polymers-logo

Journal Browser

Journal Browser

Advanced Fiber-Reinforced Polymer Composites: Design, Manufacturing, Characterization, and Application

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 727

Special Issue Editors

School of Automobile, Chang'an University, Middle Section of Nan Erhuan Road, Xi'an 710064, China
Interests: composite formability; composite crashworthiness; optimization design of composite
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
School of Automobile, Chang'an University, Middle Section of Nan Erhuan Road, Xi'an 710064, China
Interests: composite structures; mechanics of lattice materials; multi-scale modeling; crashworthiness; lightweight design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fiber-reinforced polymer (FRP) composites have advantages such as high specific strength and modulus, outstanding corrosion resistance and durability, flexible designability, and excellent lightweight effects. FRP composites have been widely used in fields including aerospace, transportation, construction, and marine engineering. However, FRP composites still face many challenges and issues in areas such as design methods, manufacturing technologies, performance characterizations, and structural applications. There is an urgent need for continuous technological innovation and optimization to address the various problems hindering the development of FRP composites. We welcome the submission of articles considering any of the following: design methods for FRP composites; manufacturing processes for FRP composites; property characterizations for composites; and industry applications for FRP composites.

Dr. Zhen Wang
Guest Editor

Dr. Guohua Zhu
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fiber-reinforced composites
  • design method
  • manufacturing process
  • property characterization
  • structural application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 19395 KiB  
Article
Effect of Laser Processing Parameters on the Quality of Titanium Alloy Cladding Layer on Carbon Fiber-Reinforced Polymer
by Jiayan Li, Xuan Su, Fenxiang Wang, Donghe Zhang, Yingke Wang, Haoran Song, Jie Xu and Bin Guo
Polymers 2025, 17(9), 1195; https://doi.org/10.3390/polym17091195 - 27 Apr 2025
Viewed by 75
Abstract
To address the insufficient bonding performance between TC4 (Ti-6Al-4V) coating and carbon fiber-reinforced thermoplastic (CFRP) matrices that limits engineering applications of composite structures, TC4 coatings were fabricated on CFRP polymer composites via laser cladding and analyzed using scanning electron microscopy (SEM) and transmission [...] Read more.
To address the insufficient bonding performance between TC4 (Ti-6Al-4V) coating and carbon fiber-reinforced thermoplastic (CFRP) matrices that limits engineering applications of composite structures, TC4 coatings were fabricated on CFRP polymer composites via laser cladding and analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to examine the interface morphology, microstructure, and phase composition. The influence of laser processing parameters on the cladding quality was assessed based on the mechanical performance of the TC4 coating. The findings revealed that insufficient laser power (<230 W) or excessive scanning speed (>1.4 m/min) led to incomplete melting of TC4 powder, preventing the formation of intermetallic compound (IMC) layers. Conversely, excessive laser power (>270 W) or a low scanning speed (<1.0 m/min) caused thermal decomposition of the CFRP due to its limited thermal resistance, leading to interfacial defects such as cracks and pores. The interface between the CFRP and TC4 coating primarily comprised granular TiC and acicular α′ martensite, with minor TiS2 detected. Optimal mechanical performance was achieved at a laser power of 250 W and a scanning speed of 1.2 m/min, yielding a maximum interfacial shear strength of 18.5 MPa. These findings provide critical insights for enhancing the load-bearing capacity of TC4/CFRP aeronautical composites, enabling their reliable operation in extreme aerospace environments. Full article
Show Figures

Figure 1

30 pages, 6502 KiB  
Article
Sustainable Medical Materials: AI-Driven Assessment for Mechanical Performance of UVC-Treated Date Palm Epoxy Composites
by Mohamed A. Aboamer, Abdulrahman Hakami, Meshari Algethami, Ibrahim M. Alarifi, Tarek M. A. A. El-Bagory, Ahmad Alassaf, Bakheet A. Alresheedi, Ahmad K. AlOmari, Abdulaziz Abdullah Almazrua and Nader A. Rahman Mohamed
Polymers 2025, 17(8), 1125; https://doi.org/10.3390/polym17081125 - 21 Apr 2025
Viewed by 170
Abstract
This study investigates the AI-assisted analyses of radiation disinfection effects on the mechanical properties of recycled date kernel powder–epoxy composites for medical applications, utilizing Euclidean distances and the k-nearest neighbor (KNN) algorithm. Tensile and compression tests were conducted on twenty specimens following ASTM [...] Read more.
This study investigates the AI-assisted analyses of radiation disinfection effects on the mechanical properties of recycled date kernel powder–epoxy composites for medical applications, utilizing Euclidean distances and the k-nearest neighbor (KNN) algorithm. Tensile and compression tests were conducted on twenty specimens following ASTM standards, with the data analyzed using a t-test to evaluate the impact of the UVC disinfection process on the material’s mechanical properties. The application of AI through the KNN algorithm successfully identified the three most representative curves out of five for both tensile and compression tests. This targeted curve selection minimized variability and focused on the most relevant data, enhancing the reliability of the analysis. Following the application of UVC and AI, tensile tests showed a 20–30% increase in ultimate stress. Similarly, compression tests revealed a 25% increase in transition stress, an 18–22% improvement in ultimate stress, and approximately a 12% rise in fracture stress. This research underscores the potential of combining AI, sustainable materials, and UVC technology to develop advanced composites for medical applications. The proposed methodology offers a robust framework for evaluating material performance while promoting the creation of eco-friendly, high-performance materials that meet the stringent standards of medical use. Full article
Show Figures

Figure 1

Back to TopTop