Foliar Application of Salicylic Acid Stimulates Phenolic Compound Accumulation and Antioxidant Potential in Saposhnikovia divaricata Herb
Abstract
1. Introduction
2. Materials and Methods
2.1. Seed Material
2.2. Seed Germination and Plant Cultivation
2.3. Phytochemical Assays
2.4. Plant Extract Preparation
2.5. High-Performance Chromatography with Photodiode Array and Ion Trap-Time-of-Flight Mass Spectrometry Detection (HPLC-PDA-IT-TOF-MS)
2.6. Antioxidant Assays
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Foliar Salicylic Acid (SA) Application on the General Phytochemical Composition S. divaricata Herb
3.2. Phenolic Compounds Profile of SA-Treated S. divaricata Herb
3.3. Content of Cinnamoyl Quinic Acids, Dihydrofurochromones, and Flavonol O-Glycosides in SA-Treated S. divaricata Herb
3.4. Antioxidant Potential of SA-Treated S. divaricata Herb
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical |
CQA | Caffeoyl quinic acids |
DMPD | N,N-Dimethyl-p-phenylenediamine dihydrochloride radical |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl radical |
FeCA | Ferrous ions chelating activity |
FRAP | Ferric reducing antioxidant power |
HPLC-PDA-IT-TOF-MS | High-performance chromatography with photodiode array and ion trap-time-of-flight mass spectrometry detection |
SA | Salicylic acid |
References
- Ónodi, G.; Kröel-Dulay, G.; Kovács-Láng, E. Comparing the accuracy of three non-destructive methods in estimating aboveground plant biomass. Commun. Ecol. 2017, 18, 56–62. [Google Scholar] [CrossRef]
- Buxbaum, N.; Lieth, J.H.; Earles, M. Non-destructive plant biomass monitoring with high spatio-temporal resolution via proximal RGB-D imagery and end-to-end deep learning. Front. Plant Sci. 2022, 13, 758818. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.C.; Sessa, E.; Paton, A. Guidelines for the effective and ethical sampling of herbaria. Nat. Ecol. Evol. 2025, 9, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Jeltsch, F.; Moloney, K.A.; Schurr, F.M.; Köchy, M.; Schwager, M. The state of plant population modelling in light of environmental change. Perspect. Plant Ecol. Evol. Syst. 2007, 9, 171–189. [Google Scholar] [CrossRef]
- Chen, B.; Zou, H.; Zhang, B.; Zhang, X.; Jin, X.; Wang, C.; Zhang, X. Distribution pattern and change prediction of Saposhnikovia divaricata suitable area in China under climate change. Ecol. Indicat. 2022, 143, 109311. [Google Scholar] [CrossRef]
- Gao, J.W.; Zhan, Y.; Wang, Y.H. Advances in phytochemistry and modern pharmacology of Saposhnikovia divaricata (Turcz.) Schischk. Chin. J. Integr. Med. 2023, 29, 1033–1044. [Google Scholar] [CrossRef]
- Li, D.; Yang, C.; Yao, R.; Ma, L. Origin identification of Saposhnikovia divaricata by CNN embedded with the hierarchical residual connection block. Agronomy 2023, 13, 1199. [Google Scholar] [CrossRef]
- Han, Z.; Cui, Y.; Wang, Y.; Wang, Y.; Sun, Z.; Han, M.; Yang, L. Effect of rhizospheric fungus on biological control of root rot (Fusarium equiseti) disease of Saposhnikovia divaricata. Agronomy 2022, 12, 2906. [Google Scholar] [CrossRef]
- Shishmarev, V.M.; Shichmareva, T.M. Recourses of Medicinal Plants of Transbaikalia; BSC SD RAS: Ulan-Ude, Russia, 2017; pp. 32–104. [Google Scholar]
- Kreiner, J.; Pang, E.; Lenon, G.B.; Yang, A.W.H. Saposhnikoviae divaricata: A phytochemical, pharmacological, and pharmacokinetic review. Chin. J. Nat. Med. 2017, 15, 255–264. [Google Scholar] [CrossRef]
- Aseeva, T.A. Tibetan Medicine of Buryats; SO RAN: Novosibirsk, Russia, 2008; pp. 143–154. [Google Scholar]
- Chen, Y.; Xu, Z.; Gao, S.; Zhang, T.; Chen, T. Quality evaluation of Saposhnikovia divaricata (Turcz.) Schischk from different origins based on HPLC fingerprint and chemometrics. J. Chem. 2022, 2022, 1155650. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, T.; Chen, C.; Xu, Z.; Liu, C. Transcriptomics explores the potential of flavonoid in non-medicinal parts of Saposhnikovia divaricata (Turcz.) Schischk. Front. Plant Sci. 2023, 14, 1067920. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Shishmareva, T.M.; Shishmarev, V.M. New dihydrofurochromones from Saposhnikovia divaricata. Chem. Nat. Compd. 2025, 61, 557–559. [Google Scholar] [CrossRef]
- Shishmarev, V.M.; Shichmareva, T.M.; Aseeva, T.A. Recommendations for Introduction of Medicinal Plants in Buryatia Republic; BSC SD RAS: Ulan-Ude, Russia, 2018; pp. 28–95. [Google Scholar]
- Kandoudi, W.; Radácsi, P.; Gosztola, B.; Zámboriné Németh, É. Elicitation of medicinal plants in vivo—Is it a realistic tool? The effect of methyl jasmonate and salicylic acid on Lamiaceae species. Horticulturae 2022, 8, 5. [Google Scholar] [CrossRef]
- Ramirez-Estrada, K.; Vidal-Limon, H.; Hidalgo, D.; Moyano, E.; Golenioswki, M.; Cusidó, R.M.; Palazon, J. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 2016, 21, 182. [Google Scholar] [CrossRef]
- Ali, B. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatal. Agricult. Biotechnol. 2021, 31, 101884. [Google Scholar] [CrossRef]
- Gómez-Velázquez, H.D.J.; Aparicio-Fernández, X.; Reynoso-Camacho, R. Chia sprouts elicitation with salicylic acid and hydrogen peroxide to improve their phenolic content, antioxidant capacities in vitro and the antioxidant status in obese rats. Plant Foods Hum. Nutr. 2021, 76, 363–370. [Google Scholar] [CrossRef]
- Youssef, S.M.; López-Orenes, A.; Ferrer, M.A.; Calderón, A.A. Foliar application of salicylic acid enhances the endogenous antioxidant and hormone systems and attenuates the adverse effects of salt stress on growth and yield of French bean plants. Horticulturae 2023, 9, 75. [Google Scholar] [CrossRef]
- Singh, S. Salicylic acid elicitation improves antioxidant activity of spinach leaves by increasing phenolic content and enzyme levels. Food Chem. Adv. 2023, 2, 100156. [Google Scholar] [CrossRef]
- Petrova, M.; Geneva, M.; Trendafilova, A.; Miladinova-Georgieva, K.; Dimitrova, L.; Sichanova, M.; Nikolova, M.; Ivanova, V.; Dimitrova, M.; Sozoniuk, M. Antioxidant capacity and accumulation of aaffeoylquinic acids in Arnica montana L. in vitro shoots after elicitation with yeast extract or salicylic acid. Plants 2025, 14, 967. [Google Scholar] [CrossRef]
- Rithichai, P.; Jirakiattikul, Y.; Nambuddee, R.; Itharat, A. Effect of salicylic acid foliar application on bioactive compounds and antioxidant activity in holy basil (Ocimum sanctum L.). Int. J. Agron. 2024, 2024, 8159886. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K. New flavonoids of the genus Scutellaria. II. Baicalein and wogonin glycosides from S. baicalensis. Chem. Nat. Compd. 2024, 60, 229–234. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Taraskin, V.V.; Chirikova, N.K. Methyl jasmonate elicitation enhances the biosynthesis of coumarin derivatives in Phlojodicarpus sibiricus. Russ. J. Plant Physiol. 2025, 72, 104. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K. Phenolic compounds of six unexplored Asteraceae species from Asia: Comparison of wild and cultivated plants. Horticulturae 2024, 10, 486. [Google Scholar] [CrossRef]
- Godefroot, M.; Sandra, P.; Verzele, M. New method for quantitative essential oil analysis. J. Chromatogr. A 1981, 203, 325–335. [Google Scholar] [CrossRef]
- Lin, L.; Harnly, J.M. Identification of hydroxycinnamoylquinic acids of arnica flowers and burdock roots using a standardized LC-DAD-ESI/MS profiling method. J. Agricult. Food Chem. 2008, 56, 10105–10114. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Akobirshoeva, A.; Zilfikarov, I.N.; Vennos, C. Isorhamnetin and quercetin derivatives as anti-acetylcholinesterase principles of marigold (Calendula officinalis) flowers and preparations. Int. J. Molec. Sci. 2017, 18, 1685. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chemposov, V.V.; Chirikova, N.K. Metabolites of prickly rose: Chemodiversity and digestive-enzyme-inhibiting potential of Rosa acicularis and the main ellagitannin rugosin D. Plants 2021, 10, 2525. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Vasilieva, A.G.; Fedorov, I.A. LC-MS profile, gastrointestinal and gut microbiota stability and antioxidant activity of Rhodiola rosea herb metabolites: A comparative study with subterranean organs. Antioxidants 2020, 9, 526. [Google Scholar] [CrossRef]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agricult. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Vasilieva, A.G.; Chirikova, N.K. Fragaria viridis fruit metabolites: Variation of LC-MS profile and antioxidant potential during ripening and storage. Pharmaceuticals 2020, 13, 262. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K. A novel HPLC-assisted method for investigation of the Fe2+-chelating activity of flavonoids and plant extracts. Molecules 2014, 19, 18296–18316. [Google Scholar] [CrossRef]
- Osama, S.; El Sherei, M.; Al-Mahdy, D.A.; Bishr, M.; Salama, O. Effect of Salicylic acid foliar spraying on growth parameters, γ-pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Ind Crops Prod. 2019, 134, 1–10. [Google Scholar] [CrossRef]
- Rico-Chávez, A.K.; Pérez-Ramírez, I.F.; Escobar-Ortíz, A.; Feregrino-Pérez, A.A.; Torres-Pacheco, I.; Guevara-González, R.G. Hormetic elicitation of phthalides in celery seeds (Apium graveolens L. var dulce) and its effect on seedling development. Ind Crops Prod. 2023, 202, 117022. [Google Scholar] [CrossRef]
- Afshari, M.; Pazoki, A.; Sadeghipour, O. Biochemical changes of coriander (Coriandrum sativum L.) plants under drought stress and foliar application of salicylic acid and silicon nanoparticles. J. Med. Plants By-prod. 2023, 3, 197–207. [Google Scholar] [CrossRef]
- Clifford, M.N.; Jaganath, I.B.; Ludwig, I.A.; Crozier, A. Chlorogenic acids and the acyl-quinic acids: Discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep. 2017, 34, 1391–1421. [Google Scholar] [CrossRef] [PubMed]
- Crozier, T.W.M.; Stalmach, A.; Lean, M.E.J.; Crozier, A. Espresso coffees, caffeine and chlorogenic acid intake: Potential health implications. Food Funct. 2012, 3, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Kahle, K.; Huemmer, W.; Scheppach, W.; Erk, T.; Richling, E. Polyphenols are intensively metabolized in the human gastrointestinal tract after apple juice consumption. J. Agric. Food Chem. 2007, 55, 10605–10614. [Google Scholar] [CrossRef]
- Lyu, L.; Li, X.; Zang, E.; Yan, Y.; Yang, M.; Wang, W.; Zhang, C.; Li, M. Specification and grade of Saposhnikoviae Radix (Saposhnikovia divaricata). Chin. Herb. Med. 2022, 14, 543–553. [Google Scholar] [CrossRef]
- Li, L.; Gui, Y.G.; Shi, D.F. Anti-oxidant activities of chromones from Saposhnikovia divaricata. Lishizhen Med. Mater. Med. Res. 2010, 21, 2135–2137. [Google Scholar]
- Wang, C.C.; Chen, L.G.; Yang, L.L. Inducible nitric oxide synthase inhibitor of the Chinese herb Ⅰ. Saposhnikovia divaricata (Turcz.) Schischk. Cancer Lett. 1999, 145, 151–157. [Google Scholar] [CrossRef]
- Tai, J.; Cheung, S. Anti-proliferative and antioxidant activities of Saposhnikovia divaricata. Oncol. Rep. 2007, 18, 227–234. [Google Scholar] [CrossRef]
- Kim, M.; Seo, K.S.; Yun, W. Antimicrobial and antioxidant activity of Saposhnikovia divaricata, Peucedanum japonicum and Glehnia littoralis. Ind. J. Pharm. Sci. 2018, 8, 560–565. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Tian, Y.J.; Zhang, J. Studies on the antioxidative activity of polysaccharides from Radix Saposhnikoviae. J. Chin. Med. Mater. 2008, 31, 268–272. [Google Scholar]
- Li, B.; Yang, Z.; Mao, F. Phytochemical profile and biological activities of the essential oils in the aerial part and root of Saposhnikovia divaricata. Sci. Rep. 2023, 13, 8672. [Google Scholar] [CrossRef]
Compounds | SA Level, mM | ||||
---|---|---|---|---|---|
0.0 (Control) | 0.1 | 0.5 | 1.0 | 2.0 | |
Goryachinsk variety (Siberia) | |||||
Phenolic compounds | 82.75 ± 1.75 | 87.11 ± 2.61 * | 108.63 ± 3.25 * | 158.42 ± 4.74 * | 156.11 ± 4.70 * |
Essential oil | 3.7 ± 0.2 | 3.7 ± 0.2 | 3.5 ± 0.2 | 3.0 ± 0.2 * | 2.5 ± 0.1 * |
Polysaccharides | 45.63 ± 0.99 | 45.65 ± 1.03 | 46.14 ± 1.12 | 45.73 ± 1.10 | 45.89 ± 1.08 |
Borzya variety (Far East) | |||||
Phenolic compounds | 45.63 ± 0.93 | 45.94 ± 0.98 | 49.22 ± 1.05 * | 65.14 ± 1.40 * | 63.83 ± 1.38 * |
Essential oil | 4.2 ± 0.2 | 4.2 ± 0.2 | 4.0 ± 0.2 | 3.4 ± 0.2 * | 2.9 ± 0.2 * |
Polysaccharides | 32.15 ± 0.64 | 32.08 ± 0.69 | 33.53 ± 0.71 | 33.96 ± 0.75 | 34.11 ± 0.72 |
Argalan variety (Mongolia) | |||||
Phenolic compounds | 37.59 ± 0.78 | 37.83 ± 0.79 | 40.24 ± 0.93 * | 48.73 ± 1.12 * | 48.24 ± 1.16 * |
Essential oil | 5.9 ± 0.3 | 5.8 ± 0.3 | 5.6 ± 0.3 | 4.9 ± 0.3 * | 3.0 ± 0.2 * |
Polysaccharides | 24.81 ± 0.50 | 24.85 ± 0.53 | 25.17 ± 0.54 | 25.11 ± 0.52 | 25.03 ± 0.53 |
No | tR, min | Compound [Ref.] | MF (Error, ppm) | MS, [M-H]−, m/z | MS 2, m/z | UVP 1 | IL 2 | Early Found in Herb (H) or Roots (R) of S. divaricata [Ref.] | Found in Group with SA Level, mM 3 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.1 | 0.5 | 1.0 | 2.0 | |||||||||
1 | 5.74 | 1-O-Caffeoyl-quinic acid, trans- [28] | C16H18O9 (0.8) | 353 | C1 | 1 | No | − | − | − | + | + | |
2 | 6.63 | Caffeoyl-quinic acid [28] | C16H18O9 (0.3) | 353 | C1 | 2 | No | − | − | − | + | + | |
3 | 7.06 | 4-O-Caffeoyl-quinic acid, trans- [28] | C16H18O9 (0.4) | 353 | C1 | 1 | Yes—H [14] | + | + | + | + | + | |
4 | 7.18 | Quercetin 3-O-(2″,6″-di-O-rhamnosyl)-glucoside (manghaslin) [29] | C33H40O20 (2.1) | 755 | 609, 463, 301 | F1 | 1 | No | − | − | − | + | + |
5 | 7.80 | Kaempferol 3-O-(2″,6″-di-O-rhamnosyl)-glucoside (clitorin) [30] | C33H40O19 (1.6) | 739 | 593, 447, 285 | F2 | 1 | No | − | − | − | + | + |
6 | 8.41 | Isorhamnetin 3-O-(2″,6″-di-O-rhamnosyl)-glucoside (typhaneoside) [29] | C34H42O20 (2.0) | 769 | 623, 477, 315 | F1 | 1 | No | − | − | − | + | + |
7 | 8.83 | Cimifugin di-O-hexoside-O-pentoside [14] | C33H46O20 (1.4) | 761 | 629, 467, 305 | D | 2 | No | − | − | − | + | + |
8 | 9.00 | 4-O-p-Coumaroyl-quinic acid, trans- [28] | C16H18O8 (1.1) | 337 | C2 | 1 | No | − | − | − | + | + | |
9 | 9.68 | 5-O-Caffeoyl-quinic acid, trans- [28] | C16H18O9 (1.2) | 353 | C1 | 1 | Yes—H [14] | + | + | + | + | + | |
10 | 10.23 | 3-O-Caffeoyl-quinic acid, trans- [28] | C16H18O9 (0.3) | 353 | C1 | 1 | No | − | − | + | + | + | |
11 | 12.87 | 5-O-Caffeoyl-quinic acid, cis- [28] | C16H18O9 (1.0) | 353 | C3 | 2 | No | − | − | + | + | + | |
12 | 13.38 | Cimifugin di-O-hexoside [14] | C28H38O16 (0.3) | 629 | 467, 305 | D | 2 | No | − | − | − | + | + |
13 | 13.87 | Cimifugin di-O-hexoside [14] | C28H38O16 (0.3) | 629 | 467, 305 | D | 2 | No | − | − | − | + | + |
14 | 14.61 | 5-O-p-Coumaroyl-quinic acid, trans- [28] | C16H18O8 (0.3) | 337 | C2 | 1 | No | − | − | + | + | + | |
15 | 15.21 | 3-O-p-Coumaroyl-quinic acid, trans- [28] | C16H18O8 (1.0) | 337 | C2 | 1 | No | − | − | − | + | + | |
16 | 15.63 | Cimifugin 4′-O-(6″-O-apiosyl)-glucoside (divarichromone A) [14] | C27H36O15 (1.2) | 599 | 467, 305 | D | 1 | Yes—H [14] | − | − | − | + | + |
17 | 16.00 | Cimifugin 4′-O-glucoside (prim-O-glycosylcimifugin) [14] | C22H28O11 (0.4) | 467 | 305 | D | 1 | Yes—H [14], R [6] | + | + | + | + | + |
18 | 16.31 | 5-O-Feruloyl-quinic acid, trans- [28] | C17H20O9 (0.5) | 367 | C1 | 1 | No | + | + | + | + | + | |
19 | 17.01 | 5-O-p-Coumaroyl-quinic acid, cis- [28] | C16H18O8 (1.1) | 337 | C4 | 2 | No | − | + | + | + | + | |
20 | 17.46 | Quercetin 3-O-rutinoside (rutin) [29] | C27H30O16 (1.9) | 609 | 463, 301 | F1 | 1 | Yes—H [14] | + | + | + | + | + |
21 | 17.99 | Quercetin 3-O-glucoside (isoquercitrin) [29] | C21H20O11 (1.2) | 463 | 301 | F1 | 1 | Yes—H [14] | + | + | + | + | + |
22 | 18.10 | Kaempferol 3-O-rutinoside (nicotiflorin) [29] | C27H30O15 (1.1) | 593 | 447, 285 | F2 | 1 | No | + | + | + | + | + |
23 | 18.29 | Isorhamnetin 3-O-rutinoside (narcissin) [29] | C28H32O16 (2.0) | 623 | 477, 315 | F1 | 1 | No | − | + | + | + | + |
24 | 18.57 | Kaempferol 3-O-glucoside (astragalin) [29] | C21H20O11 (0.7) | 447 | 285 | F2 | 1 | Yes—H [14] | + | + | + | + | + |
25 | 18.77 | Isorhamnetin 3-O-glucoside [29] | C22H22O12 (1.4) | 477 | 315 | F1 | 1 | Yes—H [14] | + | + | + | + | + |
26 | 19.05 | 3,5-Di-O-caffeoyl-quinic acid [28] | C25H24O12 (1.5) | 515 | 353 | C1 | 1 | Yes—H [14] | + | + | + | + | + |
27 | 19.23 | 4,5-Di-O-caffeoyl-quinic acid [28] | C25H24O12 (1.1) | 515 | 353 | C1 | 1 | No | + | + | + | + | + |
28 | 19.58 | Kaempferol 3-O-rhamnoside (afzelin) [29] | C21H20O10 (0.9) | 431 | 285 | F2 | 1 | No | − | + | + | + | + |
29 | 19.83 | Cimifugin 4′-O-(6″-O-malonyl)-glucoside (divarichromone B) [14] | C25H30O14 (0.5) | 553 | 467, 305 | D | 1 | Yes—H [14] | + | + | + | + | + |
30 | 19.94 | Quercetin O-hexoside O-p-coumarate [30] | C30H26O14 (1.4) | 609 | 463, 301 | F3 | 2 | No | − | − | − | + | + |
31 | 20.14 | Quercetin O-hexoside O-p-coumarate [30] | C30H26O14 (2.3) | 609 | 463, 301 | F3 | 2 | No | − | − | − | + | + |
32 | 20.18 | Quercetin O-desoxyhexoside O-p-coumarate [30] | C30H26O13 (0.9) | 593 | 447, 301 | F3 | 2 | No | − | − | − | + | + |
33 | 20.42 | Quercetin O-desoxyhexoside O-p-coumarate [30] | C30H26O13 (1.0) | 593 | 447, 301 | F3 | 2 | No | − | − | − | + | + |
34 | 20.81 | Quercetin O-desoxyhexoside di-O-p-coumarate [30] | C39H32O15 (1.2) | 739 | 593, 447, 301 | F3 | 2 | No | + | + | + | + | + |
35 | 21.03 | Quercetin O-desoxyhexoside di-O-p-coumarate [30] | C39H32O15 (1.0) | 739 | 593, 447, 301 | F3 | 2 | No | + | + | + | + | + |
36 | 21.47 | Kaempferol 3-O-(2″-O-p-coumaroyl)-rhamnoside [30] | C30H26O11 (1.9) | 577 | 431, 285 | F4 | 1 | No | + | + | + | + | + |
37 | 21.98 | Kaempferol O-desoxyhexoside O-p-coumarate (isomer 36) [30] | C30H26O11 (1.8) | 577 | 431, 285 | F4 | 2 | No | − | − | − | + | + |
38 | 22.30 | Kaempferol 3-O-(2″,3″-di-O-p-coumaroyl)-rhamnoside [30] | C39H32O14 (1.0) | 723 | 577, 431, 285 | F4 | 1 | No | + | + | + | + | + |
39 | 22.46 | Kaempferol O-desoxyhexoside di-O-p-coumarate (isomer 38) [30] | C39H32O14 (1.7) | 723 | 577, 431, 285 | F4 | 2 | No | − | − | − | + | + |
40 | 24.28 | Isorhamnetin O-desoxyhexoside O-p-coumarate [30] | C31H28O13 (2.4) | 607 | 461, 315 | F3 | 2 | No | − | − | − | + | + |
41 | 24.62 | Isorhamnetin O-desoxyhexoside O-p-coumarate [30] | C31H28O13 (2.0) | 607 | 461, 315 | F3 | 2 | No | − | − | − | + | + |
42 | 24.70 | Isorhamnetin O-desoxyhexoside di-O-p-coumarate [30] | C40H34O15 (1.7) | 753 | 607, 461, 315 | F3 | 2 | No | − | − | − | + | + |
43 | 24.95 | Kaempferol O-desoxyhexoside tri-O-p-coumarate [30] | C48H38O16 (0.9) | 869 | 723, 577, 431, 285 | F4 | 2 | No | − | − | − | + | + |
44 | 25.08 | Isorhamnetin O-desoxyhexoside di-O-p-coumarate [30] | C40H34O15 (1.1) | 753 | 607, 461, 315 | F3 | 2 | No | − | − | − | + | + |
45 | 25.33 | Kaempferol O-desoxyhexoside tri-O-p-coumarate [30] | C48H38O16 (1.7) | 869 | 723, 577, 431, 285 | F4 | 2 | No | − | − | − | + | + |
46 | 26.57 | Isorhamnetin O-desoxyhexoside tri-O-p-coumarate [30] | C49H40O17 (2.5) | 899 | 753, 607, 461, 315 | F3 | 2 | No | − | − | − | + | + |
47 | 27.29 | Isorhamnetin O-desoxyhexoside tri-O-p-coumarate [30] | C49H40O17 (2.0) | 899 | 753, 607, 461, 315 | F3 | 2 | No | − | − | − | + | + |
48 | 27.80 | Kaempferol O-desoxyhexoside tri-O-p-coumarate [30] | C48H38O16 (2.4) | 869 | 723, 577, 431, 285 | F4 | 2 | No | − | − | − | + | + |
Compound | SA Level, mM | ||||
---|---|---|---|---|---|
0.0 (Control) | 0.1 | 0.5 | 1.0 | 2.0 | |
Cinnamoyl quinic acids: caffeates | |||||
1-O-Caffeoyl-quinic acid, trans- | — | — | — | <0.01 | <0.01 |
3-O-Caffeoyl-quinic acid, trans- | — | — | 0.42 ± 0.02 a | 0.85 ± 0.05 b | 0.70 ± 0.05 b |
4-O-Caffeoyl-quinic acid, trans- | 3.03 ± 0.18 a | 3.52 ± 0.19 a | 4.29 ± 0.26 c | 7.39 ± 0.46 d | 7.42 ± 0.47 d |
5-O-Caffeoyl-quinic acid, trans- | 26.92 ± 1.74 a | 27.11 ± 1.76 a | 29.53 ± 1.89 b | 48.10 ± 2.89 c | 47.34 ± 2.80 c |
5-O-Caffeoyl-quinic acid, cis- | — | — | 0.12 ± 0.01 a | 0.75 ± 0.04 b | 0.63 ± 0.04 b |
Caffeoyl-quinic acid 2 | — | — | — | <0.01 | <0.01 |
3,5-Di-O-caffeoyl-quinic acid | 8.77 ± 0.53 a | 8.93 ± 0.54 a | 9.54 ± 0.62 b | 12.63 ± 0.78 c | 12.78 ± 0.79 a |
4,5-Di-O-caffeoyl-quinic acid | 2.75 ± 0.18 a | 2.80 ± 0.17 a | 3.73 ± 0.24 b | 5.70 ± 0.37 c | 5.50 ± 0.36 c |
Subtotal | 41.47 | 42.36 | 47.63 | 75.42 | 74.37 |
Cinnamoyl quinic acids: p-coumarates | |||||
3-O-p-Coumaroyl-quinic acid, trans- | — | — | — | <0.01 | <0.01 |
4-O-p-Coumaroyl-quinic acid, trans- | — | — | — | <0.01 | <0.01 |
5-O-p-Coumaroyl-quinic acid, trans- | — | — | 0.52 ± 0.03 a | 1.66 ± 0.10 b | 1.70 ± 0.10 b |
5-O-p-Coumaroyl-quinic acid, cis- | — | <0.01 | 0.05 ± 0.00 a | 0.33 ±0.02 b | 0.30 ± 0.02 b |
Subtotal | — | <0.01 | 0.57 | 1.99 | 2.00 |
Cinnamoyl quinic acids: ferulates | |||||
5-O-Feruloyl-quinic acid, trans- | 1.29 ± 0.08 a | 1.56 ± 0.11 b | 3.29 ± 0.21 c | 5.73 ± 0.38 d | 5.22 ± 0.37 d |
Subtotal | 1.29 | 1.56 | 3.29 | 5.73 | 5.22 |
Dihydrofurochromones | |||||
Cimifugin 4′-O-glucoside (prim-O-glycosylcimifugin) | <0.01 | <0.01 | 0.63 ± 0.03 a | 1.57 ± 0.09 b | 1.60 ± 0.09 b |
Cimifugin 4′-O-(6″-O-apiosyl)-glucoside (divarichromone A) | — | — | — | 0.09 ± 0.00 a | 0.07 ± 0.00 a |
Cimifugin 4′-O-(6″-O-malonyl)-glucoside (divarichromone B) | 0.95 ± 0.06 a | 0.98 ± 0.06 a | 1.41 ± 0.10 b | 2.18 ± 0.15 c | 2.18 ± 0.15 c |
Cimifugin di-O-hexoside-O-pentoside 7 | — | — | — | < 0.01 | <0.01 |
Cimifugin di-O-hexosides 12/13 | — | — | — | < 0.01 | <0.01 |
Subtotal | 0.95 | 0.98 | 2.04 | 3.84 | 3.85 |
Flavonol O-glycosides: kaempferols | |||||
Kaempferol 3-O-rhamnoside (afzelin) | — | <0.01 | 0.50 ± 0.02 a | 1.39 ± 0.07 b | 1.22 ± 0.07 b |
Kaempferol 3-O-glucoside (astragalin) | 3.38 ± 0.23 a | 3.40 ± 0.22 a | 3.59 ± 0.25 b | 4.12 ± 0.25 c | 4.14 ± 0.24 c |
Kaempferol 3-O-rutinoside (nicotiflorin) | 0.52 ± 0.02 a | 0.54 ± 0.03 a | 0.72 ± 0.05 b | 0.98 ± 0.07 c | 0.96 ± 0.07 c |
Kaempferol 3-O-(2″,6″-di-O-rhamnosyl)-glucoside (clitorin) | — | — | — | <0.01 | <0.01 |
Kaempferol 3-O-(2″-O-p-coumaroyl)-rhamnoside | 0.97 ± 0.07 a | 0.95 ± 0.07 a | 1.42 ± 0.09 b | 1.63 ± 0.11 b | 1.60 ± 0.11 b |
Kaempferol 3-O-(2″,3″-di-O-p-coumaroyl)-rhamnoside | 2.08 ± 0.14 a | 2.11 ± 0.15 a | 3.56 ± 0.23 b | 4.27 ± 0.27 c | 4.31 ± 0.27 c |
Kaempferol O-desoxyhexoside O-p-coumarate (isomer 36) | — | — | — | <0.01 | <0.01 |
Kaempferol O-desoxyhexoside di-O-p-coumarate (isomer 38) | — | — | — | <0.01 | <0.01 |
Kaempferol O-desoxyhexoside tri-O-p-coumarates 43/45/48 | — | — | — | <0.01 | <0.01 |
Subtotal | 6.95 | 7.00 | 9.79 | 12.39 | 12.23 |
Flavonol O-glycosides: quercetins | |||||
Quercetin 3-O-glucoside (isoquercitrin) | 27.70 ± 1.94 a | 27.95 ± 1.96 a | 28.81 ± 2.03 a | 32.63 ± 2.30 b | 32.11 ± 2.28 b |
Quercetin 3-O-rutinoside (rutin) | 4.96 ± 0.30 a | 5.03 ± 0.31 a | 7.04 ± 0.45 b | 10.82 ± 0.70 c | 10.80 ± 0.70 c |
Quercetin 3-O-(2″,6″-di-O-rhamnosyl)-glucoside (manghaslin) | — | — | — | 0.08 ± 0.00 a | 0.08 ± 0.00 a |
Quercetin O-hexoside O-p-coumarates 30/31 | — | — | — | <0.01 | <0.01 |
Quercetin O-desoxyhexoside O-p-coumarates 32/33 | — | — | — | <0.01 | <0.01 |
Quercetin O-desoxyhexoside di-O-p-coumarates 34/35 | 0.03 ± 0.00 a | 0.04 ± 0.00 a | 0.17 ± 0.01 b | 0.35 ± 0.02 c | 0.38 ± 0.02 c |
Subtotal | 32.69 | 33.02 | 36.02 | 43.88 | 43.37 |
Flavonol O-glycosides: isorhamnetins | |||||
Isorhamnetin 3-O-glucoside | 1.09 ± 0.07 a | 1.12 ± 0.07 a | 1.53 ± 0.10 b | 2.50 ± 0.17 c | 2.47 ± 0.16 c |
Isorhamnetin 3-O-rutinoside (narcissin) | — | 0.35 ± 0.02 a | 0.67 ± 0.04 b | 1.76 ± 0.11 c | 1.70 ± 0.11 c |
Isorhamnetin 3-O-(2″,6″-di-O-rhamnosyl)-glucoside (typhaneoside) | — | — | — | <0.01 | <0.01 |
Isorhamnetin O-desoxyhexoside O-p-coumarates 40/41 | — | — | — | <0.01 | <0.01 |
Isorhamnetin O-desoxyhexoside di-O-p-coumarates 42/44 | — | — | — | <0.01 | <0.01 |
Isorhamnetin O-desoxyhexoside tri-O-p-coumarates 46/47 | — | — | — | <0.01 | <0.01 |
Subtotal | 1.09 | 1.47 | 2.20 | 4.26 | 4.17 |
Total cinnamoyl quinic acids | 42.76 | 43.92 | 51.49 | 83.14 | 81.59 |
Total dihydrofurochromones | 0.95 | 0.98 | 2.04 | 3.75 | 3.78 |
Total flavonol O-glycosides | 40.73 | 41.49 | 48.01 | 60.53 | 59.77 |
Total phenolics | 84.44 | 86.39 | 101.54 | 147.42 | 145.14 |
Assay | SA Level, mM | ||||
---|---|---|---|---|---|
0.0 (Control) | 0.1 | 0.5 | 1.0 | 2.0 | |
DPPH•, IC50, μg/mL | 8.63 ± 0.17 | 8.54 ± 0.18 | 7.14 ± 0.14 * | 5.24 ± 0.10 * | 5.26 ± 0.10 * |
ABTS•+, IC50, μg/mL | 4.63 ± 0.09 | 4.65 ± 0.09 | 3.82 ± 0.07 * | 2.35 ± 0.04 * | 2.36 ± 0.04 * |
DMPD•, IC50, μg/mL | 57.63 ± 1.15 | 57.61 ± 1.16 | 51.82 ± 1.04 * | 35.29 ± 0.71 * | 35.30 ± 0.70 * |
OH•, IC50, μg/mL | 15.43 ± 0.28 | 15.40 ± 0.28 | 12.63 ± 0.24 * | 8.29 ± 0.16 * | 8.30 ± 0.15 * |
O2•−, IC50, μg/mL | 110.47 ± 2.20 | 110.40 ± 2.18 | 87.64 ± 1.74 * | 62.42 ± 1.24 * | 62.45 ± 1.24 * |
Cl•, mg trolox/g | 453.4 ± 9.1 | 467.1 ± 9.3 | 534.6 ± 10.7 * | 783.3 ± 15.7 * | 781.1 ± 15.2 * |
Br•, mg trolox/g | 386.4 ± 7.7 | 391.2 ± 7.8 | 427.3 ± 8.5 * | 704.2 ± 14.1 * | 701.0 ± 14.0 * |
NO, IC50, mg/mL | 1.14 ± 0.03 | 1.16 ± 0.03 | 1.93 ± 0.06 * | 2.29 ± 0.07 * | 2.31 ± 0.07 * |
FeCA, mM Fe2+-ions/g | 1.82 ± 0.05 | 1.90 ± 0.05 | 2.54 ± 0.08 * | 5.27 ± 0.15 * | 5.25 ± 0.15 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K. Foliar Application of Salicylic Acid Stimulates Phenolic Compound Accumulation and Antioxidant Potential in Saposhnikovia divaricata Herb. Horticulturae 2025, 11, 895. https://doi.org/10.3390/horticulturae11080895
Olennikov DN, Kashchenko NI, Chirikova NK. Foliar Application of Salicylic Acid Stimulates Phenolic Compound Accumulation and Antioxidant Potential in Saposhnikovia divaricata Herb. Horticulturae. 2025; 11(8):895. https://doi.org/10.3390/horticulturae11080895
Chicago/Turabian StyleOlennikov, Daniil N., Nina I. Kashchenko, and Nadezhda K. Chirikova. 2025. "Foliar Application of Salicylic Acid Stimulates Phenolic Compound Accumulation and Antioxidant Potential in Saposhnikovia divaricata Herb" Horticulturae 11, no. 8: 895. https://doi.org/10.3390/horticulturae11080895
APA StyleOlennikov, D. N., Kashchenko, N. I., & Chirikova, N. K. (2025). Foliar Application of Salicylic Acid Stimulates Phenolic Compound Accumulation and Antioxidant Potential in Saposhnikovia divaricata Herb. Horticulturae, 11(8), 895. https://doi.org/10.3390/horticulturae11080895