecular Hydrogel Promotes Periodontal Bone Regeneration by Osteoclast Inhibition. ACS Appl. Mater. Interfaces 2023, 15, 9066–9079. [Google Scholar] [CrossRef]
- Stampoultzis, T.; Rana, V.K.; Guo, Y.; Pioletti, D.P. Impact of Molecular Dynamics of Polyrotaxanes on Chondrocytes in Double-Network Supramolecular Hydrogels under Physiological Thermomechanical Stimulation. Biomacromolecules 2024, 25, 1144–1152. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Liu, Y.; Hua, S.; Meng, F.; Ma, Q.; Kong, L.; Pan, S.; Che, Y. Injectable, Self-Healable and Antibacterial Multi-Responsive Tunicate Cellulose Nanocrystals Strengthened Supramolecular Hydrogels for Wound Dressings. Int. J. Biol. Macromol. 2023, 240, 124365. [Google Scholar] [CrossRef]
- Sathuvan, M.; Min, S.; Narayanan, K.; Gaur, A.; Hong, H.; Vivek, R.; Ganapathy, A.; Cheong, K.-L.; Kang, H.; Thangam, R. β-Cyclodextrin-Based Materials for 3d Printing, Cancer Therapy, Tissue Engineering, and Wound Healing. Chem. Eng. J. 2024, 500, 157272. [Google Scholar] [CrossRef]
- Shen, J.; Fu, S.; Liu, X.; Tian, S.; Yi, Z.; Wang, Y. Fabrication of Janus-Adhesion Multifunctional Hydrogel Based on β-Cyclodextrin for Wound Dressing. Adv. Healthc. Mater. 2025, 14, e2500600. [Google Scholar] [CrossRef]
- Shalini, B.; Remesh, R.; Kalathil, K.K.; Y, A. Responsive to Adaptive Supramolecular Hydrogels for Diabetic Wound Treatment. Supramol. Mater. 2025, 4, 100081. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, D.; Han, L.; Shao, W.; Liu, Q.; Song, B.; Yan, G.; Tang, R.; Yang, X. Supramolecular Chitin-Based Hydrogels with Self-Adapting and Fast-Degradation Properties for Enhancing Wound Healing. Carbohydr. Polym. 2023, 323, 121374. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, H.; Lyu, Y.; Lv, K.; Xing, H.; Shen, P.; Guo, Z.; Li, G.; Ma, D. Octopus-Inspired Adaptive Molecular Motion for Synergistic Photothermal and Nitric Oxide Antibacterial Therapy in Diabetic Wound Repair. Adv. Funct. Mater. 2024, 34, 2402591. [Google Scholar] [CrossRef]
- He, J.; Li, Z.; Chen, J.; Wang, J.; Qiao, L.; Guo, B.; Hu, J. Nir/Glucose Stimuli-Responsive Multifunctional Smart Hydrogel Wound Dressing with No/O2 Dual Gas-Releasing Property Promotes Infected Diabetic Wound Healing. Chem. Eng. J. 2024, 492, 152249. [Google Scholar] [CrossRef]
- Liang, X.; Chen, H.; Zhang, R.; Xu, Z.; Zhang, G.; Xu, C.; Li, Y.; Zhang, L.; Xu, F.-J. Herbal Micelles-Loaded Ros-Responsive Hydrogel with Immunomodulation and Microenvironment Reconstruction for Diabetic Wound Healing. Biomaterials 2024, 317, 123076. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.; Liu, R.; Hu, X.; Li, M.; Zhou, X.; Zhao, Y.; Kong, T. Cornea-Inspired Ultrasound-Responsive Adhesive Hydrogel Patches for Keratitis Treatment. Adv. Funct. Mater. 2024, 34, 2310544. [Google Scholar] [CrossRef]
- Li, M.; Wei, R.; Liu, C.; Fang, H.; Yang, W.; Wang, Y.; Xian, Y.; Zhang, K.; He, Y.; Zhou, X. A “T.E.S.T.” Hydrogel Bioadhesive Assisted by Corneal Cross-Linking for in Situ Sutureless Corneal Repair. Bioact. Mater. 2023, 25, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.-W.; Jang, K.; Song, E.; Han, U.; Seo, Y.A.; Chen, F.; Wungcharoen, T.; Heilshorn, S.C.; Myung, D. In Situ-Forming, Bioorthogonally Cross-Linked, Nanocluster-Reinforced Hydrogel for the Regeneration of Corneal Defects. ACS Nano 2024, 18, 21925–21938. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, R.; Ouyang, C.; Wang, S.; Li, S.; Yin, X.; Deng, Z.; Han, B.; Chi, J. Photocurable Dual-Network Hydrogels Based on Natural Polymers for Sutureless Repair of Large Corneal Defects. Small 2025, 21, e2500150. [Google Scholar] [CrossRef]
- Vrehen, A.F.; Rutten, M.G.T.A.; Dankers, P.Y.W. Development of a Fully Synthetic Corneal Stromal Construct Via Supramolecular Hydrogel Engineering. Adv. Healthc. Mater. 2023, 12, 2301392. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Dai, Y.; Xia, F. Tuning the Enzyme-Like Activity of Peptide–Nanoparticle Conjugates with Amino Acid Sequences. Nanoscale 2023, 15, 8148–8152. [Google Scholar] [CrossRef]
- Cheng, K.; Chen, X.; Yi, Y.; Wang, Y.; Tian, M.; Yu, J.; Xia, Y.; Li, J.; Zhang, M.; Ding, C. Novel Biomimetic Collagen-Based Corneal Repair Material Achieved Via a “Killing Two Birds with One Stone” Strategy Using Carboxymethyl-β-Cyclodextrin. ACS Biomater. Sci. Eng. 2025, 11, 2263–2273. [Google Scholar] [CrossRef]
- Kang, N.-W.; Seo, Y.A.; Jackson, K.J.; Jang, K.; Song, E.; Han, U.; Chen, F.; Heilshorn, S.C.; Myung, D. Photoactivated Growth Factor Release from Bio-Orthogonally Crosslinked Hydrogels for the Regeneration of Corneal Defects. Bioact. Mater. 2024, 40, 417–429. [Google Scholar] [CrossRef]
- Fernandes-Cunha, G.M.; Jeong, S.H.; Logan, C.M.; Le, P.; Mundy, D.; Chen, F.; Chen, K.M.; Kim, M.; Lee, G.-H.; Na, K.-S.; et al. Supramolecular Host-Guest Hyaluronic Acid Hydrogels Enhance Corneal Wound Healing through Dynamic Spatiotemporal Effects. Ocul. Surf. 2022, 23, 148–161. [Google Scholar] [CrossRef]
- Li, Z.; Ren, K.; Chen, J.; Zhuang, Y.; Dong, S.; Wang, J.; Liu, H.; Ding, J. Bioactive Hydrogel Formulations for Regeneration of Pathological Bone Defects. J. Control. Release 2025, 380, 686–714. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Qiao, W.; Hu, X.; Qiang, H.; Xia, K.; Du, L.; Yang, L.; Bao, Y.; Gao, J.; et al. An Injectable Multifunctional Nanocomposite Hydrogel Promotes Vascularized Bone Regeneration by Regulating Macrophages. J. Nanobiotechnol. 2025, 23, 283. [Google Scholar] [CrossRef]
- Li, G.; Zhou, D.; Sheng, S.; Lin, Q.; Jing, Y.; Ren, X.; Su, J. Hydrogel for Bone Microenvironment: Strategy and Application. Chem. Eng. J. 2024, 499, 156554. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, X.; Liu, H.; Li, J.; Gholipourmalekabadi, M.; Lin, K.; Yuan, C.; Wang, P. Strategies of Functionalized Gelma-Based Bioinks for Bone Regeneration: Recent Advances and Future Perspectives. Bioact. Mater. 2024, 38, 346–373. [Google Scholar] [CrossRef]
- Sun, J.; Li, G.; Wu, S.; Zou, Y.; Weng, W.; Gai, T.; Chen, X.; Zhang, K.; Zhou, F.; Wang, X.; et al. Engineering Preparation and Sustained Delivery of Bone Functional Exosomes-Laden Biodegradable Hydrogel for in Situ Bone Regeneration. Compos. Part B Eng. 2023, 261, 110803. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, C.; Yang, K.; Ma, L.; Li, G.; Shi, Y.; Feng, X.; Tan, L.; Duan, D.; Luo, Z.; et al. Copper Ion-Modified Germanium Phosphorus Nanosheets Integrated with an Electroactive and Biodegradable Hydrogel for Neuro-Vascularized Bone Regeneration. Adv. Healthc. Mater. 2023, 12, e2301151. [Google Scholar] [CrossRef] [PubMed]
- Zorrón, M.; Cabrera, A.L.; Sharma, R.; Radhakrishnan, J.; Abbaszadeh, S.; Shahbazi, M.A.; Tafreshi, O.A.; Karamikamkar, S.; Maleki, H. Emerging 2d Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. Adv. Sci. 2024, 11, e2403204. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Gao, F.; Yang, D.; Lin, L.; Yu, W.; Tang, J.; Yang, R.; Jin, M.; Gu, Y.; Wang, P.; et al. Ecm-Mimicking Composite Hydrogel for Accelerated Vascularized Bone Regeneration. Bioact. Mater. 2024, 42, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xi, K.; Bian, J.; Li, Z.; Wu, L.; Tang, J.; Xiong, C.; Yu, Z.; Zhang, J.; Gu, Y.; et al. Injectable Engineered Micro/Nano-Complexes Trigger the Reprogramming of Bone Immune Epigenetics. Chem. Eng. J. 2023, 462, 142158. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, F.; Wang, S.; Wang, G.; Bai, L.; Su, J. Bioinspired Injectable Hydrogels for Bone Regeneration. J. Adv. Res. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Zhang, M.; Huang, X.; Zhang, X.; Lu, C.; Song, J.; Yang, H. A Bioinspired Mineral-Organic Composite Hydrogel as a Self-Healable and Mechanically Robust Bone Graft for Promoting Bone Regeneration. Chem. Eng. J. 2021, 413, 127512. [Google Scholar] [CrossRef]
- Li, G.; Wei, X.; Lv, K.; Xie, D.; Liu, M.; Xu, Y.; Ma, D.; Jiao, G. Cyclodextrin-Based Self-Assembling Hydrogel for Photothermal-Controlled Nitric Oxide Release in Stage-Specific Treatment of Mrsa-Induced Arthritis. Carbohydr. Polym. 2025, 359, 123578. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Chen, Y.; Wang, X. Cyclodextrin-Based Supramolecular Hydrogels in Tissue Engineering and Regenerative Medicine. Molecules 2025, 30, 3225. https://doi.org/10.3390/molecules30153225
Lin J, Chen Y, Wang X. Cyclodextrin-Based Supramolecular Hydrogels in Tissue Engineering and Regenerative Medicine. Molecules. 2025; 30(15):3225. https://doi.org/10.3390/molecules30153225
Chicago/Turabian StyleLin, Jiamin, Yuanyuan Chen, and Xuemei Wang. 2025. "Cyclodextrin-Based Supramolecular Hydrogels in Tissue Engineering and Regenerative Medicine" Molecules 30, no. 15: 3225. https://doi.org/10.3390/molecules30153225
APA StyleLin, J., Chen, Y., & Wang, X. (2025). Cyclodextrin-Based Supramolecular Hydrogels in Tissue Engineering and Regenerative Medicine. Molecules, 30(15), 3225. https://doi.org/10.3390/molecules30153225