Integrated Phytochemical Profiling, UPLC-HRMS Characterization, and Bioactivity Evaluation of Zingiber officinale and Piper nigrum
Abstract
1. Introduction
2. Results
2.1. Total TPC, TFC, TCT, and Antioxidant Activities
2.2. Determination of Bioactive Molecules by UPLC-HRMS Orbitrap
2.3. Mineral Metal Contents in the Plants
2.4. Antibacterial Activity
2.5. Correlation Matrix
2.6. Principal Component Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Extracts
3.3. Determination of Total Polyphenol Content (TPC)
3.4. Determination of Total Flavonoid Content (TFC)
3.5. Determination of Total Condensed Tannins (TCT)
3.6. Antioxidant Activity
3.7. Instrument and Chromatography Conditions
3.8. Elemental Determination
3.9. Antibacterial Activities
3.9.1. Agar Diffusion Test
3.9.2. Determination of Minimum Inhibitory Concentration of the Extract
3.10. Statistical Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Zhang, C.; Feng, Y. Medicinal Plants for the Management of Post-COVID-19 Fatigue: A Literature Review on the Role and Mechanisms. J. Tradit. Complement. Med. 2025, 15, 15–23. [Google Scholar] [CrossRef]
- Bhapkar, V.; Bhalerao, S. Relation of Spice Consumption with COVID-19 First Wave Statistics (Infection, Recovery and Mortality) across India. medRxiv 2022, 6, 22275684. [Google Scholar] [CrossRef]
- Gonella, K.; Nayak, S.P.; Garg, M.; Kotebagilu, N.P. Impact of the COVID-19 Pandemic on Immune Boosting Food Consumption and Overall Dietary Pattern among Selected Indian Adults: An Observational Study. Clin. Epidemiol. Glob. Health 2022, 15, 101056. [Google Scholar] [CrossRef]
- Das, P.; Chandra, T.; Negi, A.; Jaiswal, S.; Iquebal, M.A.; Rai, A.; Kumar, D. A Comprehensive Review on Genomic Resources in Medicinally and Industrially Important Major Spices for Future Breeding Programs: Status, Utility and Challenges. Curr. Res. Food Sci. 2023, 7, 100579. [Google Scholar] [CrossRef]
- Sekkout, Z.; El Hamsas El Youbi, A.; Boudaia, O.; Janani, S.; Radallah, D.; El Amrani, N. Traditional Medicinal Plants Used for Rheumatoid Arthritis and Immune System Disorders Treatment in the Casablanca-Settat Region, Morocco: An Ethnopharmacological Study. Eur. J. Med. Chem. Rep. 2024, 11, 100146. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A.; et al. Plants of the Genus Zingiber as a Source of Bioactive Phytochemicals: From Tradition to Pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef]
- Kumar Samota, M.; Rawat, M.; Kaur, M.; Garg, D. Gingerol: Extraction Methods, Health Implications, Bioavailability and Signaling Pathways. Sustain. Food Technol. 2024, 2, 1652–1669. [Google Scholar] [CrossRef]
- Chatterjee, B.; Arun Renganathan, R.R.; Vittal, R.R. Phytoconstituents from (Piper nigrum L.) Black Pepper Essential Oil (BPEO) Acts as Anti-Virulent to Fight Quorum Sensing, an Analysis through in-Vitro and in-Silico Studies. Ind. Crops Prod. 2025, 225, 120469. [Google Scholar] [CrossRef]
- Teixidor-Toneu, I.; Elgadi, S.; Zine, H.; Manzanilla, V.; Ouhammou, A.; D’Ambrosio, U. Medicines in the Kitchen: Gender Roles Shape Ethnobotanical Knowledge in Marrakshi Households. Foods 2021, 10, 2332. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, K.; Murugan, M.; Dhanya, M.K.; Pandian, A.; Warkentin, T.D. Phytochemistry and Therapeutic Potential of Black Pepper [Piper nigrum (L.)] Essential Oil and Piperine: A Review. Clin. Phytosci. 2021, 7, 52. [Google Scholar] [CrossRef]
- Rajaee, A.; Petramfar, P.; Ansari, R.; Asadi, S.; Vazin, A.; Zarshenas, M.M. Effects of Bunium persicum and Piper nigrum in the Treatment of Patients with Alzheimer’s Disease: A Double-Blinded Randomised Clinical Trial. J. Herb. Med. 2025, 49, 100975. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Huang, J.; Himabindu, K.; Tewari, D.; Horbańczuk, J.O.; Xu, S.; Chen, Z.; Atanasov, A.G. Cardiovascular Protective Effect of Black Pepper (Piper nigrum L.) and Its Major Bioactive Constituent Piperine. Trends Food Sci. Technol. 2021, 117, 34–45. [Google Scholar] [CrossRef]
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; et al. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef]
- Vuković, N.L.; Vukić, M.; Branković, J.; Petrović, V.; Galovičova, L.; Čmikova, N.; Kačaniova, M. The Antimicrobial and Antibiofilm Potential of the Piper nigrum L. Essential Oil: In Vitro, In Situ, and In Silico Study. Ind. Crops Prod. 2024, 209, 118075. [Google Scholar] [CrossRef]
- Morvaridzadeh, M.; Fazelian, S.; Agah, S.; Khazdouz, M.; Rahimlou, M.; Agh, F.; Potter, E.; Heshmati, S.; Heshmati, J. Effect of Ginger (Zingiber officinale) on Inflammatory Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cytokine 2020, 135, 155224. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K. Black Pepper and Its Pungent Principle-Piperine: A Review of Diverse Physiological Effects. Crit. Rev. Food Sci. Nutr. 2007, 47, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Zahin, M.; Bokhari, N.A.; Ahmad, I.; Husain, F.M.; Althubiani, A.S.; Alruways, M.W.; Perveen, K.; Shalawi, M. Antioxidant, Antibacterial, and Antimutagenic Activity of Piper nigrum Seeds Extracts. Saudi J. Biol. Sci. 2021, 28, 5094–5105. [Google Scholar] [CrossRef]
- Lukiati, B.; Sulisetijono; Nugrahaningsih; Masita, R. Determination of Total Phenol and Flavonoid Levels and Antioxidant Activity of Methanolic and Ethanolic Extract Zingiber officinale rosc Var. Rubrum Rhizome. AIP Conf. Proc. 2020, 2231, 040003. [Google Scholar] [CrossRef]
- Akullo, J.O.; Kiage-Mokua, B.N.; Nakimbugwe, D.; Ng’ang’a, J.; Kinyuru, J. Phytochemical Profile and Antioxidant Activity of Various Solvent Extracts of Two Varieties of Ginger and Garlic. Heliyon 2023, 9, e18806. [Google Scholar] [CrossRef]
- Dludla, P.V.; Cirilli, I.; Marcheggiani, F.; Silvestri, S.; Orlando, P.; Muvhulawa, N.; Moetlediwa, M.T.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Hlengwa, N.; et al. Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper (Piper nigrum) and Red Pepper (Capsicum annum) against Diverse Metabolic Complications. Molecules 2023, 28, 6569. [Google Scholar] [CrossRef]
- Onyesife, C.O.; Chukwuma, I.F.; Okagu, I.U.; Ndefo, J.C.; Amujiri, N.A.; Ogugua, V.N. Nephroprotective Effects of Piper nigrum Extracts against Monosodium Glutamate-Induced Renal Toxicity in Rats. Sci. Afr. 2023, 19, e01453. [Google Scholar] [CrossRef]
- Xiong, R.-G.; Zhou, D.-D.; Cheng, J.; Wu, S.-X.; Saimaiti, A.; Huang, S.-Y.; Liu, Q.; Shang, A.; Li, H.-B.; Li, S. Preparation and Evaluation of Liquorice (Glycyrrhiza uralensis) and Ginger (Zingiber officinale) Kombucha Beverage Based on Antioxidant Capacities, Phenolic Compounds and Sensory Qualities. Int. J. Gastron. Food Sci. 2024, 35, 100869. [Google Scholar] [CrossRef]
- Anh Nga, N.T.; Sathiyavimal, S.; Al-Humaid, L.A.; Al- Dahmash, N.D.; Lee, J.; Barathi, S.; Jhanani, G.K. Deciphering the Anticancer, Anti-Inflammatory and Antioxidant Potential of Ti Nanoparticles Fabricated Using Zingiber officinale. Environ. Res. 2023, 236, 116748. [Google Scholar] [CrossRef] [PubMed]
- Alfuraydi, A.A.; Aziz, I.M.; Almajhdi, F.N. Assessment of Antioxidant, Anticancer, and Antibacterial Activities of the Rhizome of Ginger (Zingiber officinale). J. King Saud Univ. Sci. 2024, 36, 103112. [Google Scholar] [CrossRef]
- Kanniah, P.; Chelliah, P.; Thangapandi, J.R.; Gnanadhas, G.; Mahendran, V.; Robert, M. Green Synthesis of Antibacterial and Cytotoxic Silver Nanoparticles by Piper nigrum Seed Extract and Development of Antibacterial Silver Based Chitosan Nanocomposite. Int. J. Biol. Macromol. 2021, 189, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Narendra Babu, K.; Hemalatha, R.; Satyanarayana, U.; Shujauddin, M.; Himaja, N.; Bhaskarachary, K.; Dinesh Kumar, B. Phytochemicals, Polyphenols, Prebiotic Effect of Ocimum sanctum, Zingiber officinale, Piper nigrum Extracts. J. Herb. Med. 2018, 13, 42–51. [Google Scholar] [CrossRef]
- Sangroula, G.; Khatri, S.B.; Sangroula, P.; Basnet, A.; Khadka, N.; Khadka, M. Essential Oil of Black Pepper (Piper nigrum) and Cardamom (Amomum sublatum roxb) as a Natural Food Preservative for Plum RTS. J. Agric. Food Res. 2024, 16, 101159. [Google Scholar] [CrossRef]
- Azevedo, S.G.; Rocha, A.L.F.; de Aguiar Nunes, R.Z.; da Costa Pinto, C.; Ţălu, Ş.; da Fonseca Filho, H.D.; de Araújo Bezerra, J.; Lima, A.R.; Guimarães, F.E.G.; Campelo, P.H.; et al. Pulsatile Controlled Release and Stability Evaluation of Polymeric Particles Containing Piper nigrum Essential Oil and Preservatives. Materials 2022, 15, 5415. [Google Scholar] [CrossRef]
- Oliveira, G.A.; Araujo, A.K.; Pacheco, G.; Oliveira, A.P.; Carvalho, J.L.; Chaves, L.S.; Sousa, C.C.; Lopes, A.L.F.; Silva, P.C.; Leódido, A.C.M.; et al. Anti-Inflammatory Properties of Bergenin in Mice. J. Appl. Pharm. Sci. 2019, 9, 69–77. [Google Scholar] [CrossRef][Green Version]
- Shi, J.; Xia, Y.; Wang, H.; Yi, Z.; Zhang, R.; Zhang, X. Piperlongumine Is an NLRP3 Inhibitor with Anti-Inflammatory Activity. Front. Pharmacol. 2022, 12, 818326. [Google Scholar] [CrossRef]
- Luca, S.V.; Minceva, M.; Gertsch, J.; Skalicka-Woźniak, K. LC-HRMS/MS-Based Phytochemical Profiling of Piper Spices: Global Association of Piperamides with Endocannabinoid System Modulation. Food Res. Int. 2021, 141, 110123. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, Z.; Yan, J.; Xie, J. Nutritional Components, Phytochemical Compositions, Biological Properties, and Potential Food Applications of Ginger (Zingiber officinale): A Comprehensive Review. J. Food Compos. Anal. 2024, 128, 106057. [Google Scholar] [CrossRef]
- Ogbuewu, I.P.; Mbajiorgu, C.A. Black Pepper (Piper nigrum Lam) as a Natural Feed Additive and Source of Beneficial Nutrients and Phytochemicals in Chicken Nutrition. Open Agric. 2023, 8, 20220204. [Google Scholar] [CrossRef]
- Promdam, N.; Panichayupakaranant, P. [6]-Gingerol: A Narrative Review of Its Beneficial Effect on Human Health. Food Chem. Adv. 2022, 1, 100043. [Google Scholar] [CrossRef]
- Bawadood, A.S.; Al-Abbasi, F.A.; Anwar, F.; El-Halawany, A.M.; Al-Abd, A.M. 6-Shogaol Suppresses the Growth of Breast Cancer Cells by Inducing Apoptosis and Suppressing Autophagy via Targeting Notch Signaling Pathway. Biomed. Pharmacother. 2020, 128, 110302. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef] [PubMed]
- Kostić, A.Ž.; Milinčić, D.D.; Špirović Trifunović, B.; Nedić, N.; Gašić, U.M.; Tešić, Ž.L.; Stanojević, S.P.; Pešić, M.B. Monofloral Corn Poppy Bee-Collected Pollen—A Detailed Insight into Its Phytochemical Composition and Antioxidant Properties. Antioxidants 2023, 12, 1424. [Google Scholar] [CrossRef]
- Dwita, L.P.; Hikmawanti, N.P.E.; Yeni, S. Extract, Fractions, and Ethyl-p-Methoxycinnamate Isolate from Kaempferia galanga Elicit Anti-Inflammatory Activity by Limiting Leukotriene B4 (LTB4) Production. J. Tradit. Complement. Med. 2021, 11, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Li, R.; Ye, S.; Ni, P.; Shan, J.; Yuan, T.; Liang, J.; Fan, Y.; Zhang, X. Vanillin Enhances the Antibacterial and Antioxidant Properties of Polyvinyl Alcohol-Chitosan Hydrogel Dressings. Int. J. Biol. Macromol. 2022, 220, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamun, M.R.; Maniruzzaman, M.; Rahman Badal, M.M.; Haque, M.A. Comparison of Piperine Content, Antimicrobial and Antioxidant Activity of Piper chaba Root and Stem. Heliyon 2024, 10, e38709. [Google Scholar] [CrossRef]
- Yasir, B.; Mus, S.; Rahimah, S.; Tandiongan, R.M.; Klara, K.P.; Afrida, N.; Nisaa, N.R.K.; Risna, R.; Jur, A.W.; Alam, G.; et al. Antimicrobial Profiling of Piper betle L. and Piper nigrum L. Against Methicillin-Resistant Staphylococcus Aureus (MRSA): Integrative Analysis of Bioactive Compounds Based on FT-IR, GC-MS, and Molecular Docking Studies. Separations 2024, 11, 322. [Google Scholar] [CrossRef]
- Lee, W.; Yoo, H.; Kim, J.A.; Lee, S.; Jee, J.-G.; Lee, M.Y.; Lee, Y.-M.; Bae, J.-S. Barrier Protective Effects of Piperlonguminine in LPS-Induced Inflammation In Vitro and In Vivo. Food Chem. Toxicol. 2013, 58, 149–157. [Google Scholar] [CrossRef]
- Qiu, J.; Chen, X.; Liang, P.; Zhang, L.; Xu, Y.; Gong, M.; Qiu, X.; Zhang, J.; Xu, W. Integrating Approach to Discover Novel Bergenin Derivatives and Phenolics with Antioxidant and Anti-Inflammatory Activities from Bio-Active Fraction of Syzygium brachythyrsum. Arab. J. Chem. 2022, 15, 103507. [Google Scholar] [CrossRef]
- Meriga, B.; Parim, B.; Chunduri, V.R.; Naik, R.R.; Nemani, H.; Suresh, P.; Ganapathy, S.; Uddandrao, V.V.S. Antiobesity Potential of Piperonal: Promising Modulation of Body Composition, Lipid Profiles and Obesogenic Marker Expression in HFD-Induced Obese Rats. Nutr. Metab. 2017, 14, 72. [Google Scholar] [CrossRef]
- Mrkonjić, Ž.; Kaplan, M.; Milošević, S.; Božović, D.; Sknepnek, A.; Miletić, D.; Lazarević Mrkonjić, I.; Rakić, D.; Zeković, Z.; Pavlić, B. Green Extraction Approach for Isolation of Bioactive Compounds in Wild Thyme (Thymus serpyllum L.) Herbal Dust—Chemical Profile, Antioxidant and Antimicrobial Activity and Comparison with Conventional Techniques. Plants 2024, 13, 897. [Google Scholar] [CrossRef]
- Wang, D.; Liang, J.; Zhang, J.; Wang, Y.; Chai, X. Natural Chalcones in Chinese Materia Medica: Licorice. Evid. -Based Complement. Altern. Med. 2020, 2020, 3821248. [Google Scholar] [CrossRef]
- Cunha, L.B.; Lepore, E.D.; Medeiros, C.C.B.; Sorrechia, R.; Pietro, R.C.L.R.; Corrêa, M.A. Can Gentisic Acid Serve as a High-Performance Antioxidant with Lower Toxicity for a Promising New Topical Application? Life 2024, 14, 1022. [Google Scholar] [CrossRef]
- Cicero, N.; Gervasi, T.; Durazzo, A.; Lucarini, M.; Macrì, A.; Nava, V.; Giarratana, F.; Tardugno, R.; Vadalà, R.; Santini, A. Mineral and Microbiological Analysis of Spices and Aromatic Herbs. Foods 2022, 11, 548. [Google Scholar] [CrossRef]
- Lee, J.-G.; Chae, Y.; Shin, Y.; Kim, Y.-J. Chemical Composition and Antioxidant Capacity of Black Pepper Pericarp. Appl. Biol. Chem. 2020, 63, 35. [Google Scholar] [CrossRef]
- Abiodun, F.M.; Sadisu, G.; Sade, Y.K. Nutritional and Anti-Nutritional Properties of Sweet Cassava (Manihot esculenta) and Black Pepper (Piper nigrum) Leaves. World J. Adv. Res. Rev. 2023, 20, 1148–1155. [Google Scholar] [CrossRef]
- Swain, S.; Rautray, T.R. Estimation of Trace Elements, Antioxidants, and Antibacterial Agents of Regularly Consumed Indian Medicinal Plants. Biol. Trace Elem. Res. 2021, 199, 1185–1193. [Google Scholar] [CrossRef]
- Alawadhi, N.; Abass, K.; Khaled, R.; Osaili, T.M.; Semerjian, L. Heavy Metals in Spices and Herbs from Worldwide Markets: A Systematic Review and Health Risk Assessment. Environ. Pollut. 2024, 362, 124999. [Google Scholar] [CrossRef]
- Ayoade, W.G.; Gbadamosi, L.; Ajayi, M.G.; Badmus, M.O. Assessment of Minerals and Vitamin Constituents of Some Commonly Consumed Spices. Int. J. Sci. Res. Arch. 2023, 10, 53–61. [Google Scholar] [CrossRef]
- Evuen, U.F.; Okolie, N.P.; Apiamu, A. Evaluation of the Mineral Composition, Phytochemical and Proximate Constituents of Three Culinary Spices in Nigeria: A Comparative Study. Sci. Rep. 2022, 12, 20705. [Google Scholar] [CrossRef] [PubMed]
- Woldetsadik, D.; Hailu, H.; Gebrezgabher, S.; Adam-Bradford, A.; Mengistu, T.; Evans, C.T.; Madani, N.; Mafika, T.P.; Fleming, D.E.B. Estimating the Potential of Spices for Mineral Provision in a Refugee Context in East Africa. SN Appl. Sci. 2023, 5, 1. [Google Scholar] [CrossRef]
- Siruguri, V.; Bhat, R.V. Assessing Intake of Spices by Pattern of Spice Use, Frequency of Consumption and Portion Size of Spices Consumed from Routinely Prepared Dishes in Southern India. Nutr. J. 2015, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Dos Santos, E.A.; Ereno Tadielo, L.; Arruda Schmiedt, J.; Silva Orisio, P.H.; De Cássia Lima Brugeff, E.; Sossai Possebon, F.; Olivia Pereira, M.; Gonçalves Pereira, J.; Dos Santos Bersot, L. Inhibitory Effects of Piperine and Black Pepper Essential Oil on Multispecies Biofilm Formation by Listeria Monocytogenes, Salmonella Typhimurium, and Pseudomonas Aeruginosa. LWT 2023, 182, 114851. [Google Scholar] [CrossRef]
- Shafiq, A.; Jeong, U.; Han, Y.; Kim, Y.; Lee, J.; Kim, B.S. Green Synthesis of Copper Oxide Nanoparticles from Waste Solar Panels Using Piper nigrum Fruit Extract and Their Antibacterial Activity. Catalysts 2024, 14, 472. [Google Scholar] [CrossRef]
- Wei, X.; Vasquez, S.; Thippareddi, H.; Subbiah, J. Evaluation of Enterococcus faecium NRRL B-2354 as a Surrogate for Salmonella in Ground Black Pepper at Different Water Activities. Int. J. Food Microbiol. 2021, 344, 109114. [Google Scholar] [CrossRef] [PubMed]
- Lara, A.; Santos, I.C.D.; Soares, A.A.; Otutumi, L.K.; Jacomassi, E.; Lovato, E.C.W.; Gazim, Z.C.; Rahal, I.L.; Oliva, L.R.; Gonçalves, J.E.; et al. Composition and Antimicrobial Activity of Ginger (Zingiber officinale Roscoe). Aust. J. Crop Sci. 2021, 15, 882–889. [Google Scholar] [CrossRef]
- Yousfi, F.; Abrigach, F.; Petrovic, J.D.; Sokovic, M.; Ramdani, M. Phytochemical Screening and Evaluation of the Antioxidant and Antibacterial Potential of Zingiber officinale Extracts. S. Afr. J. Bot. 2021, 142, 433–440. [Google Scholar] [CrossRef]
- Noman, Z.A.; Anika, T.T.; Sachi, S.; Ferdous, J.; Sarker, Y.A.; Sabur, M.A.; Rahman, M.T.; Sikder, M.H. Evaluation of Antibacterial Efficacy of Garlic (Allium sativum) and Ginger (Zingiber officinale) Crude Extract against Multidrug-Resistant (MDR) Poultry Pathogen. J. Adv. Vet. Anim. Res. 2023, 10, 151–156. [Google Scholar] [CrossRef]
- Gunasena, M.T.; Rafi, A.; Mohd Zobir, S.A.; Hussein, M.Z.; Ali, A.; Kutawa, A.B.; Abdul Wahab, M.A.; Sulaiman, M.R.; Adzmi, F.; Ahmad, K. Phytochemicals Profiling, Antimicrobial Activity and Mechanism of Action of Essential Oil Extracted from Ginger (Zingiber officinale Roscoe Cv. Bentong) against Burkholderia Glumae Causative Agent of Bacterial Panicle Blight Disease of Rice. Plants 2022, 11, 1466. [Google Scholar] [CrossRef] [PubMed]
- Sulieman, A.M.E.; Abdallah, E.M.; Alanazi, N.A.; Ed-Dra, A.; Jamal, A.; Idriss, H.; Alshammari, A.S.; Shommo, S.A.M. Spices as Sustainable Food Preservatives: A Comprehensive Review of Their Antimicrobial Potential. Pharmaceuticals 2023, 16, 1451. [Google Scholar] [CrossRef]
- Asif, A.; Ibrahim, F.; Ansari, A. A Systematic Review: Effectiveness of Herbs and Spices as Natural Preservatives to Enhance Meat Shelf-Life: Herbs and Spices as Natural Preservatives. J. Health Rehabil. Res. 2024, 4, 1–7. [Google Scholar] [CrossRef]
- Gautam, S.; Gautam, A.; Chhetri, S.; Bhattarai, U. Immunity against COVID-19: Potential Role of Ayush Kwath. J. Ayurveda Integr. Med. 2022, 13, 100350. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Bose, D.; Maqsood, Q.; Gulia, K.; Khan, A. Recent Advances on the Therapeutic Potential with Ocimum Species against COVID-19: A Review. S. Afr. J. Bot. 2024, 164, 188–199. [Google Scholar] [CrossRef]
- Muzolf-Panek, M.; Stuper-Szablewska, K. Comprehensive Study on the Antioxidant Capacity and Phenolic Profiles of Black Seed and Other Spices and Herbs: Effect of Solvent and Time of Extraction. Food Meas. 2021, 15, 4561–4574. [Google Scholar] [CrossRef]
- Antasionasti, I.; Datu, O.S.; Lestari, U.S.; Abdullah, S.S.; Jayanto, I. Correlation Analysis of Antioxidant Activities with Tannin, Total Flavonoid, and Total Phenolic Contents of Nutmeg (Myristica fragrans Houtt) Fruit Precipitated by Egg White. Borneo J. Pharm. 2021, 4, 301–310. [Google Scholar] [CrossRef]
- Ulewicz-Magulska, B.; Wesolowski, M. Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data. Antioxidants 2023, 12, 2039. [Google Scholar] [CrossRef]
- Moshari-Nasirkandi, A.; Alirezalu, A.; Alipour, H.; Amato, J. Screening of 20 Species from Lamiaceae Family Based on Phytochemical Analysis, Antioxidant Activity and HPLC Profiling. Sci. Rep. 2023, 13, 16987. [Google Scholar] [CrossRef] [PubMed]
- Nur, S.; Setiawan, H.; Hanafi, M.; Elya, B. Pharmacognostical and Phytochemical Studies and Biological Activity of Curculigo Latifolia Plant Organs for Natural Skin-Whitening Compound Candidate. Sci. World J. 2023, 2023, 5785259. [Google Scholar] [CrossRef]
- Hayat, J.; Akodad, M.; Moumen, A.; Baghour, M.; Skalli, A.; Ezrari, S.; Belmalha, S. Phytochemical Screening, Polyphenols, Flavonoids and Tannin Content, Antioxidant Activities and FTIR Characterization of Marrubium vulgare L. from 2 Different Localities of Northeast of Morocco. Heliyon 2020, 6, e05609. [Google Scholar] [CrossRef]
- Eddahhaoui, F.Z.; Boudalia, M.; Harhar, H.; Chahboun, N.; Tabyaoui, M.; Guenbour, A.; Zarrouk, A.; Bellaouchou, A. Effect of the Extraction Technique on the Bioactive Compounds and the Antioxidant Capacity of the Chamaerops humilis L. Fruit (Pulp and Seeds). Chem. Data Collect. 2022, 40, 100882. [Google Scholar] [CrossRef]
- Nounah, I.; Hajib, A.; Harhar, H.; Madani, N.E.; Gharby, S.; Guillaume, D.; Charrouf, Z. Chemical Composition and Antioxidant Activity of Lawsonia inermis Seed Extracts from Morocco. Nat. Prod. Commun. 2017, 12, 1934578X1701200405. [Google Scholar] [CrossRef]
- Han, H.; Yılmaz, H.; Gülçin, İ. Antioxidant Activity of Flaxseed (Linum usitatissimum L.) Shell and Analysis of Its Polyphenol Contents by LC-MS/MS. Rec. Nat. Prod. 2018, 12, 397–402. [Google Scholar] [CrossRef]
- Moroccan Institute for Standardization (IMANOR). Determination of Trace Elements—Determination of Lead, Cadmium, Zinc, Copper, Iron, and Chromium by Atomic Absorption Spectrometry (AAS) After Dry Ashing 2016; Moroccan Institute for Standardization (IMANOR): Rabat, Morocco, 2016. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, 14th ed.; M02-Ed14; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 12th ed.; M07-Ed12; CLSI: Wayne, PA, USA, 2024. [Google Scholar]
Extract | TPC (µg GAE/mg Extract) | TFC (μg QE/mg Extract) | TCT (μg CE/mg Extract) | CI50 DPPH (μg/mL) | |
---|---|---|---|---|---|
Z. officinale | Aqueous | 4.105 ± 0.010 | 14.150 ± 0.182 | 0.802 ± 0.001 | 86.290 ± 0.170 |
Ethanol | 75.694 ± 0.097 | 114.150 ± 0.79 | 2.407 ± 0.100 | 32.620 ± 0.055 | |
Methanol | 54.523 ± 0.331 | 82.674 ± 0.500 | 4.654 ± 0.200 | 47.196 ±0.129 | |
P. nigrum | Aqueous | 11.512 ± 0.100 | 2.407± 0.040 | 5.620 ± 0.130 | 219.366 ± 0.513 |
Ethanol | 20.93 ± 0.213 | 5.617 ± 0.060 | 21.170 ± 0.300 | 182.171 ± 0.391 | |
Methanol | 16.467 ± 0.198 | 2.086 ± 0.010 | 12.040 ± 0.040 | 175.527 ± 0.366 |
Molecule | Chemical Formula | Structure | Retention Time | Z. officinale | P. nigrum | Bioactivity | Bibliography |
---|---|---|---|---|---|---|---|
6-Gingerol | C17 H26 O4 | 24.61 | D | ND | Antioxidant and antiviral | [34] | |
Shogaol | C11 H14 O3 | 24.61 | D | ND | Anticancer | [35] | |
Cinnamic Acid | C9 H8 O2 | 21.49 | D | ND | Anticancer and antidiabetic | [36] | |
5-Carboxyvanillic Acid | C9 H8 O6 | 2.59 | D | ND | Antioxidant | [37] | |
Ethyl Cinnamate | C10 H10 O2 | 23.72 | D | ND | Anti-inflammatory | [38] | |
Vanillin | C8 H8 O3 | 8.46 | D | D | Antibacterial | [39] | |
Piperine | C17 H19 N O3 | 25.37 | ND | D | Antibacterial | [40] | |
Piperanine | C17 H21 N O3 | 25.37 | ND | D | Antimicrobial | [41] | |
Piperlonguminine | C16 H19 N O3 | 23.63 | ND | D | Anti-inflammatory | [42] | |
Bergenin | C14 H16 O9 | 3.90 | ND | D | Antioxidant and anti-inflammatory | [43] | |
Piperonal | C8 H6 O3 | 8.72 | ND | D | Antiobesity | [44] | |
Trans-Geranic Acid | C10 H16 O2 | 27.18 | ND | D | Antimicrobial | [45] | |
Kanzonol B | C20 H18 O4 | 21.77 | ND | D | Antibacterial and anti-inflammatory | [46] | |
Gentisic Acid | C7 H6 O4 | 2.72 | ND | D | Antioxidant | [47] |
mg/g Dry Matter | |||||||||
---|---|---|---|---|---|---|---|---|---|
Na | Ca | Mg | K | Fe | Cu | Zn | Mn | B | |
Z. officinale | 1.251 ± 0.092 | 1.430 ± 0.070 | 2.371 ± 0.131 | 0.751 ± 0.050 | 0.171 ± 0.019 | 0.003 ± 0.001 | 0.012 ± 0.006 | 0.191 ± 0.008 | 0.002 ± 0.001 |
P. nigrum | 0.639 ± 0.070 | 4.160 ± 0.270 | 1.923 ± 0.180 | 0.589 ± 0.030 | 4.030 ± 0.585 | 0.300 ± 0.033 | 0.650 ± 0.040 | 1.760 ± 0.101 | 0.580 ± 0.080 |
Zone of Inhibition (mm) | ||||
---|---|---|---|---|
Plant | Concentration (mg/mL) | E. coli | Salmonella | Staphylococcus |
Z. officinale | 100 | 14.00 ± 0.50 | 7.00 ± 1.00 | 12.00 ± 0.50 |
50 | 13.00 ± 0.00 | - | 7.50 ± 0.50 | |
25 | 9.00 ± 0.00 | - | - | |
12.5 | 7.00 ± 0.00 | - | - | |
6.25 | - | - | ||
P. nigrum | 100 | 15.00 ± 1.50 | 12.50 ± 0.50 | 14.00 ± 1.00 |
50 | 9.00 ± 0.05 | 11.00 ± 0.00 | 11.50 ± 0.50 | |
25 | 8.00 ± 0.00 | Trace | 10.00 ± 0.00 | |
12.5 | 7.00 ± 0.00 | - | 7.50 ± 0.00 | |
6.25 | - | - | - | |
Ciprofloxacin (5 µg) | 28.00 ± 2.00 | |||
Gentamicin (10 µg) | 23.00 ± 1.00 | |||
Oxacillin (1 µg) | 24.00 ± 1.00 | |||
Water distilled | 100 | - | - | - |
50 | - | - | - | |
25 | - | - | - | |
12.5 | - | - | - | |
6.25 | - | - | - |
Aqueous Extract | MIC (µg/mL) | ||
---|---|---|---|
E. coli | Salmonella | Staphylococcus | |
Z. officinale | 62.5 | 3.91 | 3.91 |
P. nigrum | 125 | 62.5 | 31.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boubker, A.; El Ouardi, A.; El Kamli, T.; Kaicer, M.; Kichou, F.; Errafii, K.; El Hamidi, A.; Ben Aakame, R.; Sifou, A. Integrated Phytochemical Profiling, UPLC-HRMS Characterization, and Bioactivity Evaluation of Zingiber officinale and Piper nigrum. Int. J. Mol. Sci. 2025, 26, 7782. https://doi.org/10.3390/ijms26167782
Boubker A, El Ouardi A, El Kamli T, Kaicer M, Kichou F, Errafii K, El Hamidi A, Ben Aakame R, Sifou A. Integrated Phytochemical Profiling, UPLC-HRMS Characterization, and Bioactivity Evaluation of Zingiber officinale and Piper nigrum. International Journal of Molecular Sciences. 2025; 26(16):7782. https://doi.org/10.3390/ijms26167782
Chicago/Turabian StyleBoubker, Aicha, Abdelmoula El Ouardi, Taha El Kamli, Mohammed Kaicer, Faouzi Kichou, Khaoula Errafii, Adnane El Hamidi, Rachid Ben Aakame, and Aicha Sifou. 2025. "Integrated Phytochemical Profiling, UPLC-HRMS Characterization, and Bioactivity Evaluation of Zingiber officinale and Piper nigrum" International Journal of Molecular Sciences 26, no. 16: 7782. https://doi.org/10.3390/ijms26167782
APA StyleBoubker, A., El Ouardi, A., El Kamli, T., Kaicer, M., Kichou, F., Errafii, K., El Hamidi, A., Ben Aakame, R., & Sifou, A. (2025). Integrated Phytochemical Profiling, UPLC-HRMS Characterization, and Bioactivity Evaluation of Zingiber officinale and Piper nigrum. International Journal of Molecular Sciences, 26(16), 7782. https://doi.org/10.3390/ijms26167782