Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (167)

Search Parameters:
Keywords = HRMS orbitrap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1668 KB  
Article
Evaluation of In Vitro Cytoprotective Activity, Antioxidant Activity and Proteomic Profiles of Novel Sorghum-Based Fermented Beverages
by David R. Katerere, Abel Navarré Dopazo, Raffaele Sessa, Silvia Trombetti, Michela Grosso and Luana Izzo
Beverages 2026, 12(1), 9; https://doi.org/10.3390/beverages12010009 - 8 Jan 2026
Viewed by 261
Abstract
Fermentation, one of the oldest food processing techniques, is known to play a pivotal role in improving the nutritional and functional characteristics of cereals, with positive implications for gut health and overall well-being. The present study aims to examine the phenolic acids, peptides, [...] Read more.
Fermentation, one of the oldest food processing techniques, is known to play a pivotal role in improving the nutritional and functional characteristics of cereals, with positive implications for gut health and overall well-being. The present study aims to examine the phenolic acids, peptides, and potential bioactive properties of 2 novel sorghum-based fermented beverages, Niselo and Delishe. A total of 48 phenolic compounds were identified through targeted and untargeted Ultra-High Performance Liquid Chromatography coupled with a Quadrupole Orbitrap High-Resolution Mass Spectrometer (UHPLC–Q-Orbitrap HRMS) analyses, revealing a higher content of phenolic acids in Niselo and a prevalence of flavonoids in Delishe. Niselo exhibited enhanced in vitro cytoprotective and reactive oxygen species (ROS)-scavenging activity and displayed a clear cytoprotective effect against hydrogen peroxide-induced oxidative stress in Caco-2 cells. Proteomic profiling using tryptic digestion revealed that Niselo has a substantial abundance of fragments of peptides matching several stress-related and antioxidant proteins, indicating a superior stress-response and/or defense capability. Overall, these findings highlight the functional potential of sorghum-based fermented beverages, supporting their role as health-promoting products. Full article
Show Figures

Figure 1

21 pages, 2443 KB  
Article
Mycotoxins and Beyond: Unveiling Multiple Organic Contaminants in Pet Feeds Through HRMS Suspect Screening
by Dafni Dematati, Dimitrios Gkountouras, Vasiliki Boti and Triantafyllos Albanis
Toxins 2026, 18(1), 22; https://doi.org/10.3390/toxins18010022 - 30 Dec 2025
Viewed by 428
Abstract
This study evaluated 65 commercially available pet feed samples, including 33 cat feeds and 32 dog feeds (dry and wet formulations), for the presence of organic contaminants. These included mycotoxins, pesticides, pharmaceutical residues/veterinary drugs, and plant-based bioactive compounds. A suspect screening strategy was [...] Read more.
This study evaluated 65 commercially available pet feed samples, including 33 cat feeds and 32 dog feeds (dry and wet formulations), for the presence of organic contaminants. These included mycotoxins, pesticides, pharmaceutical residues/veterinary drugs, and plant-based bioactive compounds. A suspect screening strategy was employed using QuEChERS extraction followed by LC-LTQ/Orbitrap HRMS analysis. A total of 29 compounds were tentatively identified within 186 detections. In total, 76.9% of the samples were contaminated with mycotoxins. Aflatoxins (B1, B2, G1, and G2), T2 toxins, and HT2 toxins were dominant, with Aflatoxin B1 occurring in 33.8% of the samples and exhibiting a higher prevalence in dry feeds than in wet feeds. Pesticides were present in 72.0% of the dry formulations, including aclonifen and pirimiphos-methyl, but were present in only 11% of the wet formulations. Plant-based bioactive compounds, including phytoestrogens, were identified in 51% of the samples, highlighting toxicologically relevant candidates that merit prioritization for targeted confirmation, particularly in cat feeds. Pharmaceuticals were found in 23.8% of dry feeds (sparfloxacin and fumagillin). Overall, the HRMS-based, standard-free suspect screening workflow provides an early-warning overview of multi-class co-occurrence patterns in complex pet feed matrices and supports the prioritization of candidates for subsequent confirmatory analysis. Full article
Show Figures

Figure 1

24 pages, 3461 KB  
Article
Zearalenone Biotransformation by Tibetan Plateau-Derived Yeast Hannaella zeae: Biological Pattern Elucidation, Metabolite Safety, and Environmental Tolerance
by Chenxiaoye Yang, Jiali Hu, Disha Jiang, Geng Ni, Changling Wu, Qiang Chu, Sergei A. Eremin, Liliya I. Mukhametova, Xiaofang Guo, Ji De, Xingquan Liu and Hao Hu
Toxins 2026, 18(1), 2; https://doi.org/10.3390/toxins18010002 - 19 Dec 2025
Viewed by 305
Abstract
Zearalenone (ZEN) poses serious risks to human and animal health. Compared with physical and chemical methods, microbial transformation offers a safer and more sustainable strategy for ZEN detoxification. The yeast Hannaella zeae, isolated from the Qinghai–Tibet Plateau, showed the highest ZEN removal [...] Read more.
Zearalenone (ZEN) poses serious risks to human and animal health. Compared with physical and chemical methods, microbial transformation offers a safer and more sustainable strategy for ZEN detoxification. The yeast Hannaella zeae, isolated from the Qinghai–Tibet Plateau, showed the highest ZEN removal efficiency among 11 strains, achieving an 85.87% transformation rate within 36 h. Optimal conditions for ZEN transformation were determined by varying culture time, temperature, and pH. The products were putatively identified as zearalenone-14-β-D-glucopyranoside (C24H32O10) and zearalenone-16-β-D-glucopyranoside (C24H32O10) by UHPLC-Q-Orbitrap-HRMS. The safety of the mixed culture medium extract was further evaluated using a Caenorhabditis elegans model, showing significantly lower toxicity than untreated ZEN. H. zeae maintained high transformation efficiency under low temperature (57.48%) and acidic stress (47.10%), supported by active antioxidant enzymes (SOD, CAT, APX, GPx) and stress metabolites (trehalose, proline). Overall, this study identifies H. zeae as a promising, stress-tolerant biocontrol agent and elucidates its glycosylation-based detoxification mechanism, providing a foundation for future application in real food and feed systems. Full article
Show Figures

Graphical abstract

20 pages, 1368 KB  
Article
Phytochemistry and Biological Effects of the Juglans regiaSorrento” Walnut Husk Extract on Human Keratinocyte Cells
by Giulia Vergine, Michela Ottolini, Giuseppe E. De Benedetto, Simona Bettini, Francesca Baldassarre, Daniele Vergara and Giuseppe Ciccarella
Antioxidants 2025, 14(12), 1385; https://doi.org/10.3390/antiox14121385 - 21 Nov 2025
Viewed by 745
Abstract
Plants are a valuable source of natural compounds with diverse applications. Recently, increased attention has focused on waste products from the agricultural industry, including walnut husk. Given its potential as a sustainable source of bioactives, this work characterizes the alcoholic Juglans regia [...] Read more.
Plants are a valuable source of natural compounds with diverse applications. Recently, increased attention has focused on waste products from the agricultural industry, including walnut husk. Given its potential as a sustainable source of bioactives, this work characterizes the alcoholic Juglans regiaSorrento” walnut husk extract (WHE). The extract’s phenolic content, antioxidant activity, and phytochemical composition were evaluated using spectrophotometry and UHPLC-HRMS-based untargeted metabolomics analysis. WHE exhibited a high total phenolic content (TPC = 1.45 ± 0.03 mg GAE/g dry extract) and a rich profile of phenolic acids, flavonoids, and tannins. Given this composition, WHE’s biological activity was further tested in an in vitro human keratinocyte (HaCaT) model. At the concentration of 10 μg/mL, WHE showed no cytotoxicity and displayed significant antioxidant properties by modulating detoxifying proteins such as Nrf2. WHE also influenced mitochondrial metabolism, increased maximum respiration, preserved barrier integrity, and activated pathways for epithelial homeostasis. Overall, this study highlights the bioactivity of the J. regiaSorrento” walnut husk extract. These findings support the valorization of walnut husk as a sustainable source of bioactives for dermatological and cosmetic products. Full article
(This article belongs to the Special Issue Antioxidant Phytochemicals for Promoting Human Health and Well-Being)
Show Figures

Graphical abstract

20 pages, 1458 KB  
Article
Comparison and Validation of QuEChERS Extraction Methods Coupled with UHPLC/Orbitrap HR-MS for the Determination of Antibiotics and Related Compounds in Fish and Fish Feed
by Kleopatra Miserli, Vasiliki Boti, Dimitra Hela, Triantafyllos Albanis and Ioannis Konstantinou
Separations 2025, 12(11), 321; https://doi.org/10.3390/separations12110321 - 18 Nov 2025
Viewed by 658
Abstract
The widespread presence of pharmaceutical active compounds (PhACs) in aquatic environments raises significant environmental and public health concerns, particularly through their accumulation in marine biota and potential transfer to humans via seafood. In aquaculture, fish feed is essential for production but may also [...] Read more.
The widespread presence of pharmaceutical active compounds (PhACs) in aquatic environments raises significant environmental and public health concerns, particularly through their accumulation in marine biota and potential transfer to humans via seafood. In aquaculture, fish feed is essential for production but may also act as a pathway for contaminants in the marine environment. This study aimed to develop and validate an analytical method for the extraction and quantification of 14 antibiotics and ethoxyquin antioxidant in fish tissue and feed. Two QuEChERS-based extraction protocols were compared: the AOAC 2007.01 method (Method A) using Z-Sep+ as clean-up, and the original QuEChERS method (Method B) employing Enhanced Matrix Removal (EMR)-lipid. Ultra-performance liquid chromatography coupled with Orbitrap mass spectrometry using electrospray ionization in positive and negative mode was applied for identification and quantification. Validation included assessment of recovery, linearity, precision, limits of detection and quantification, uncertainty, matrix effects, and process efficiency. Both methods showed good linearity (R2 > 0.9899) and precision (<19.7%). Method B achieved superior recoveries for most analytes in both fish tissue (70–110%) and feed (69–119%), with lower uncertainties (<18.4%) compared to Method A. Overall, the original QuEChERS method demonstrated better analytical performance, supporting its application as a green, robust tool for monitoring emerging contaminants in aquaculture products. Full article
Show Figures

Graphical abstract

19 pages, 878 KB  
Article
In Vitro Influence of a Chemically Characterized Hippophae rhamnoides L. Fruit Extract on Healthy and Constipated Human Gut Microbiota Functionality and Aquaporin-3 Expression
by Lorenza Francesca De Lellis, Ángela Toledano-Marín, Miguel Navarro-Moreno, Elisabetta Caiazzo, Gennaro Madonna, Adriana Delgado-Osorio, Daniele Giuseppe Buccato, Luana Izzo, Antonio Paolillo, Alessandro Di Minno, Hammad Ullah, Maria Vittoria Morone, Anna De Filippis, Massimiliano Galdiero, Armando Ialenti, José Ángel Rufián Henares and Maria Daglia
Foods 2025, 14(21), 3800; https://doi.org/10.3390/foods14213800 - 6 Nov 2025
Viewed by 1008
Abstract
To identify the underlying mechanisms by which H. rhamnoides fruit extract exerts regulatory effects on intestinal function, we investigated its chemical composition using UHPLC Q-Orbitrap HRMS and evaluated its biological effects on Aquaporin-3 (AQP-3) expression via Western blot in the intestinal epithelial cell [...] Read more.
To identify the underlying mechanisms by which H. rhamnoides fruit extract exerts regulatory effects on intestinal function, we investigated its chemical composition using UHPLC Q-Orbitrap HRMS and evaluated its biological effects on Aquaporin-3 (AQP-3) expression via Western blot in the intestinal epithelial cell line (HT-29). Moreover, fecal microbiota from healthy and constipated adults was employed to mimic the in vitro fermentation of the digested extract and evaluate its effects on gut microbiota functionality. Antioxidant capacity (i.e., Total Phenolic Contents (TPC), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays) was assessed prior to and after simulated digestion and fermentation processes. Short-chain fatty acids (SCFAs) were quantified using UHPLC-RID of the fermented samples. In the extract, 23 compounds belonging to a variety of classes (mainly polyphenols) were tentatively identified. The extract significantly upregulated AQP-3 expression in the absence of cytotoxicity. After in vitro fermentation with gut microbiota isolated from constipated subjects, ABTS and FRAP values significantly decreased, as well as TPC, suggesting a greater consumption of antioxidant compounds, consistent with the increased production of radical compounds associated with constipation. Fermentation with intestinal microbiota with healthy and constipated gut microbiota resulted in an increase in SCFA. These results provide preliminary insights into a non-pharmacological strategy for functional constipation. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 5066 KB  
Article
Analysis of Components in Ziziphi Spinosae Semen Before and After Processing Based on Targeted and Untargeted Metabolomics
by Ruiqi Yang, Ze Li, Lulu Dong, Yiran Heng, Lianglei Song, Lijun Guo, Xiangping Pei, Yan Yan and Chenhui Du
Foods 2025, 14(21), 3771; https://doi.org/10.3390/foods14213771 - 3 Nov 2025
Cited by 1 | Viewed by 1482
Abstract
Ziziphi Spinosae Semen (ZSS), a medicinal and edible homologous herbal drug, is commercially available in both raw and fried (FZSS) forms and has been widely used to improve sleep quality. This study aimed to elucidate the differences in chemical composition between the two [...] Read more.
Ziziphi Spinosae Semen (ZSS), a medicinal and edible homologous herbal drug, is commercially available in both raw and fried (FZSS) forms and has been widely used to improve sleep quality. This study aimed to elucidate the differences in chemical composition between the two specifications. A comprehensive metabolomics approach utilizing 1H NMR, GC–MS, and UHPLC-Q-Orbitrap-HRMS identified a total of 66 potential biomarkers. The results demonstrated that after frying, the content of fatty acids decreased significantly, while the levels of most primary metabolites (e.g., sugars, amino acids) and secondary metabolites (e.g., alkaloids, flavonoids) increased markedly. Targeted quantification of 14 key components validated these trends: the contents of five fatty acids decreased (p < 0.001), whereas the levels of five secondary metabolites (coclaurine, magnoflorine, spinosin, 6‴-feruloylspinosin, and jujuboside A) increased. In contrast, the content of jujuboside B decreased significantly. This study systematically reveals the profound impact of frying on the chemical composition of ZSS, providing a scientific basis for its quality control and processing optimization. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

19 pages, 1781 KB  
Article
Comparative Evaluation of Quality Traits and Bioactive Compounds in Acca sellowiana (Berg) Peel and Pulp: Effects of Genotype, Harvest Time and Tissue Type
by Claudio Di Vaio, Aurora Cirillo, Mariachiara Ramondini, Nicola Cinosi, Angela Di Matteo, Roberto Ciampaglia, Luana Izzo and Michela Grosso
Horticulturae 2025, 11(11), 1305; https://doi.org/10.3390/horticulturae11111305 - 31 Oct 2025
Viewed by 992
Abstract
Feijoa (Acca sellowiana Berg) is an emerging Mediterranean crop valued for its nutraceutical potential but still underexplored with respect to cultivar and harvest stage. This study investigated two cultivars, ‘Mammoth’ and ‘Apollo’, harvested one week apart (4 and 11 November), to assess [...] Read more.
Feijoa (Acca sellowiana Berg) is an emerging Mediterranean crop valued for its nutraceutical potential but still underexplored with respect to cultivar and harvest stage. This study investigated two cultivars, ‘Mammoth’ and ‘Apollo’, harvested one week apart (4 and 11 November), to assess morphological traits, phenolic composition, antioxidant activity, vitamin C, and iodine. Fruit morphology, firmness, and basic quality indices (TSS, TA, pH, TSS/TA) were determined, while phenolic compounds were profiled by UHPLC–Q-Orbitrap HRMS. Antioxidant activity was measured by ABTS, DPPH, and FRAP assays; vitamin C by DCPIP titration; and iodine by iodometric analysis. ‘Apollo’ produced larger and firmer fruits, especially at the first harvest (105.6 g), while ‘Mammoth’ showed smaller and softer fruits. TSS remained stable (11 °Brix), whereas TA decreased and pH increased over time, raising the TSS/TA ratio and suggesting improved flavor balance at later harvests. Peel consistently contained higher bioactive levels than pulp, with catechin as the dominant phenolic compounds (up to 345 µg g−1 dw in ‘Apollo’ peel). Antioxidant activity was markedly higher in peel, with ‘Mammoth’ showing stronger early FRAP values and ‘Apollo’ increasing at the later harvest. Vitamin C and iodine were about threefold higher in peel than pulp and increased over time, reaching maxima in late-harvest peel samples. Overall, cultivar and harvest stage significantly influenced fruit quality and nutraceutical value. Peel, particularly that of late-harvested ‘Apollo’, represents a promising resource for functional foods and the valorization of processing by-products. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Graphical abstract

14 pages, 1656 KB  
Article
Metabolomic Revelations into the Dynamic Transformations Across Various Developmental Stages of Coprinus comatus Through UHPLC-Q-Orbitrap-HRMS Analysis
by Yu Wang, Guangsheng Ding, Peng Xu, Yun Cheng, Xuan Liang, Chunying Wu, Zhi Yang and Yatuan Ma
Metabolites 2025, 15(11), 703; https://doi.org/10.3390/metabo15110703 - 29 Oct 2025
Viewed by 621
Abstract
Background: Dietary supplements and functional foods derived from mushrooms have gained increasing popularity. Among these, Coprinus comatus stands out due to its excellent flavor and high nutritional value. However, its susceptibility to autolysis and short shelf life significantly limits its utilization. Although [...] Read more.
Background: Dietary supplements and functional foods derived from mushrooms have gained increasing popularity. Among these, Coprinus comatus stands out due to its excellent flavor and high nutritional value. However, its susceptibility to autolysis and short shelf life significantly limits its utilization. Although a few studies have attempted to elucidate the autolysis mechanism of C. comatus, only few research has been conducted on the detailed metabolic changes occurring during its growth cycle. Objectives: By conducting a dynamic metabolic profiling analysis of C. comatus metabolites across different developmental stages and tissue parts, this study aims to elucidate the variations in its metabolic composition. Methods: In this study, fruiting bodies of C. comatus were cultivated and collected at four distinct developmental stages. These samples were further divided into cap and gills (CG) and stipe (ST) tissues. Subsequently, UHPLC-Q-Orbitrap was employed for non-targeted dynamic metabolomics analysis of C. comatus samples. The identification of analytes was performed using Compound Discovery 3.3. Then, differential accumulated metabolites (DAMs) between CG and ST at the same stage and CG or ST between adjacent stages were identified. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to identify potential contributors to the observed metabolic changes. In addition, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity of samples was determined. Results: A total of 490 metabolites were annotated, and the most abundant metabolite groups were lipids, alkaloids, amino acids and their derivatives. It revealed that the metabolites of the ST remained relatively stable across the four growth stages, whereas autolysis induced significant alterations in the metabolites of the CG. KEGG pathway analysis indicated that these changes were primarily linked to lipid and amino acid biosynthesis and metabolic pathways. Furthermore, DPPH assays demonstrated a significant increase in the free radical scavenging activity of CG following autolysis. Conclusions: The metabolites of C. comatus exhibit dynamic variations across different growth stages and tissue locations. The significant morphological changes in CG induced by autolysis are mirrored by corresponding alterations in its metabolic profile. The enhanced DPPH free radical scavenging activity observed in the autolyzed samples, along with the distribution patterns of bioactive components, provides valuable insights for the efficient utilization of C. comatus. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Graphical abstract

14 pages, 699 KB  
Article
Determination of Nonylphenol in Crude Oils and Petroleum Products by Liquid Chromatography–Mass Spectrometry: Implications for Sustainable Petroleum Refining
by Limin Wang, Shijie Zhang, Zi Long, Feng Ju, Huajun Zhen, Hui Luan, Guangli Xiu and Zhihe Tang
Sustainability 2025, 17(18), 8485; https://doi.org/10.3390/su17188485 - 22 Sep 2025
Viewed by 709
Abstract
Nonylphenols (NPs), widely used as emulsifiers in petroleum production and refining, are compounds of environmental concern, with endocrine-disrupting effects. They can be released during oil extraction and processing, carried into petroleum products, and subsequently emitted during downstream applications such as combustion. Despite these [...] Read more.
Nonylphenols (NPs), widely used as emulsifiers in petroleum production and refining, are compounds of environmental concern, with endocrine-disrupting effects. They can be released during oil extraction and processing, carried into petroleum products, and subsequently emitted during downstream applications such as combustion. Despite these potential pathways, information on their occurrence in petroleum streams remains limited, partly due to the lack of reliable methods for measuring NPs in complex petroleum matrices. In this study, we developed an analytical method combining normal-phase chromatography (NPC), solid-phase extraction (SPE), and liquid chromatography–Orbitrap high-resolution mass spectrometry (LC–Orbitrap-HRMS) for NP determination in crude oils and petroleum products. NPC was performed using alumina (5% water deactivation) as the stationary phase. The column was eluted sequentially with n-hexane, n-hexane/dichloromethane (4:1 and 1:1, v/v), dichloromethane, and dichloromethane/methanol (2:1, v/v). The first three fractions were discarded, and the remaining two fractions were combined and further purified using a C18 SPE cartridge to analysis. The method showed high recovery (82.8 ± 2.6%) and a low detection limit (1.0 ng/g) in crude oil. Application revealed widespread occurrence of NPs, with concentrations up to 784.4 ng/g in crude oils and up to 439.1 ng/g in refined fuels, indicating that these compounds can persist through refining and may be released during downstream use. These results demonstrate that the method is suitable for the routine monitoring of NPs in petroleum-related samples and provide a practical tool for supporting sustainable refining practices and improved environmental management in the upstream oil and gas sector. Full article
Show Figures

Figure 1

17 pages, 835 KB  
Article
Application of Graphitized Multi-Walled Carbon Nanotubes Combined with Orbitrap High-Resolution Mass Spectrometry for the Rapid Detection of Ten Toxins in Wild Mushrooms
by Bo Zhang, Yang Liu, Shengnan Li, Ruonan Li, Yunhui Zhang and Hua Zhao
Toxins 2025, 17(9), 445; https://doi.org/10.3390/toxins17090445 - 4 Sep 2025
Viewed by 1158
Abstract
Wild mushroom poisoning is an emerging global food safety issue, especially in subtropical regions like southwestern China, where incidents are geographically clustered. Current detection methods are often time-consuming and overlook region-specific toxins. We developed a rapid, sensitive, and accurate method for the simultaneous [...] Read more.
Wild mushroom poisoning is an emerging global food safety issue, especially in subtropical regions like southwestern China, where incidents are geographically clustered. Current detection methods are often time-consuming and overlook region-specific toxins. We developed a rapid, sensitive, and accurate method for the simultaneous detection of ten characteristic mushroom toxins prevalent in Guizhou, China. The method combines graphite multi-walled carbon nanotubes (G-MWCNTs) for sample preparation with Orbitrap high-resolution mass spectrometry (HRMS). Wild mushroom samples were extracted via ultrasonic-assisted methanol–water extraction, purified using G-MWCNTs, and separated on a Hypersil GOLD C18 column (100 mm × 2.1 mm, 1.9 μm). Gradient elution was performed with 0.1% formic acid + 0.01% ammonia and acetonitrile; quantification used the external standard method. The method achieved LODs of 0.005–0.2 mg/kg and LOQs of 0.015–0.6 mg/kg, with RSDs below 18.11% and excellent linearity (R2 = 0.9936–0.9989). Among 45 wild mushroom samples, toxin levels ranged from 0.032 to 445.10 mg/kg, with a detection rate of 22.22%, suggesting notable poisoning risk. This method reduces pretreatment time while ensuring high analytical performance, offering a reliable tool for rapid toxin screening and supporting regional surveillance of wild mushroom poisoning. Full article
(This article belongs to the Special Issue Advances in Poisonous Mushrooms and Their Toxins)
Show Figures

Figure 1

17 pages, 671 KB  
Article
Application of Targeted and Suspect Screening Workflows for Cyclic Peptide Cyanotoxin Profiling in Spirulina- and Klamath-Based Food Supplements
by Laura Carbonell-Rozas, M. Mar Aparicio-Muriana, Roberto Romero-González, Antonia Garrido Frenich, Ana M. García-Campaña and Monsalud del Olmo-Iruela
Foods 2025, 14(17), 2969; https://doi.org/10.3390/foods14172969 - 26 Aug 2025
Viewed by 2159
Abstract
Spirulina (Arthrospira spp.) and klamath (Aphanizomenon flos-aquae) are widely consumed cyanobacteria-based food supplements valued for their nutritional and health-promoting properties. However, these products are susceptible to contamination by cyanotoxins, which are potent toxins produced by co-occurring cyanobacteria that may pose [...] Read more.
Spirulina (Arthrospira spp.) and klamath (Aphanizomenon flos-aquae) are widely consumed cyanobacteria-based food supplements valued for their nutritional and health-promoting properties. However, these products are susceptible to contamination by cyanotoxins, which are potent toxins produced by co-occurring cyanobacteria that may pose health risks to consumers. In this study, we applied an integrated targeted and suspect screening approach to comprehensively assess the presence of cyanotoxins in commercial spirulina- and klamath-based food supplements. Targeted analysis was performed using UHPLC-QqQ under dynamic multiple reaction-monitoring conditions optimized for the determination of twelve cyclic peptide cyanotoxins. Suspect screening was conducted using high-resolution mass spectrometry (HRMS) with a Q-Orbitrap analyser, applying a specific workflow to detect additional related compounds lacking analytical standards. The method enabled the detection and identification of multiple cyanotoxins, including microcystins, nodularin, and anabaenopeptins. The combination of targeted and suspect workflows allowed for a broader coverage of potential related cyanotoxins. Several cyanotoxins were detected in a klamath-based supplement, with high concentrations of microcystin-RR, while additional variants were identified through suspect screening. These findings highlight the need for routine monitoring and stricter regulatory oversight of cyanobacteria-based supplements to ensure consumer safety. Full article
Show Figures

Graphical abstract

14 pages, 1685 KB  
Article
Targeted LC-MS Orbitrap Method for the Analysis of Azaarenes, and Nitrated and Oxygenated PAHs in Road Paving Emissions
by Maria Bou Saad, Sylvain Ravier, Amandine Durand, Brice Temime-Roussel, Vincent Gaudefroy, Audrey Pevere, Henri Wortham and Pierre Doumenq
Molecules 2025, 30(16), 3397; https://doi.org/10.3390/molecules30163397 - 16 Aug 2025
Viewed by 951
Abstract
Polycyclic aromatic hydrocarbon (PAH) derivatives, specifically azaarenes and nitrated and oxygenated PAHs, are emerging contaminants of concern due to their increased toxicity and persistence compared to the parent PAHs. Despite their toxicity, their simultaneous analysis in complex matrices, such as in fumes emitted [...] Read more.
Polycyclic aromatic hydrocarbon (PAH) derivatives, specifically azaarenes and nitrated and oxygenated PAHs, are emerging contaminants of concern due to their increased toxicity and persistence compared to the parent PAHs. Despite their toxicity, their simultaneous analysis in complex matrices, such as in fumes emitted from bituminous mixtures, remains challenging due to limitations of conventional analytical techniques. To address this, an advanced methodology was developed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS Orbitrap Eclipse) equipped with an APCI source for the simultaneous identification and quantification of 14 PAH derivatives. Chromatographic and ionization parameters were optimized to ensure maximum sensitivity and selectivity. Following ICH Q2(R2) guidelines, the method was validated, demonstrating excellent linearity (R2 > 0.99), high mass accuracy (≤5 ppm), strong precision (<15%), and excellent sensitivity. Limits of detection (LODs) ranged from 0.1 µg L−1 to 0.6 µg L−1 and limits of quantification (LOQs) ranged from 0.26 µg L−1 to 1.87 µg L−1. The validated method was successfully applied to emissions from asphalt pavement materials collected on quartz filters under controlled conditions, enabling the identification and quantification of all 14 targeted compounds. These results confirm the method’s robustness and suitability for trace-level analysis of PAH derivatives in complex environmental matrices. Full article
Show Figures

Figure 1

19 pages, 3393 KB  
Article
Integrated Phytochemical Profiling, UPLC-HRMS Characterization, and Bioactivity Evaluation of Zingiber officinale and Piper nigrum
by Aicha Boubker, Abdelmoula El Ouardi, Taha El Kamli, Mohammed Kaicer, Faouzi Kichou, Khaoula Errafii, Adnane El Hamidi, Rachid Ben Aakame and Aicha Sifou
Int. J. Mol. Sci. 2025, 26(16), 7782; https://doi.org/10.3390/ijms26167782 - 12 Aug 2025
Cited by 1 | Viewed by 1253
Abstract
The phytochemical profiles, antioxidant capacities, mineral composition, and antibacterial activities of Zingiber officinale (Z. officinal) and Piper nigrum (P. nigrum) were explored through aqueous, ethanolic, and methanolic extractions. The extracts were analyzed for polyphenols, flavonoids, and tannins, and their [...] Read more.
The phytochemical profiles, antioxidant capacities, mineral composition, and antibacterial activities of Zingiber officinale (Z. officinal) and Piper nigrum (P. nigrum) were explored through aqueous, ethanolic, and methanolic extractions. The extracts were analyzed for polyphenols, flavonoids, and tannins, and their antioxidant potential was assessed using the DPPH assay. UPLC-HRMS identified major bioactive compounds, including 6-gingerol and shogaol in Z. officinale, and piperine and piperlonguminine in P. nigrum. Mineral analysis showed that P. nigrum was particularly rich in essential elements, including calcium (Ca), magnesium (Mg), and iron (Fe). In antibacterial testing, P. nigrum demonstrated wider zones of inhibition against E. coli, whereas Z. officinale was more active at lower concentrations, showing MICs as low as 3.91 µg/mL against Salmonella and S. aureus. PCA analysis revealed strong correlations between phenolic content and biological effects. These results underscore the potential of both spices as effective natural agents for use in food preservation and health-promoting applications. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Antioxidant Role: 2nd Edition)
Show Figures

Figure 1

17 pages, 5591 KB  
Article
Pharmacological Investigation of Tongqiao Jiuxin Oil Against High-Altitude Hypoxia: Integrating Chemical Profiling, Network Pharmacology, and Experimental Validation
by Jiamei Xie, Yang Yang, Yuhang Du, Xiaohua Su, Yige Zhao, Yongcheng An, Xin Mao, Menglu Wang, Ziyi Shan, Zhiyun Huang, Shuchang Liu and Baosheng Zhao
Pharmaceuticals 2025, 18(8), 1153; https://doi.org/10.3390/ph18081153 - 2 Aug 2025
Viewed by 1156
Abstract
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, [...] Read more.
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, agarwood, frankincense, borneol, and musk, has been widely used in the treatment of cardiovascular and cerebrovascular disorders. Clinical observations suggest its potential efficacy against AMS, yet its pharmacological mechanisms remain poorly understood. Methods: The chemical profile of TQ was characterized using UHPLC-Q-Exactive Orbitrap HRMS. Network pharmacology was applied to predict the potential targets and pathways involved in AMS. A rat model of AMS was established by exposing animals to hypobaric hypoxia (~10% oxygen), simulating an altitude of approximately 5500 m. TQ was administered at varying doses. Physiological indices, oxidative stress markers (MDA, SOD, GSH), histopathological changes, and the expression of hypoxia- and apoptosis-related proteins (HIF-1α, VEGFA, EPO, Bax, Bcl-2, Caspase-3) in lung and brain tissues were assessed. Results: A total of 774 chemical constituents were identified from TQ. Network pharmacology predicted the involvement of multiple targets and pathways. TQ significantly improved arterial oxygenation and reduced histopathological damage in both lung and brain tissues. It enhanced antioxidant activity by elevating SOD and GSH levels and reducing MDA content. Mechanistically, TQ downregulated the expression of HIF-1α, VEGFA, EPO, and pro-apoptotic markers (Bax/Bcl-2 ratio, Caspase-3), while upregulated Bcl-2, the anti-apoptotic protein expression. Conclusions: TQ exerts protective effects against AMS-induced tissue injury by improving oxygen homeostasis, alleviating oxidative stress, and modulating hypoxia-related and apoptotic signaling pathways. This study provides pharmacological evidence supporting the potential of TQ as a promising candidate for AMS intervention, as well as the modern research method for multi-component traditional Chinese medicine. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop