Targeted LC-MS Orbitrap Method for the Analysis of Azaarenes, and Nitrated and Oxygenated PAHs in Road Paving Emissions
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. LC-MS Conditions and Analysis Parameters
2.3. Quantification, Calibration, and Sensitivity Assessment
2.4. Sample Collection, Preparation, and Extraction
3. Results and Discussion
3.1. Method Validation
3.1.1. Linearity, Accuracy, and Sensitivity
3.1.2. Precision, Repeatability, and Reproducibility
3.1.3. Matrix Effect Evaluation
3.2. Application to Fume Samples from Bituminous Pavement Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PAH | Polycyclic Aromatic Hydrocarbons |
APCI | Atmospheric-Pressure Chemical Ionization |
UHPLC | Ultra-High-Performance Liquid Chromatography |
HRMS | High-Resolution Mass Spectrometry |
LOD | Limit Of Detection |
LOQ | Limit Of Quantification |
RAP | Reclaimed Asphalt Pavement |
RSD | Relative Standard Deviation |
ASE | Accelerated Solvent Extraction |
ESI | ElectroSpray Ionization |
DCM | Dichloromethane |
ACN | Acetonitrile |
IARC | International Agency for Research on Cancer |
WHO | World Health Organization |
EPA | Environmental Protection Agency |
References
- Hollosi, L.; Wenzl, T. Development and Optimisation of a Dopant Assisted Liquid Chromatographic-Atmospheric Pressure Photo Ionisation-Tandem Mass Spectrometric Method for the Determination of 15 + 1 EU Priority PAHs in Edible Oils. J. Chromatogr. A 2011, 1218, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhang, S.; Zhou, Y.; He, D.; Li, Y.; Ren, M.; Xu, Z.; Fang, J. Characterization and Quantification of PAH Atmospheric Pollution from a Large Petrochemical Complex in Guangzhou: GC–MS/MS Analysis. Microchem. J. 2015, 119, 140–144. [Google Scholar] [CrossRef]
- WHO; IPCS. Selected Nitro- and Nitro-Oxy-Polycyclic Aromatic Hydrocarbons; World Health Organization: Geneva, Switzerland, 2003; ISBN 978-92-4-157229-3. [Google Scholar]
- Durant, J.L.; Busby, W.F.; Lafleur, A.L.; Penman, B.W.; Crespi, C.L. Human Cell Mutagenicity of Oxygenated, Nitrated and Unsubstituted Polycyclic Aromatic Hydrocarbons Associated with Urban Aerosols. Mutat. Res. Genet. Toxicol. 1996, 371, 123–157. [Google Scholar] [CrossRef] [PubMed]
- Bleeker, E.A.J.; Van Der Geest, H.G.; Klamer, H.J.C.; De Voogt, P.; Wind, E.; Kraak, M.H.S. Toxic and Genotoxic Effects of Azaarenes: Isomers and Metabolites. Polycycl. Aromat. Compd. 1999, 13, 191–203. [Google Scholar] [CrossRef]
- Reenu, V. Electron-Correlation Based Externally Predictive QSARs for Mutagenicity of Nitrated-PAHs in Salmonella Typhimurium TA100. Ecotoxicol. Environ. Saf. 2014, 101, 42–50. [Google Scholar] [CrossRef]
- Knecht, A.; Goodale, B.; Truong, L.; Simonich, M.; Swanson, A.; Matzke, M.; Anderson, K.; Waters, K.; Tanguay, R. Comparative Developmental Toxicity of Environmentally Relevant Oxygenated PAHs. Toxicol. Appl. Pharmacol. 2013, 271, 266–275. [Google Scholar] [CrossRef]
- Cerniglia, C.E. Fungal Metabolism of Polycyclic Aromatic Hydrocarbons: Past, Present and Future Applications in Bioremediation. J. Ind. Microbiol. Biotechnol. 1997, 19, 324–333. [Google Scholar] [CrossRef]
- Lundstedt, S.; White, P.A.; Lemieux, C.L.; Lynes, K.D.; Lambert, I.B.; Öberg, L.; Haglund, P.; Tysklind, M. Sources, Fate, and Toxic Hazards of Oxygenated Polycyclic Aromatic Hydrocarbons (PAHs) at PAH-Contaminated Sites. AMBIO A J. Hum. Environ. 2007, 36, 475–485. [Google Scholar] [CrossRef]
- O’Connell, S.G.; Haigh, T.; Wilson, G.; Anderson, K.A. An Analytical Investigation of 24 Oxygenated-PAHs (OPAHs) Using Liquid and Gas Chromatography–Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 8885–8896. [Google Scholar] [CrossRef]
- Albinet, A.; Leoz-Garziandia, E.; Budzinski, H.; ViIlenave, E. Polycyclic Aromatic Hydrocarbons (PAHs), Nitrated PAHs and Oxygenated PAHs in Ambient Air of the Marseilles Area (South of France): Concentrations and Sources. Sci. Total Environ. 2007, 384, 280–292. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Polycyclic Aromatic Hydrocarbons; Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles Update; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 1995. [Google Scholar]
- Bandowe, B.A.M.; Meusel, H. Nitrated Polycyclic Aromatic Hydrocarbons (Nitro-PAHs) in the Environment—A Review. Sci. Total Environ. 2017, 581–582, 237–257. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Wang, Y.; Xiong, F.; Ai, C. Effects of Asphalt Source and Mixing Temperature on the Generated Asphalt Fumes. J. Hazard. Mater. 2019, 371, 342–351. [Google Scholar] [CrossRef]
- Nascimento, P.C.; Gobo, L.A.; Bohrer, D.; Carvalho, L.M.; Cravo, M.C.; Leite, L.F.M. Determination of Oxygen and Nitrogen Derivatives of Polycyclic Aromatic Hydrocarbons in Fractions of Asphalt Mixtures Using Liquid Chromatography Coupled to Mass Spectrometry with Atmospheric Pressure Chemical Ionization. J. Sep. Sci. 2015, 38, 4055–4062. [Google Scholar] [CrossRef]
- IARC. Occupational Exposures to Bitumens and Their Emissions; WHO: Lyon, France, 2011. [Google Scholar]
- Deller, Z.; Maniam, S.; Giustozzi, F. Sample Preparation and Analytical Methods for Identifying Organic Compounds in Bituminous Emissions. Molecules 2022, 27, 5068. [Google Scholar] [CrossRef]
- Gasthauer, E.; Mazé, M.; Marchand, J.P.; Amouroux, J. Characterization of Asphalt Fume Composition by GC/MS and Effect of Temperature. Fuel 2008, 87, 1428–1434. [Google Scholar] [CrossRef]
- Preiss, A.; Koch, W.; Kock, H.; Elend, M.; Raabe, M.; Pohlmann, G. Collection, Validation and Generation of Bitumen Fumes for Inhalation Studies in Rats Part 1: Workplace Samples and Validation Criteria. Ann. Occup. Hyg. 2006, 50, 789–804. [Google Scholar] [CrossRef]
- Delhomme, O.; Millet, M. Comparison of Two Analytical Methods for the Determination of Azaarenes in Atmospheric Particulate Matter. Polycycl. Aromat. Compd. Polycycl. Aromat. Compd. 2008, 28, 518–532. [Google Scholar] [CrossRef]
- Huynh, C.K.; Duc, T.V.; Deygout, F.; Le Coutaller, P.; Surmont, F. Identification and Quantification of Pah in Bitumen by Gc- Ion-Trap Ms and Hplc-Fluorescent Detectors. Polycycl. Aromat. Compd. 2007, 27, 107–121. [Google Scholar] [CrossRef]
- Plaza-Bolaños, P.; Frenich, A.G.; Vidal, J.L.M. Polycyclic Aromatic Hydrocarbons in Food and Beverages. Analytical Methods and Trends. J. Chromatogr. A 2010, 1217, 6303–6326. [Google Scholar] [CrossRef] [PubMed]
- Lung, S.-C.C.; Liu, C.-H. Fast Analysis of 29 Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs with Ultra-High Performance Liquid Chromatography-Atmospheric Pressure Photoionization-Tandem Mass Spectrometry. Sci. Rep. 2015, 5, 12992. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-F.; Chen, J.-C.; Zhao, Y.-X.; Wang, L.; Teng, Y.-Q.; Cai, M.-H.; Zhao, Y.-H.; Nikolaev, A.; Li, Y.-F. Determination of 123 Polycyclic Aromatic Hydrocarbons and Their Derivatives in Atmospheric Samples. Chemosphere 2022, 296, 134025. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.-S.; Syage, J.A.; Hanold, K.A.; Balogh, M.P. Ultra Performance Liquid Chromatography—Atmospheric Pressure Photoionization-Tandem Mass Spectrometry for High-Sensitivity and High-Throughput Analysis of U.S. Environmental Protection Agency 16 Priority Pollutants Polynuclear Aromatic Hydrocarbons. Anal. Chem. 2009, 81, 2123–2128. [Google Scholar] [CrossRef]
- Calamari, D.; Tremolada, P.; Di Guardo, A.; Vighi, M. Chlorinated Hydrocarbons in Pine Needles in Europe: Fingerprint for the Past and Recent Use. Environ. Sci. Technol. 1994, 28, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Nyiri, Z.; Novák, M.; Bodai, Z.; Szabó, B.S.; Eke, Z.; Záray, G.; Szigeti, T. Determination of Particulate Phase Polycyclic Aromatic Hydrocarbons and Their Nitrated and Oxygenated Derivatives Using Gas Chromatography–Mass Spectrometry and Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1472, 88–98. [Google Scholar] [CrossRef]
- Cochran, R.E.; Smoliakova, I.P.; Kubátová, A. Detection of Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons Using Atmospheric Pressure Chemical Ionization High Resolution Mass Spectrometry. Int. J. Mass Spectrom. 2016, 397–398, 6–17. [Google Scholar] [CrossRef]
- Szterk, A.; Roszko, M.; Cybulski, A. Determination of Azaarenes in Oils Using the LC-APCI-MS/MS Technique: New Environmental Toxicant in Food Oils. J. Sep. Sci. 2012, 35, 2858–2865. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, X.; Lin, K. Analysis of Polyhalogenated Carbazoles in Sediment Using Liquid Chromatography–Tandem Mass Spectrometry. Ecotoxicol. Environ. Saf. 2019, 170, 148–155. [Google Scholar] [CrossRef]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Validation of Analytical Procedures Q2(R2). 2023. Available online: https://www.ich.org/page/quality-guidelines (accessed on 12 August 2025).
- Gaudefroy, V.; Viranaiken, V.; Paranhos, R.; Jullien, A.; De La Roche, C. Laboratory Assessment of Fumes Generated by Bituminous Mixtures and Bitumen. Road Mater. Pavement Des. 2010, 11, 83–100. [Google Scholar] [CrossRef]
- Mueller, A.; Ulrich, N.; Hollmann, J.; Zapata Sanchez, C.E.; Rolle-Kampczyk, U.E.; von Bergen, M. Characterization of a Multianalyte GC-MS/MS Procedure for Detecting and Quantifying Polycyclic Aromatic Hydrocarbons (PAHs) and PAH Derivatives from Air Particulate Matter for an Improved Risk Assessment. Environ. Pollut. 2019, 255, 112967. [Google Scholar] [CrossRef]
Step | Time (min) | % A | % B | Comments |
---|---|---|---|---|
Initial Conditions | 0 | 70 | 30 | Start |
Linear Gradient to 50% B | 0–4 | 50 | 50 | Linearly increase B |
Hold at 50% B | 4–6 | 50 | 50 | Isocratic |
Linear Gradient to 95% B | 6–10 | 5 | 95 | Linearly increase B |
Hold at 95% B | 10–11 | 5 | 95 | Strong elution phase |
Re-equilibration | 11–12 | 70 | 30 | Return to initial conditions |
Parameter | Optimized Value |
---|---|
Liquid Chromatography (UHPLC) | |
Column Length C18 (5 cm and 10 cm) | C18, 100 × 2.1 mm, 1.9 µm (Hypersil GOLD) |
Mobile Phase A | 100% H2O |
Mobile Phase B | 100% Acetonitrile |
Gradient Program (optimized) | 30% B (start), ramp to 50% in 4 min → hold for 2 min → ramp to 95% in 4 min → hold for 1 min → re-equilibration for 1 min. |
Flow | 0.5 mL min−1 |
Column Temperature | 30 °C |
Injection Volume (1, 2, 3, 5 µL) | 3 µL |
Time | 12 min |
Mass Spectrometry (HRMS) | |
Ionization Mode (+/−) | APCI (+/−) depending on the compound |
Vaporizer Temperature (between 250 and 400 °C) | 350 °C |
Ion Transfer Tube Temperature (200 to 300 °C) | 300 °C |
Sheath Gas (20–45) | 45 (arbitrary units) |
Auxiliary Flow Rate | 5 (arbitrary units) |
Positive Discharge Current | 4.0 µA |
Negative Discharge Current | 10 µA [10,15] |
RF Lens (30 and 60%) | 60% |
Axial Position of the APCI-Probe (High and Medium) | Medium |
Distance of the APCI-Probe (3 and 2) | 2 |
Full Scan Range | m/z 80–1200 |
Resolution | 60,000 FWHM |
PAH Derivative | Retention Time (min) | Exact Mass (m/z) | Calibration Range | Linearity R2 | LOD (µg L−1) | LOQ (µg L−1) | Baseline Noise Impact (%) |
---|---|---|---|---|---|---|---|
Quinoline * | 1.56–1.59 | 130.0652 [M + H]+ | 0.5–15 | 0.9987 | 0.12 | 0.36 | −4 |
2-Naphtol † | 2.91–2.95 | 143.0503 [M − H]− | 1–15 | 0.9957 | 0.25 | 0.76 | 2 |
Anthraquinone † | 4.90–4.94 | 208.0529 [M]•− | 1–15 | 0.9985 | 0.28 | 0.85 | −8 |
Carbazole † | 5.05–5.09 | 166.0662 [M − H]− | 1–15 | 0.9929 | 0.28 | 0.85 | 0 |
Benzo(a)acridine * | 5.57–5.61 | 230.0976 [M + H]+ | 0.5–15 | 0.9985 | 0.11 | 0.35 | 5 |
1-Hydroxypyrene † | 6.03–6.08 | 217.0657 [M − H]− | 2–15 | 0.9988 | 0.61 | 1.87 | 0 |
2-Nitrofluorene † | 7.06–7.11 | 210.0560 [M − H]− | 1–15 | 0.9918 | 0.31 | 0.95 | NA |
6H-benzo(c,d)pyren-6-one * | 7.97–8.00 | 255.0803 [M + H]+ | 0.5–15 | 0.9991 | 0.15 | 0.45 | 0 |
Dibenz(a,j)acridine * | 8.40–8.43 | 280.1121 [M + H]+ | 1–15 | 0.9985 | 0.22 | 0.68 | 2 |
Benzo(c)acridine * | 8.57–8.59 | 230.0977 [M + H]+ | 0.3–15 | 0.9997 | 0.08 | 0.26 | 3 |
1-Nitropyrene † | 8.59–8.61 | 247.0636 [M]•− | 1–15 | 0.9984 | 0.27 | 0.85 | NA |
7H-dibenzo(c,g)carbazole † | 8.75–8.78 | 266.0983 [M − H]− | 0.5–15 | 0.9981 | 0.15 | 0.48 | 0 |
Dibenz(a,h)acridine * | 9.90–9.92 | 280.1121 [M + H]+ | 0.5–15 | 0.9993 | 0.14 | 0.43 | 3 |
Dibenz(c,h)acridine * | 10.32–10.34 | 280.1122 [M + H]+ | 0.5–15 | 0.9997 | 0.1 | 0.33 | 3 |
Compound | Repeatability (% RSD) | Reproducibility (%RSD) |
---|---|---|
Quinoline | 5.2 | 6.2 |
2-Naphtol | 7.4 | 10.1 |
Anthraquinone | 8.2 | 9.1 |
Carbazole | 6.8 | 8.6 |
1-Hydroxypyrene | 6.9 | 12.2 |
2-Nitrofluorene | 9.1 | 10.4 |
1-Nitropyrene | 9.9 | 10.2 |
Dibenzo(a,j)acridine | 3.4 | 4.1 |
Dibenzo(a,h)acridine | 3.8 | 4.3 |
Dibenzo(c,h)acridine | 3.7 | 4.4 |
Benzo(a)acridine | 3.1 | 3.8 |
Benzo(c)acridine | 4.0 | 4.1 |
7H-dibenzo(c,g)carbazole | 5.6 | 10.3 |
6H-benzo(c,d)pyren-6-one | 4.5 | 9.7 |
Compound | Recovery Rate (%) | % RSD |
---|---|---|
Quinoline | 129.6 ± 28.4 | 21.9 |
2-Naphtol | 85.5 ± 5.0 | 5.9 |
Anthraquinone | 101.1 ± 6.7 | 6.6 |
Carbazole | 78.0 ± 9.4 | 12.1 |
1-Hydroxypyrene | 74.2 ± 29 | 39.0 |
2-Nitrofluorene | 67.3 ± 19.5 | 29.0 |
1-Nitropyrene | 78.5 ± 11.3 | 14.4 |
Dibenzo(a,j)acridine | 108.6 ± 11.6 | 10.7 |
Dibenzo(a,h)acridine | 108.1 ± 10.16 | 9.4 |
Dibenzo(c,h)acridine | 100.3 ± 5.6 | 5.6 |
Benzo(a)acridine | 109.1 ± 9.9 | 9.1 |
Benzo(c)acridine | 104.0 ± 12.0 | 11.5 |
7H-Dibenzo(c,g)carbazole | 77.3 ± 14.8 | 19.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bou Saad, M.; Ravier, S.; Durand, A.; Temime-Roussel, B.; Gaudefroy, V.; Pevere, A.; Wortham, H.; Doumenq, P. Targeted LC-MS Orbitrap Method for the Analysis of Azaarenes, and Nitrated and Oxygenated PAHs in Road Paving Emissions. Molecules 2025, 30, 3397. https://doi.org/10.3390/molecules30163397
Bou Saad M, Ravier S, Durand A, Temime-Roussel B, Gaudefroy V, Pevere A, Wortham H, Doumenq P. Targeted LC-MS Orbitrap Method for the Analysis of Azaarenes, and Nitrated and Oxygenated PAHs in Road Paving Emissions. Molecules. 2025; 30(16):3397. https://doi.org/10.3390/molecules30163397
Chicago/Turabian StyleBou Saad, Maria, Sylvain Ravier, Amandine Durand, Brice Temime-Roussel, Vincent Gaudefroy, Audrey Pevere, Henri Wortham, and Pierre Doumenq. 2025. "Targeted LC-MS Orbitrap Method for the Analysis of Azaarenes, and Nitrated and Oxygenated PAHs in Road Paving Emissions" Molecules 30, no. 16: 3397. https://doi.org/10.3390/molecules30163397
APA StyleBou Saad, M., Ravier, S., Durand, A., Temime-Roussel, B., Gaudefroy, V., Pevere, A., Wortham, H., & Doumenq, P. (2025). Targeted LC-MS Orbitrap Method for the Analysis of Azaarenes, and Nitrated and Oxygenated PAHs in Road Paving Emissions. Molecules, 30(16), 3397. https://doi.org/10.3390/molecules30163397