Advances in Nanoindentation and Nanomechanics

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Physical Chemistry at Nanoscale".

Deadline for manuscript submissions: 5 December 2025 | Viewed by 1275

Special Issue Editors


E-Mail Website
Guest Editor
Fraunhofer Institute for Ceramic Technologies and System (IKTS), 01109 Dresden, Germany
Interests: nanoindentation; nanomechanics; small scale meterials and systems; materials in electronic systems; in-situ nanomechanics; nanoanalysis

E-Mail Website
Guest Editor
Department of Physical Metallurgy and Materials Testing, University of Leoben, A-8700 Leoben, Austria
Interests: nanoindentation; materials research; nanomechanics of materials; in-situ nanomechanics

Special Issue Information

Dear Colleagues,

In recent decades, nanoindentation has evolved to become mature, widespread, and arguably the standard experimental technique used to characterize the nanomechanical behavior of (nano-)materials. Despite this, nanoindentation and other nanomechanical approaches continue to be a vital subject of research and development. The reason for this is that the nanomechanical behavior of materials is becoming increasingly important as nanomaterials and nanoscale systems are becoming more widespread, and due to the fact that the scientific and technological challenges related to these are becoming increasingly complex.

Therefore, we are pleased to invite you to submit your original research to this Special Issue of Nanomaterials, entitled “Advances in Nanoindentation and Nanomechanics”.

This Special Issue aims to collate original research articles and reviews focused on the recent advances in nanoindentation and nanomechanics. Research areas may include, but are not limited to, the following:

  • Nanoindentation and its experimental applications as well as data analysis approaches including standardization and ontological approaches.
  • (Nano-)mechanics of nanomaterials, nanostructures, thin films, multiphase materials, etc.
  • Advances in instrumentation for mechanical testing at the micro- and nanoscale.
  • Cutting-edge computational, modeling, data-driven, machine learning, and AI-supported approaches applied to micro- and nanomechanical topics.
  • Techniques for measuring stress–strain relationships in micro- and nanostructures.
  • Characterization of strain-rate sensitive deformation mechanisms.
  • Fatigue and creep phenomena across multiple length scales.
  • Techniques for hierarchical and functional materials’ characterization across different length scales.
  • In situ and in operando testing for micro- and nanomechanics.
  • Micro- and nanomechanics of fracture, as well as adhesive and cohesive failures.
  • Experimentally informed scale-bridging models.

We look forward to receiving your contributions.

Dr. André Clausner
Dr. Verena Maier-Kiener
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoindentation
  • nanomechanics
  • nanomechanical behavior of materials
  • in situ nanomechanics
  • computational nanomechanics
  • advanced instrumentation in nanomechanics
  • nanofracture
  • scale-bridging in nanomechanics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 4729 KB  
Article
Unidirectional Ligament Orientation Enables Enhanced Out-of-Plane Mechanical Properties in Anisotropic Nanoporous Gold
by Yuhang Zhang, Xiuming Liu, Yiqun Hu, Suhang Ding and Feixiang Tang
Nanomaterials 2025, 15(21), 1675; https://doi.org/10.3390/nano15211675 - 4 Nov 2025
Viewed by 432
Abstract
Nanoporous gold (NPG), characterized by a bicontinuous network of nanoscale solid ligaments and pore channels, exhibits exceptional physical and chemical properties. However, the limited strength and stiffness of traditional isotropic NPG (INPG) have constrained its engineering applications. To effectively enhance the mechanical properties [...] Read more.
Nanoporous gold (NPG), characterized by a bicontinuous network of nanoscale solid ligaments and pore channels, exhibits exceptional physical and chemical properties. However, the limited strength and stiffness of traditional isotropic NPG (INPG) have constrained its engineering applications. To effectively enhance the mechanical properties of NPG, this work proposes an innovative anisotropic NPG (ANPG) architecture featuring unidirectional ligament orientation. By controlling spinodal decomposition parameters, ANPG models with preferentially aligned ligaments and INPG with random ligament orientation are constructed, spanning relative densities from 0.30 to 0.50. The ligament length and diameter of ANPG along the out-of-plane direction are twice those along other directions. Molecular dynamics simulations of tensile tests show that ANPG exhibits superior out-of-plane Young’s modulus and yield strength but reduced fracture strain compared to INPG. Crucially, ANPG maintains toughness comparable to INPG at relative densities below 0.4, offering an optimal strength-toughness balance for practical applications. Scaling law analysis demonstrates INPG follows classical bending-dominated Gibson-Ashby behavior, while ANPG exhibits a hybrid deformation mechanism with significant ligament stretching contribution. Atomic-scale analysis reveals that both structures develop dislocation-mediated plasticity initially, but ANPG transitions to localized ligament necking and fractures more rapidly, explaining its reduced ductility. Strain localization quantification, measured by atomic shear strain standard deviation, confirms the intensifier deformation concentration in ANPG at large plastic strain. These findings suggest anisotropic design as a powerful strategy for developing high-performance NPG for actuators, sensors, and catalytic systems where simultaneous mechanical robustness and functional performance are required. Full article
(This article belongs to the Special Issue Advances in Nanoindentation and Nanomechanics)
Show Figures

Figure 1

15 pages, 3834 KB  
Article
Nanomechanical Properties of Rib Bones in Diabetic vs. Healthy Rat Models
by Tamás Tarjányi, Csaba Rosztóczy, Ferenc Peták, Fruzsina Kun-Szabó, Gábor Gulyás, József Tolnai, Krisztián Bali, Petra Somogyi, Rebeka Anna Kiss and Gergely H. Fodor
Nanomaterials 2025, 15(20), 1582; https://doi.org/10.3390/nano15201582 - 17 Oct 2025
Viewed by 593
Abstract
This study examines how diabetes mellitus and physiological aging influence the nanomechanical behavior of rat rib cortical bone using combined static and dynamic nanoindentation. Ribs from young control, old, and streptozotocin-induced diabetic rats were analyzed to quantify both intrinsic and frequency-dependent mechanical properties. [...] Read more.
This study examines how diabetes mellitus and physiological aging influence the nanomechanical behavior of rat rib cortical bone using combined static and dynamic nanoindentation. Ribs from young control, old, and streptozotocin-induced diabetic rats were analyzed to quantify both intrinsic and frequency-dependent mechanical properties. Static nanoindentation revealed markedly higher hardness and elastic modulus in the diabetic group (0.47 ± 0.22 GPa and 9.53 ± 3.03 GPa, respectively) compared to controls (0.11 ± 0.03 GPa and 3.21 ± 0.51 GPa; p < 0.001). The modulus-to-hardness ratio, an indicator of fracture toughness, was reduced from 30.34 in controls to 20.45 in diabetics, suggesting increased stiffness but greater brittleness. Dynamic nanoindentation (0–4.5 Hz) demonstrated significant aging-related changes in the storage and loss moduli (p < 0.001), while the loss factor (tan δ < 1) and viscosity remained similar across groups, indicating predominantly solid-like behavior. These results show that diabetes stiffens bone tissue through matrix-level alterations, whereas aging primarily affects its viscoelastic damping capacity. The combined static–dynamic nanoindentation protocol provides a robust framework for distinguishing disease- and age-related bone degradation at the tissue scale. Translationally, the findings help explain why bones in diabetic or elderly individuals may fracture despite normal mineral density, underscoring the need to assess bone quality beyond conventional densitometry. Full article
(This article belongs to the Special Issue Advances in Nanoindentation and Nanomechanics)
Show Figures

Graphical abstract

Back to TopTop