Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,203)

Search Parameters:
Keywords = fracture behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3834 KB  
Article
Nanomechanical Properties of Rib Bones in Diabetic vs. Healthy Rat Models
by Tamás Tarjányi, Csaba Rosztóczy, Ferenc Peták, Fruzsina Kun-Szabó, Gábor Gulyás, József Tolnai, Krisztián Bali, Petra Somogyi, Rebeka Anna Kiss and Gergely H. Fodor
Nanomaterials 2025, 15(20), 1582; https://doi.org/10.3390/nano15201582 (registering DOI) - 17 Oct 2025
Abstract
This study examines how diabetes mellitus and physiological aging influence the nanomechanical behavior of rat rib cortical bone using combined static and dynamic nanoindentation. Ribs from young control, old, and streptozotocin-induced diabetic rats were analyzed to quantify both intrinsic and frequency-dependent mechanical properties. [...] Read more.
This study examines how diabetes mellitus and physiological aging influence the nanomechanical behavior of rat rib cortical bone using combined static and dynamic nanoindentation. Ribs from young control, old, and streptozotocin-induced diabetic rats were analyzed to quantify both intrinsic and frequency-dependent mechanical properties. Static nanoindentation revealed markedly higher hardness and elastic modulus in the diabetic group (0.47 ± 0.22 GPa and 9.53 ± 3.03 GPa, respectively) compared to controls (0.11 ± 0.03 GPa and 3.21 ± 0.51 GPa; p < 0.001). The modulus-to-hardness ratio, an indicator of fracture toughness, was reduced from 30.34 in controls to 20.45 in diabetics, suggesting increased stiffness but greater brittleness. Dynamic nanoindentation (0–4.5 Hz) demonstrated significant aging-related changes in the storage and loss moduli (p < 0.001), while the loss factor (tan δ < 1) and viscosity remained similar across groups, indicating predominantly solid-like behavior. These results show that diabetes stiffens bone tissue through matrix-level alterations, whereas aging primarily affects its viscoelastic damping capacity. The combined static–dynamic nanoindentation protocol provides a robust framework for distinguishing disease- and age-related bone degradation at the tissue scale. Translationally, the findings help explain why bones in diabetic or elderly individuals may fracture despite normal mineral density, underscoring the need to assess bone quality beyond conventional densitometry. Full article
(This article belongs to the Special Issue Advances in Nanoindentation and Nanomechanics)
Show Figures

Graphical abstract

14 pages, 4515 KB  
Article
Fracture Characteristics of 3D-Printed Polymer Parts: Role of Manufacturing Process
by Mohammad Reza Khosravani, Payam Soltani, Majid R. Ayatollahi and Tamara Reinicke
J. Manuf. Mater. Process. 2025, 9(10), 339; https://doi.org/10.3390/jmmp9100339 (registering DOI) - 16 Oct 2025
Abstract
Using traditional methods to fabricate geometrically complicated items was challenging, but Additive Manufacturing (AM) has made it possible. Although AM (3D printing) was first developed to produce prototypes, in recent years it has also been utilized for the fabrication of end-use products. As [...] Read more.
Using traditional methods to fabricate geometrically complicated items was challenging, but Additive Manufacturing (AM) has made it possible. Although AM (3D printing) was first developed to produce prototypes, in recent years it has also been utilized for the fabrication of end-use products. As a result, the mechanical strength of AMed parts has gained considerable significance. Three-dimensional printing has proved its capabilities in the fabrication of customizable parts with complex geometries. In the current study, the effects of manufacturing parameters on the mechanical strength and the fracture behavior of 3D-printed components have been investigated. To this aim, we fabricated specimens using Polyethylene Terephthalate Glycol (PETG) and the Fused Deposition Modeling (FDM) process. Particularly, the dumbbell-shaped and Single Edge Notched Bend (SENB) specimens were fabricated and examined to determine their tensile and fracture behaviors. Particularly, the notches in SENB specimens were introduced by two different techniques to investigate the influence of the manufacturing process on the mechanical performance of 3D-printed PETG parts. Moreover, finite element simulations were conducted to investigate the fracture behavior of the parts. The results indicate that the fracture loads of 3D-printed and milled parts are 599.1 N and 417.2 N, respectively. In addition, experiments confirm brittle fracture with no plastic deformation in all specimens with 3D-printed and milled notches. The outcomes of this study can be used for the future designs of FDM 3D-printed parts with a better structural performance. Full article
Show Figures

Figure 1

27 pages, 10471 KB  
Article
A Dual-Horizon Peridynamics–Discrete Element Method Framework for Efficient Short-Range Contact Mechanics
by Kinan Bezem, Sina Haeri and Stephanie TerMaath
Modelling 2025, 6(4), 131; https://doi.org/10.3390/modelling6040131 - 16 Oct 2025
Abstract
Short-range forces enable peridynamics to simulate impact, yet it demands a computationally expensive contact search and includes no intrinsic damping. A significantly more efficient solution is the coupled dual-horizon peridynamics–discrete element method approach, which provides a robust framework for modeling fracture. The peridynamics [...] Read more.
Short-range forces enable peridynamics to simulate impact, yet it demands a computationally expensive contact search and includes no intrinsic damping. A significantly more efficient solution is the coupled dual-horizon peridynamics–discrete element method approach, which provides a robust framework for modeling fracture. The peridynamics component handles the nonlocal continuum mechanics capabilities to predict material damage and fracture, while the discrete element method captures discrete particle behavior. Whereas existing peridynamics–discrete element method approaches assign discrete element method particles to many or all surface peridynamics points, the proposed method integrates dual-horizon peridynamics with a single discrete element particle representing each object. Contact forces are computed once per discrete element pair and mapped to overlapping peridynamics points in proportion to shared volume, conserving linear momentum. Benchmark sphere-on-plate impact demonstrates prediction of peak contact force, rebound velocity, and plate deflection within 5% of theoretical results found in the literature, while decreasing neighbour-search cost by more than an order of magnitude. This validated force-transfer mechanism lays the groundwork for future extension to fully resolved fracture and fragmentation. Full article
30 pages, 9861 KB  
Article
Multiscale Investigation of Interfacial Behaviors in Rubber Asphalt–Aggregate Systems Under Salt Erosion: Insights from Laboratory Tests and Molecular Dynamics Simulations
by Yun Li, Youxiang Si, Shuaiyu Wang, Peilong Li, Ke Zhang and Yuefeng Zhu
Materials 2025, 18(20), 4746; https://doi.org/10.3390/ma18204746 (registering DOI) - 16 Oct 2025
Abstract
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber [...] Read more.
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber asphalt–aggregate systems, this study developed a multiscale characterization method integrating a macroscopic mechanical test, microscopic tests, and molecular dynamics (MD) simulations. Firstly, laboratory-controlled salt–freeze–thaw cycles were employed to simulate field conditions, followed by quantitative evaluation of interfacial bonding properties through pull-out tests. Subsequently, the atomic force microscopy (AFM) and Fourier transform infrared spectrometer (FTIR) tests were conducted to characterize the microscopic morphology evolution and chemical functional group transformations, respectively. Moreover, by combining the diffusion coefficients of water molecules, salt solution ions, and asphalt components, the mechanism of interfacial salt erosion was elucidated. The results demonstrate that increasing NaCl concentration and freeze–thaw cycles progressively reduces interfacial pull-out strength and fracture energy, with NaCl-induced damage becoming limited after twelve salt–freeze–thaw cycles. In detail, with exposure to 15 freeze–thaw cycles in 6% NaCl solution, the pull-out strength and fracture energy of the rubber asphalt–limestone aggregate decrease by 50.47% and 51.57%, respectively. At this stage, rubber asphalt exhibits 65.42% and 52.34% increases in carbonyl and sulfoxide indexes, respectively, contrasted by 49.24% and 42.5% decreases in aromatic and aliphatic indexes. Long-term exposure to salt–freeze–thaw conditions promotes phase homogenization, ultimately reducing surface roughness and causing rubber asphalt to resemble matrix asphalt morphologically. At the rubber asphalt–NaCl solution–aggregate interface, the diffusion of Na+ is faster than that of Cl. Meanwhile, compared with other asphalt components, saturates exhibit notably enhanced mobility under salt erosion conditions. The synergistic effects of accelerated aging, salt crystallization pressure, and enhanced ionic diffusion jointly induce the deterioration of interfacial bonding, which accounts for the decrease in macroscopic pull-out strength. This multiscale investigation advances understanding of salt-induced deterioration while providing practical insights for developing durable asphalt mixtures in cold regions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 14176 KB  
Article
Mechanical Performance of Plywood TIE Joints Under Tension and Shear in the WikiHouse Skylark Modular System
by Moisés Sandoval, Juan Pablo Cárdenas-Ramírez, Paula Soto-Zúñiga, Michael Arnett, Angelo Oñate, Jorge Leiva, Rodrigo Cancino and Víctor Tuninetti
Materials 2025, 18(20), 4738; https://doi.org/10.3390/ma18204738 (registering DOI) - 16 Oct 2025
Abstract
The construction sector’s environmental footprint is driving the adoption of sustainable modular timber systems. The WikiHouse Skylark is a promising open-source model whose structural reliability depends on the performance of its critical plywood TIE joints. This study presents an experimental investigation of full-scale [...] Read more.
The construction sector’s environmental footprint is driving the adoption of sustainable modular timber systems. The WikiHouse Skylark is a promising open-source model whose structural reliability depends on the performance of its critical plywood TIE joints. This study presents an experimental investigation of full-scale TIE joints fabricated from 18 mm Pinus radiata plywood in three variants: Standard (STD), Weather-Resistant (HR), and Fire-Resistant (FR). Monotonic tensile and shear tests were conducted to evaluate load–displacement behavior and failure modes. While the mean ultimate strengths varied between panel types, with HR highest in tension (7.7 kN) and FR highest in shear (8.2 kN), the most critical finding was the effect of the treatments on failure mode. The FR treatment induced a brittle fracture with significantly reduced ductility, in contrast to the more ductile tearing observed in STD and HR panels. This highlights a clear strength–ductility trade-off introduced by the fire-retardant treatment, a key consideration for structural design in modular timber construction. This dataset provides an essential empirical foundation for the numerical modeling and design guidelines of WikiHouse TIE joints, advancing the development of resilient and sustainable prefabricated housing. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

18 pages, 5006 KB  
Article
Hazardous Gas Emission Laws in Tunnels Based on Gas–Solid Coupling
by Yansong Li, Peidong Su, Li Luo, Yougui Li, Weihua Liu and Junjie Yang
Processes 2025, 13(10), 3308; https://doi.org/10.3390/pr13103308 - 16 Oct 2025
Abstract
This study investigates the mechanisms of hazardous gas outbursts in geologically complex non-coal tunnels. This is a critical safety concern during excavation, particularly at specific locations and during time-sensitive periods. To address this, a gas–solid coupled numerical model is established to simulate gas [...] Read more.
This study investigates the mechanisms of hazardous gas outbursts in geologically complex non-coal tunnels. This is a critical safety concern during excavation, particularly at specific locations and during time-sensitive periods. To address this, a gas–solid coupled numerical model is established to simulate gas seepage processes under such conditions. The simulations systematically reveal the spatiotemporal evolutionary patterns of the velocity and direction of the gas seepage and elucidate the migration mechanism driven by excavation-induced pressure gradients. The model specifically analyzes how geological structures, such as rock joints and fractures, control the seepage pathways. The model also demonstrates the dynamic variations in and enrichment behavior of the gas escape velocities near these discontinuities. Field measurements obtained from the Hongdoushan Tunnel validated the simulated emission patterns along jointed fissures. The findings clarify the intrinsic relationships between the outburst dynamics and key factors that include pressure differentials, geological structures, and temporal effects. This work provides a crucial theoretical foundation and practical strategy for the prediction and prevention of hazardous gas disasters in analogous tunnel engineering projects, thereby enhancing overall construction safety. Full article
Show Figures

Figure 1

27 pages, 5224 KB  
Article
Modeling Anisotropic Permeability of Coal and Shale with Gas Rarefaction Effects, Matrix–Fracture Interaction, and Adsorption Hysteresis
by Lilong Wang, Zongyuan Li, Jie Zeng, Biwu Chen, Jiafeng Li, Huimin Jia, Wenhou Wang, Jinwen Zhang, Yiqun Wang and Zhihong Zhao
Processes 2025, 13(10), 3304; https://doi.org/10.3390/pr13103304 - 15 Oct 2025
Abstract
Permeability of fissured sorbing rocks, such as coal and shale, controls gas transport and is relevant to a variety of scientific problems and industrial processes. Multiple gas transport and rock deformation mechanisms affect permeability evolution, including gas rarefaction effects, gas-sorption-induced anisotropic matrix–fracture interaction, [...] Read more.
Permeability of fissured sorbing rocks, such as coal and shale, controls gas transport and is relevant to a variety of scientific problems and industrial processes. Multiple gas transport and rock deformation mechanisms affect permeability evolution, including gas rarefaction effects, gas-sorption-induced anisotropic matrix–fracture interaction, and anisotropic deformation induced by effective stress variation. In this paper, a generic anisotropic permeability model is proposed to address the impacts of the above mechanisms and effects. Specifically, the influence of matrix–fracture interactions on permeability evolution is depicted through the nonuniform matrix swelling caused by the gas diffusion process from fracture walls into the matrix. The following characteristics are also incorporated in this model: (1) anisotropic mechanical and swelling properties, (2) arbitrary box-shaped matrix blocks due to the anisotropic rock structure, (3) adsorbability variation of different matrix blocks because of complex rock compositions, (4) adsorption hysteresis, and (5) dynamic tortuosity. The directional permeability models are derived based on the anisotropic poroelasticity theory and anisotropic swelling equations considering adsorption hysteresis. We use a gas-invaded-volume ratio to describe the nonuniform swelling of matrix blocks. Additionally, swelling of blocks with different adsorption and mechanical properties are characterized by a volume-weighted function. Finally, the anisotropic tortuosity is defined as a power law function of effective porosity. The model is verified against experimental data. Results show that four-stage permeability evolution with time can be observed. Permeability evolution in different directions follows its own ways and depends on anisotropic swelling, mechanical properties, and structures, even when the boundary conditions are identical. Adsorption hysteresis controls the local shrinkage region. Tortuosity variation significantly affects permeability but has the smallest influence on the local swelling region. The existence of multiple matrix types complicates the permeability evolution behavior. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

25 pages, 9831 KB  
Review
Web Crippling of Pultruded GFRP Profiles: A Review of Experimental, Numerical, and Theoretical Analyses
by Mohamed Ahmed Soumbourou, Ceyhun Aksoylu, Emrah Madenci and Yasin Onuralp Özkılıç
Polymers 2025, 17(20), 2746; https://doi.org/10.3390/polym17202746 - 14 Oct 2025
Abstract
Glass fiber reinforced polymer (GFRP) composite profiles produced by pultrusion method are widely used as an alternative to traditional building materials due to their lightness and corrosion resistance. However, these materials are susceptible to crushing type fractures known as “web crippling” especially under [...] Read more.
Glass fiber reinforced polymer (GFRP) composite profiles produced by pultrusion method are widely used as an alternative to traditional building materials due to their lightness and corrosion resistance. However, these materials are susceptible to crushing type fractures known as “web crippling” especially under local loading due to their anisotropic structure and limited mechanical strength. Understanding web-crippling behavior is crucial for the safe and efficient structural application of pultruded GFRP profiles. This study report narrated the review of experimental, numerical, and analytical investigations of web-crippling behavior of pultruded GFRP profiles. Highlights of the major findings include profile geometry and detailing of the flange–web joint, loading types (end-two-flange (ETF), interior-two-flange (ITF), end bearing with ground (EG), interior bearing with ground (IG)), bearing plate dimensions, presence of web openings, and elevated temperatures. It also considers the limitations of current standards, along with new modeling techniques that incorporate finite element analysis as well as artificial intelligence. Damage types such as web–flange joint fractures, crushing, and buckling were comparatively analyzed; design approaches based on finite element modeling and artificial intelligence-supported prediction models were also included. These insights provide guidance for optimizing profile design and improving predictive models for structural engineering applications. Gaps in current design standards and modeling approaches are highlighted to guide future research. Full article
Show Figures

Figure 1

14 pages, 4396 KB  
Article
Experimental Study on AE Response and Mechanical Behavior of Red Sandstone with Double Prefabricated Circular Holes Under Uniaxial Compression
by Ansen Gao, Jie Fu, Kuan Jiang, Chengzhi Qi, Sunhao Zheng, Yanjie Feng, Xiaoyu Ma and Zhen Wei
Processes 2025, 13(10), 3270; https://doi.org/10.3390/pr13103270 - 14 Oct 2025
Viewed by 33
Abstract
Natural rock materials, containing micro-cracks and pore defects, significantly alter their mechanical behavior. This study investigated fracture interactions of red sandstone containing double close-round holes (diameter: 10 mm; bridge angle: 30°, 45°, 60°, 90°) using acoustic emission (AE) monitoring and the discrete element [...] Read more.
Natural rock materials, containing micro-cracks and pore defects, significantly alter their mechanical behavior. This study investigated fracture interactions of red sandstone containing double close-round holes (diameter: 10 mm; bridge angle: 30°, 45°, 60°, 90°) using acoustic emission (AE) monitoring and the discrete element simulations method (DEM), which was a novel methodology for revealing dynamic failure mechanisms. The uniaxial compression tests showed that hole geometry critically controlled failure modes: specimens with 0° bridge exhibited elastic–brittle failure with intense AE energy releases and large fractures, while 45° arrangements displayed elastic–plastic behaviors with stable AE signal responses until collapse. The quantitative AE analysis revealed that the fracture-type coefficient k had a distinct temporal clustering characteristic, demonstrating the spatiotemporal synchronization of tensile and shear crack initiation and propagation. Furthermore, numerical simulations identified a critical stress redistribution phenomenon, that axial compressive force chains concentrated along the loading axis, forming continuous longitudinal compression zones, while radial tensile dispersion dominated hole peripheries. Crucially, specimens with 45° and 90° bridges induced prominently symmetric tensile fractures (85° to horizontal direction) and shear-dominated failure near junctions. These findings can advance damage prediction in discontinuous geological media and offer direct insights for optimizing excavation sequences and support design in cavern engineering. Full article
Show Figures

Figure 1

23 pages, 5682 KB  
Article
Design and Evaluation of a Thermally Stable and Salt-Resistant Amphoteric Surfactant-Based Fracturing Fluid for High-Performance Hydraulic Stimulation
by Baoge Cao, Linlin Li and Fanchen Ma
Polymers 2025, 17(20), 2741; https://doi.org/10.3390/polym17202741 - 14 Oct 2025
Viewed by 158
Abstract
As oil and gas exploration advances, the development of deep, low-permeability, high-temperature, and high-salinity reservoirs poses increasing challenges. To address this, a novel amphoteric surfactant (TASS) was synthesized via free radical polymerization, and a high-performance water-based fracturing fluid system was developed. The system [...] Read more.
As oil and gas exploration advances, the development of deep, low-permeability, high-temperature, and high-salinity reservoirs poses increasing challenges. To address this, a novel amphoteric surfactant (TASS) was synthesized via free radical polymerization, and a high-performance water-based fracturing fluid system was developed. The system exhibited excellent thermal and salt resistance, with viscosity decreasing by less than 3.3% after 72 h at 150 °C and 20 wt% NaCl. It demonstrated clear shear-thinning behavior and strong elasticity. Interfacial activity tests showed that increasing NaCl concentrations reduced interfacial tension from 28.5 to 24.3 mN/m, while the contact angle on sandstone surfaces decreased significantly, indicating enhanced wettability and oil flow. Field applications further confirmed its effectiveness, with oil and gas production increasing by 81% and 133%, respectively, and a payback period of around 10 days. These results highlight the TASS fracturing fluid as a promising solution for stimulation in complex reservoirs. Unlike conventional betaine-type VES, the silane-grafted amphoteric design of TASS ensures viscosity retention at 220 °C and 25 wt% salinity. Full article
Show Figures

Figure 1

24 pages, 5379 KB  
Article
Multiscale Fracture Roughness Effects on Coupled Nonlinear Seepage and Heat Transfer in an EGS Fracture
by Ziqian Yan, Jian Zhou, Xiao Peng and Tingfa Dong
Energies 2025, 18(20), 5391; https://doi.org/10.3390/en18205391 - 13 Oct 2025
Viewed by 91
Abstract
The seepage characteristics and heat transfer efficiency in rough fractures are indispensable for assessing the lifetime and production performance of geothermal reservoirs. In this study, a two-dimensional rough rock fracture model with different secondary roughness is developed using the wavelet analysis method to [...] Read more.
The seepage characteristics and heat transfer efficiency in rough fractures are indispensable for assessing the lifetime and production performance of geothermal reservoirs. In this study, a two-dimensional rough rock fracture model with different secondary roughness is developed using the wavelet analysis method to simulate the coupled flow and heat transfer process under multiscale roughness based on two theories: local thermal equilibrium (LTE) and local thermal nonequilibrium (LTNE). The simulation results show that the primary roughness controls the flow behavior in the main flow zone in the fracture, which determines the overall temperature distribution and large-scale heat transfer trend. Meanwhile, the nonlinear flow behaviors induced by the secondary roughness significantly influence heat transfer performance: the secondary roughness usually leads to the formation of more small-scale eddies near the fracture walls, increasing flow instability, and these changes profoundly affect the local water temperature distribution and heat transfer coefficient in the fracture–matrix system. The eddy aperture and eddy area fraction are proposed for analyzing the effect of nonlinear flow behavior on heat transfer. The eddy area fraction significantly and positively correlates with the overall heat transfer coefficient. Meanwhile, the overall heat transfer coefficient increases by about 3% to 10% for eddy area fractions of 0.3% to 3%. As the eddy aperture increases, fluid mixing is enhanced, leading to a rise in the magnitude of the local heat transfer coefficient. Finally, the roughness characterization was decomposed into primary roughness root mean square and secondary roughness standard deviation, and for the first time, an empirical correlation was established between multiscale roughness, flow velocity, and the overall heat transfer coefficient. Full article
Show Figures

Figure 1

20 pages, 8789 KB  
Article
The Effect of Hydrogen Embrittlement on Fracture Toughness of Cryogenic Steels
by Junggoo Park, Gyubaek An, Jeongung Park, Daehee Seong and Wonjun Jo
Metals 2025, 15(10), 1139; https://doi.org/10.3390/met15101139 - 13 Oct 2025
Viewed by 163
Abstract
This study investigates the effect of hydrogen embrittlement on the fracture toughness of 9% Ni steel and STS 316L stainless steel under cryogenic conditions ranging from −80 °C to −253 °C. Hydrogen charging was performed using electrochemical methods, and hydrogen uptake was quantitatively [...] Read more.
This study investigates the effect of hydrogen embrittlement on the fracture toughness of 9% Ni steel and STS 316L stainless steel under cryogenic conditions ranging from −80 °C to −253 °C. Hydrogen charging was performed using electrochemical methods, and hydrogen uptake was quantitatively analyzed using thermal desorption spectroscopy (TDS). Fracture toughness was evaluated using crack tip opening displacement (CTOD) testing per ISO 12135, both without hydrogen (WO-H) and with hydrogen (W-H). The results showed a gradual decrease in CTOD values with decreasing temperature in both steels under hydrogen-free conditions, with ductile fracture maintained even at −253 °C. In contrast, hydrogen-charged specimens exhibited significant toughness degradation at intermediate subzero temperatures (−80 °C to −130 °C), particularly in 9% Ni steel due to its BCC crystal structure. However, at −160 °C and below, the effect of hydrogen embrittlement was suppressed mainly owing to the reduced hydrogen diffusivity. Scanning electron microscopy (SEM) analysis confirmed the transition from ductile to brittle fracture with decreasing temperature and hydrogen influences. At −253 °C, fully brittle fracture surfaces were observed in all specimens, confirming that at ultra-low temperatures, fracture behavior is dominated by temperature effects rather than hydrogen. These findings identify a practical temperature limit (approximately −160 °C) below which hydrogen embrittlement becomes negligible, providing critical insights for the design and application of structural materials in hydrogen cryogenic environments. Full article
Show Figures

Figure 1

20 pages, 5882 KB  
Article
Creep and Fatigue Life Prediction of Bulk-Polymerized Spliced Acrylic
by Zongyi Wang, Yuhao Liu, Bailun Zhang, Yuanqing Wang, Jianxia Xiao, Yulong Song and Wei Cheng
Buildings 2025, 15(20), 3677; https://doi.org/10.3390/buildings15203677 - 13 Oct 2025
Viewed by 140
Abstract
To evaluate the creep and fatigue fracture lives of structural acrylic spliced components fabricated via bulk polymerization, and to elucidate the associated fracture mechanisms, this study conducted creep and fatigue tests on spliced coupons annealed at 85 °C and 65 °C, as well [...] Read more.
To evaluate the creep and fatigue fracture lives of structural acrylic spliced components fabricated via bulk polymerization, and to elucidate the associated fracture mechanisms, this study conducted creep and fatigue tests on spliced coupons annealed at 85 °C and 65 °C, as well as base material coupons. The experimental life data were fitted using log-log linear regression models. Based on statistical analysis, a simple yet robust statistical framework was established for life prediction, featuring three design curves: 97.7% survival curves, improved 95% confidence interval lower bounds, and one-sided tolerance curves. Fractographic examination using scanning electron microscopy (SEM) was performed to characterize macroscopic failure modes. The results indicate distinct threshold behavior between stress levels and both creep and fatigue life. The creep threshold stresses are 25 MPa for the base material, 29 MPa for the spliced coupons annealed at 85 °C, and 17 MPa for the spliced coupons annealed at 65 °C. Corresponding fatigue threshold stress amplitudes are 21 MPa, 22 MPa, and 31 MPa, respectively. Failure in the base material is primarily initiated by randomly distributed internal defects, whereas failure in the spliced coupons is mainly caused by defects within the seam or interfacial tearing. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 4602 KB  
Article
Experimental Investigation of Hydraulic Fracturing Damage Mechanisms in the Chang 7 Member Shale Reservoirs, Ordos Basin, China
by Weibo Wang, Lu Bai, Peiyao Xiao, Zhen Feng, Meng Wang, Bo Wang and Fanhua Zeng
Energies 2025, 18(20), 5355; https://doi.org/10.3390/en18205355 - 11 Oct 2025
Viewed by 198
Abstract
The Chang 7 member of the Ordos Basin hosts abundant shale oil and gas resources and plays a vital role in the development of unconventional energy. This study investigates differences in damage evolution and underlying mechanisms between representative shale oil and shale gas [...] Read more.
The Chang 7 member of the Ordos Basin hosts abundant shale oil and gas resources and plays a vital role in the development of unconventional energy. This study investigates differences in damage evolution and underlying mechanisms between representative shale oil and shale gas reservoir cores from the Chang 7 member under fracturing fluid hydration. A combination of high-temperature expansion tests, nuclear magnetic resonance (NMR), and micro-computed tomography (Micro-CT) was used to systematically characterize macroscopic expansion behavior and microscopic pore structure evolution. Results indicate that shale gas cores undergo faster expansion and higher imbibition rates during hydration (reaching stability in 10 h vs. 23 h for shale oil cores), making them more vulnerable to water-lock damage, while shale oil cores exhibit slower hydration but more pronounced pore structure reconstruction. After 72 h of immersion in fracturing fluid, both core types experienced reduced pore volumes and structural reorganization; however, shale oil cores demonstrated greater capacity for pore reconstruction, with a newly formed pore volume fraction of 34.5% compared to 24.6% for shale gas cores. NMR and Micro-CT analyses reveal that hydration is not merely a destructive process but a dynamic “damage–reconstruction” evolution. Furthermore, the addition of clay stabilizers effectively mitigates water sensitivity and preserves pore structure, with 0.7% identified as the optimal concentration. The research results not only reveal the differential response law of fracturing fluid damage in the Chang 7 shale reservoir but also provide a theoretical basis and technical support for optimizing fracturing fluid systems and achieving differential production increases. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Graphical abstract

15 pages, 4613 KB  
Article
Hydrogen Does Not Embrittle Materials Themselves but Inhibits the Work Hardening of Materials
by Toshio Ogata
Processes 2025, 13(10), 3236; https://doi.org/10.3390/pr13103236 - 11 Oct 2025
Viewed by 231
Abstract
High-pressure hydrogen compatibility evaluations of alloys using hollow specimens were performed in accordance with ISO 7039. Hollow tensile specimens containing high-pressure hydrogen gas in a small-diameter hole along the axis can also be used to evaluate the influence of hydrogen gas without using [...] Read more.
High-pressure hydrogen compatibility evaluations of alloys using hollow specimens were performed in accordance with ISO 7039. Hollow tensile specimens containing high-pressure hydrogen gas in a small-diameter hole along the axis can also be used to evaluate the influence of hydrogen gas without using high-pressure vessels. This method is not only simpler and less costly than the conventional approach, but it can also evaluate the instantaneous change in the environmental gas at specimen break. The following findings were obtained from slow-strain-rate tensile (SSRT) tests in a high-pressure hydrogen gas environment using hollow specimens of austenitic stainless steels: (1) the work hardening of the specimen in the SSRT tests stopped several minutes before the crack reached the outer surface owing to the influence of hydrogen; (2) the work hardening of the specimen resumed immediately after the hydrogen gas was released; (3) the crack growth took several minutes to reach the specimen’s surface; and (4) the fracture surface was not a cleavage fracture. These results indicate that materials are still ductile after exposure to the high-pressure hydrogen environment. This can be explained by the fact that hydrogen does not embrittle the material itself but inhibits the work hardening of the material. This phenomenon can be explained by the behavior of chemical bonds among atoms, and more discussion on strength from the perspective of chemical bonds is expected. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop